

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c509at-04i-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

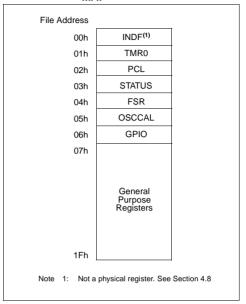
PIC12C5XX

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.


For the PIC12C508, PIC12C508A and PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12C509, PIC12C509A, PIC12CR509A, and PIC12CE519 the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508, PIC12C508A AND PIC12CE518 REGISTER FILE MAP

FSR<6:5>-	•	00	01
File Address	· ·		1
00h		INDF ⁽¹⁾	20h
∲ 01h		TMR0	
02h		PCL	_
03h		STATUS	Addresses map back to
04h		FSR	addresses
05h		OSCCAL	in Bank 0.
06h		GPIO	
07h			1
		General Purpose	
		Registers	
0Fh		0	2Fh
	10h		30h
		General	General
		Purpose	Purpose
		Registers	Registers
	1Fh		3Fh
		Bank 0	Bank 1
Note 1	: No	t a physical regi	ster. See Section 4.8

FIGURE 4-3: PIC12C509, PIC12C509A, PIC12CR509A AND PIC12CE519 REGISTER FILE MAP

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the RESET status, and the page preselect bit for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect STATUS bits, see Instruction Set Summary.

FIGURE 4-4: STATUS REGISTER (ADDRESS:03h)

<u>R/W-0</u> GPWUF	R/W-0	R/W-0 PA0	<u>R-1</u> TO	R-1 PD	R/W-x Z	R/W-x DC	R/W-x C	R = Readable bit
t7	6	5	4	3	2	1	bit0	W = Writable bit - n = Value at POR reset
	GPWUF : G 1 = Reset o 0 = After po	due to wake	-up from S	LEEP on pi	n change			
it 6:	Unimplem	ented						
	0 = Page 0 Each page Using the F	(200h - 3F (000h - 1F is 512 byte A0 bit as a	Fh) - PIC12 Fh) - PIC12 s. general pu	2C509, PIC 2C5XX irpose read		evices whic	h do not use	2CE519 e it for program ith future products.
	TO : Time-o 1 = After po 0 = A WDT	ower-up, CL		uction, or S	LEEP instruc	tion		
	PD : Power- 1 = After po 0 = By exec	ower-up or l			tion			
	Z : Zero bit 1 = The res 0 = The res			•	tion is zero tion is not ze	ro		
	ADDWF 1 = A carry 0 = A carry SUBWF 1 = A borro	from the 4t from the 4t w from the the	th low orde th low orde 4th low ord	r bit of the r r bit of the r ler bit of the	BWF instructi esult occurre esult did not result did not result did no	ed occur ot occur		
	ADDWF 1 = A carry			SUBWF 1 = A bor	RF, RLF instr row did not c row occurred	occur	RRF or R Load bit w	LF vith LSB or MSB, respectively

4.5 <u>OSCCAL Register</u>

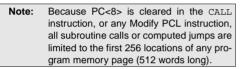
The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains four to six bits for calibration. Increasing the cal value increases the frequency. See Section 7.2.5 for more information on the internal oscillator.

FIGURE 4-6: OSCCAL REGISTER (ADDRESS 05h) FOR PIC12C508 AND PIC12C509

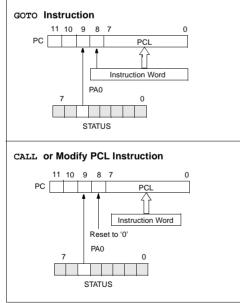
R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	U-0	U-0	
CAL3	CAL2	CAL1	CAL0	-		—	—	R = Readable bit
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7-4:	CAL<3:0:	Calibrat	tion					
bit 3-0:	Unimpler	nented: F	Read as '0'					

FIGURE 4-7: OSCCAL REGISTER (ADDRESS 05h) FOR PIC12C508A/C509A/CR509A/12CE518/ 12CE519

CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 — — R = Readable bit bit7 bit0 bit0 U = Writable bit U = Unimplemented bit, read en (10)	bit0 W = Writable bit		CAL0	CAL1	041.0			
U = Unimplemented bit,	Dito	bit0 W = Writ			CALZ	CAL3	CAL4	CAL5
- n = Value at POR reset	read as '0'	U = Unir read				•		bit7
bit 7-2: CAL<5:0>: Calibration		bit 7-2:						
bit 1-0: Unimplemented: Read as '0'					Read as '0	nented: F	Unimpler	bit 1-0:


4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.


