

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c509t-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC12C508(A)	PIC12C509(A)	PIC12CR509A	PIC12CE518	PIC12CE519	PIC12C671	PIC12C672	PIC12CE673	PIC12CE674
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4	4	10	10	10	10
M	EPROM Program Memory	512 x 12	1024 x 12	1024 x 12 (ROM)	512 x 12	1024 x 12	1024 x 14	2048 x 14	1024 x 14	2048 x 14
Memory	RAM Data Memory (bytes)	25	41	41	25	41	128	128	128	128
	EEPROM Data Memory (bytes)	—	-	—	16	16	—	—	16	16
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	A/D Con- verter (8-bit) Channels	—	_	—	—	—	4	4	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	—	-	_			4	4	4	4
Features	I/O Pins	5	5	5	5	5	5	5	5	5
	Input Pins	1	1	1	1	1	1	1	1	1
	Internal Pull-ups	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	—	Yes	Yes	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	33	33	33	35	35	35	35
	Packages	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW	8-pin DIP, JW

TABLE 1-1: PIC12CXXX & PIC12CEXXX FAMILY OF DEVICES

All PIC12CXXX & PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC12CXXX & PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12C5XX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C5XX uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (1µs @ 4MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM), ROM memory, and non-volatile (EEPROM) for each device.

	Memory						
Device	EPROM Program	ROM Program	RAM Data	EEPROM Data			
PIC12C508	512 x 12		25				