For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-8).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-8).

Instructions where the PCL is the destination, or Modify PCL instructions, include <code>MOVWF PC</code>, <code>ADDWF PC</code>, and <code>BSF PC</code>, <code>5</code>.

FIGURE 4-8: LOADING OF PC BRANCH INSTRUCTIONS -PIC12C5XX

4.6.1 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00h, and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7 Stack

PIC12C5XX devices have a 12-bit wide L.I.F.O. hardware push/pop stack.

A CALL instruction will *push* the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will *pop* the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Upon any reset, the contents of the stack remain unchanged, however the program counter (PCL) will also be reset to 0.

- Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

TABLE 5-1: S	UMMARY OF PORT	REGISTERS
--------------	----------------	------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRIS	—	-							11 1111	11 1111
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03H	STATUS	GPWUF	-	PAO	TO	PD	Z	DC	С	0001 1xxx	q00q quuu ⁽¹⁾
06h	GPIO (PIC12C508/ PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)		_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, g = see tables in Section 8.7 for possible values.

Note 1: If reset was due to wake-up on change, then bit 7 = 1. All other resets will cause bit 7 = 0.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit5 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wiredand"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;	Initia	L GPIO	Sett	ings			
;	GPIO<5	5:3> In	puts	3			
;	GPIO<2	2:0> Ou	itput	s			
;							
;				GPIC) latch	GPI) pins
;							
	BCF	GPIO,	5	;01	-ppp	11	pppp
	BCF	GPIO,	4	;10	-ppp	11	pppp
	MOVLW	007h		;			
	TRIS	GPIO		;10	-ppp	11	pppp

;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;GP5 to be latched as the pin value (High).

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

7.0.2 SERIAL CLOCK

This SCL input is used to synchronize the data transfer from and to the device.

7.1 BUS CHARACTERISTICS

The following **bus protocol** is to be used with the EEPROM data memory.

• Data transfer may be initiated only when the bus is not busy.

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 7-3).

7.1.1 BUS NOT BUSY (A)

Both data and clock lines remain HIGH.

7.1.2 START DATA TRANSFER (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

7.1.3 STOP DATA TRANSFER (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

7.1.4 DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited.

7.1.5 ACKNOWLEDGE

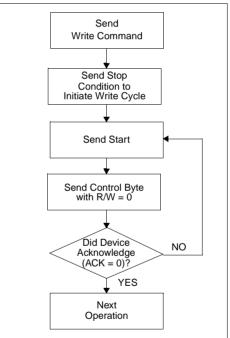
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

Note: Acknowledge bits are not generated if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition (Figure 7-4).

7.3 WRITE OPERATIONS

7.3.1 BYTE WRITE


Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/Wbit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don't cares. The address byte is acknowledgeable and the master device will then transmit the data word to be written into the addressed memory location. The memorv acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals (Figure 7-7). After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below minimum VDD.

Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high.

7.4 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 7-6 for flow diagram.

FIGURE 7-6: ACKNOWLEDGE POLLING FLOW

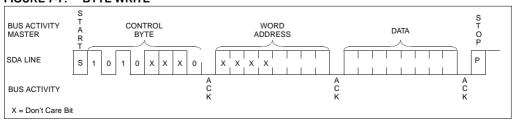


FIGURE 7-7: BYTE WRITE

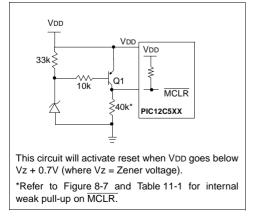
8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

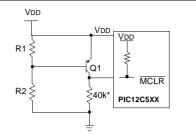
TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by			
0	0	0	WDT wake-up from SLEEP			
0	0	u	WDT time-out (not from SLEEP)			
0	1	0	MCLR wake-up from SLEEP			
0	1	1	Power-up			
0	u	u	MCLR not during SLEEP			
1	1	0	Wake-up from SLEEP on pin change			

Legend: u = unchanged


Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

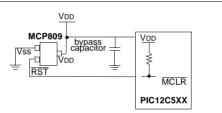
8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

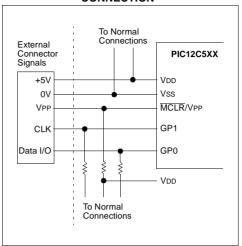
$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

8.12 In-Circuit Serial Programming


The PIC12C5XX microcontrollers with EPROM program memory can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the GP1 and GP0 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1 becomes the programming clock and GP0 becomes the programming data. Both GP1 and GP0 are Schmitt Trigger inputs in this mode.

After reset, a 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC12C5XX Programming Specifications.

A typical in-circuit serial programming connection is shown in Figure 8-16.

FIGURE 8-16: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

PIC12C5XX

SLEEP	Enter SL	EEP Mo	de		S
Syntax:	[label]	SLEEP			S
Operands:	None				0
Operation:	$\begin{array}{l} 00h \rightarrow W\\ 0 \rightarrow WD\\ 1 \rightarrow \overline{TO};\\ 0 \rightarrow \overline{PD} \end{array}$	/DT; T prescal	er;		O Si
Status Affected:	TO, PD,	GPWUF			E
Encoding:	0000	0000	0011	Ī	D
Description:		status bit (vn status b	· · · ·		
	GPWUF is	s unaffecte	ed.		W
	The WDT cleared.	and its pre	escaler are	9	С
	The proce with the o	essor is put scillator sto .EEP for m	opped. Se	e sec-	<u>E:</u>
Words:	1				
Cycles:	1				
Example:	SLEEP				

SUBWF	Su	btra	ct W from	f	
Syntax:	[lai	bel]	SUBWF	f,d	
Operands:	0 ≤	≦ f ≤ 3	51		
	d∈	[0,1]		
Operation:	(f)	– (W	$) \rightarrow (dest)$		
Status Affected	: C,	DC, Z	Z		
Encoding:	0	000	10df	ffff]
Description:	W ı res	registe ult is :	(2's completer from register f	ster 'f'. If 'd W registe	' is 0 the er. If 'd' is
Words:	1				
Cycles:	1				
Example 1:	SUI	BWF	REG1, 1		
Before Inst	ructio	n			
REG1	=	3			
W	=	2 ?			
After Instru		ŕ			
REG1	=	1			
W	=	2			
С	=	1	; result is	positive	
Example 2:					
Before Inst	ructio	n			
REG1	=	2			
W	=	2 ?			
After Instru	=	?			
REG1	=	0			
W	_	2			
С	=	1	; result is	zero	
Example 3:					
Before Inst	ructio	n			
REG1	=	1			
W	=	2 ?			
C	=	?			
After Instru REG1	iction =	FF			
	_	2			
W					

10.10 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro[®] tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.11 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from MPLAB-ICE, Microchip's Universal Emulator System.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PICmicro[®]. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.12 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PICmicro[®] series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.13 MPLAB-C17 Compiler

The MPLAB-C17 Code Development System is a complete ANSI 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

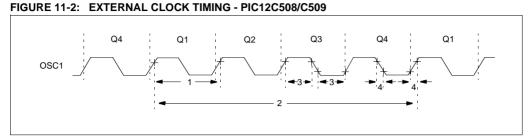
For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.14 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>


The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

HCS200 HCS300 HCS301 > > > > 24CXX 25CXX 93CXX > \mathbf{i} \mathbf{i} PIC17C7XX > \mathbf{i} \mathbf{i} > \mathbf{i} PIC17C4X \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > PIC16C9XX \mathbf{i} > > > > > > PIC16C8X > > > > > > > PIC16C7XX \mathbf{i} > > > > \mathbf{i} > PIC16C6X \mathbf{i} \mathbf{i} > \mathbf{i} > \mathbf{i} > PIC16CXXX \mathbf{i} > > > > > > PIC16C5X > \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > \mathbf{i} PIC14000 > > > \mathbf{i} \mathbf{i} > PIC12C5XX \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} ICEPICTM Low-Cost In-Circuit Emulator Universal Dev. Kit Total Endurance™ fuzzyTECH[®]-MP Explorer/Edition **PICSTART[®]Plus** Software Model KEELoo Transponder Kit Integrated Development PRO MATE[®] II Evaluation Kit MPLABTM-ICE MPLABTM C17^{*} Fuzzy Logic Dev. Tool **Designers Kit** Environment PICDEM-14A Programmer Programmer KEELOQ® Universal SEEVAL® PICDEM-1 PICDEM-2 PICDEM-3 Compiler Low-Cost MPLABTM KEEL00[®] SIMICE Programmers Emulator Products Software Tools Demo Boards

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC12C5XX

11.4 Timing Diagrams and Specifications

AC Chara	cteristics	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq Ta \leq +70^{\circ}C \mbox{ (commercial)}, \\ -40^{\circ}C \leq Ta \leq +85^{\circ}C \mbox{ (industrial)}, \\ -40^{\circ}C \leq Ta \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 11.1} \end{array} $							
Parameter No.	Sym	Sym Characteristic		Min Typ ⁽¹⁾		Units	Conditions		
	Fosc	External CLKIN Frequency ⁽²⁾							
			DC	—	4	MHz	XT osc mode		
			DC	—	200	kHz	LP osc mode		
		Oscillator Frequency ⁽²⁾							
			0.1	—	4	MHz	XT osc mode		
			DC	—	200	kHz	LP osc mode		
1	Tosc	External CLKIN Period ⁽²⁾	250	—	_	ns	EXTRC osc mode		
			250	—	—	ns	XT osc mode		
			5	—	—	ms	LP osc mode		
		Oscillator Period ⁽²⁾	250	_	_	ns	EXTRC osc mode		
			250	—	10,000	ns	XT osc mode		
			5	—	—	ms	LP osc mode		
2	Тсу	Instruction Cycle Time ⁽³⁾	—	4/Fosc	—				
3	TosL, TosH	Clock in (OSC1) Low or High Time	50*	—	—	ns	XT oscillator		
			2*	—	—	ms	LP oscillator		
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time	—	—	25*	ns	XT oscillator		
		-	_	50*	ns	LP oscillator			

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Instruction cycle period (Tcy) equals four times the input oscillator time base period.

13.0 ELECTRICAL CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A/PIC12CR509A/PIC12CE518/PIC12CE519/ PIC12LCE518/PIC12LCE519/PIC12LCR509A

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.0 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.3 V to (VDD + 0.3 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	200 mA
Max. Current into Vod pin	150 mA
Input Clamp Current, Iik (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD = 200 x {IDD - \sum IOH})	-VOH) x IOH} + Σ (VOL x IOL)

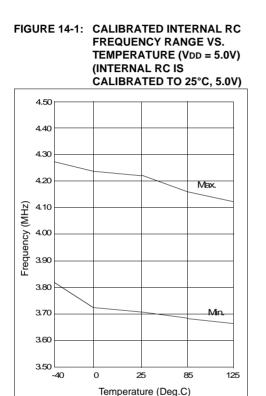
[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

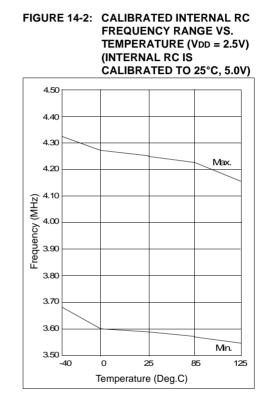
13.2 DC CHARACTERISTICS:

PIC12LC508A/509A (Commercial, Industrial) PIC12LCE518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

DC Characteristics Power Supply Pins				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \end{array}$					
Parm No.	Characteristic Sv		Min	Typ ⁽¹⁾	Max	Units	Conditions		
D001	Supply Voltage	Vdd	2.5		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial)		
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode		
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details		
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details		
D010	Supply Current ⁽³⁾	IDD	—	0.4	0.8	mA	XT and EXTRC options (Note 4) Fosc = 4 MHz, VDD = 2.5V		
D010C			—	0.4	0.8	mA	INTRC Option Fosc = 4 MHz, VDD = 2.5V		
D010A			—	15	23	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz, VDD = 2.5V, WDT disabled		
			_	15	31	μA	LP OPTION, Industrial Temperature FOSC = 32 kHz, VDD = 2.5V, WDT disabled		
D020	Power-Down Current (5)	IPD							
D021 D021B				0.2 0.2	3 4	μΑ μΑ	VDD = 2.5V, Commercial VDD = 2.5V, Industrial		
		ΔIWDT	-	2.0 2.0	4 5	mA mA	VDD = 2.5V, Commercial VDD = 2.5V, Industrial		

* These parameters are characterized but not tested.


Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.


- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

14.0 DC AND AC CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A, PIC12CE518/PIC12CE519/PIC12CR509A/ PIC12LCE518/PIC12LCE519/ PIC12LCR509A

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead SOIC (208 mil)

XXXXXXX XXXXXXX AABBCDE	

Example 12C508A 04I/PSAZ \$\$ 9825

Example

Example

8-Lead Windowed Ceramic Side Brazed (300 mil)

Example

Legen	d: MMM	Microchip part number information					
	XXX	Customer specific information*					
	AA	Year code (last 2 digits of calendar year)					
	BB	Week code (week of January 1 is week '01')					
	С	Facility code of the plant at which wafer is manufactured					
		O = Outside Vendor					
		C = 5" Line					
		S = 6" Line					
		H = 8" Line					
	D	Mask revision number					
	E	Assembly code of the plant or country of origin in which					
		part was assembled					
Note:	In the event the full Microchip part number cannot be marked on one line, it v						
	be carried over to the next line thus limiting the number of available characters						
	for customer specific information.						

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Е w D 2 n 1 U t А A1 ı. A2 с B1р eВ В

Package Type:	K04-084 8-Lead Ceramic Side Brazed Dual In-line with Window (JW) – 300 mil
---------------	--

Units			INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
PCB Row Spacing			0.300			7.62		
Number of Pins	n		8			8		
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59	
Lower Lead Width	В	0.016	0.018	0.020	0.41	0.46	0.51	
Upper Lead Width	B1	0.050	0.055	0.060	1.27	1.40	1.52	
Lead Thickness	С	0.008	0.010	0.012	0.20	0.25	0.30	
Top to Seating Plane	А	0.145	0.165	0.185	3.68	4.19	4.70	
Top of Body to Seating Plane	A1	0.103	0.123	0.143	2.62	3.12	3.63	
Base to Seating Plane	A2	0.025	0.035	0.045	0.64	0.89	1.14	
Tip to Seating Plane	L	0.130	0.140	0.150	3.30	3.56	3.81	
Package Length	D	0.510	0.520	0.530	12.95	13.21	13.46	
Package Width	E	0.280	0.290	0.300	7.11	7.37	7.62	
Overall Row Spacing	eB	0.310	0.338	0.365	7.87	8.57	9.27	
Window Diameter	W	0.161	0.166	0.171	4.09	4.22	4.34	
Lid Length	Т	0.440	0.450	0.460	11.18	11.43	11.68	
Lid Width	U	0.260	0.270	0.280	6.60	6.86	7.11	

* Controlling Parameter.

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.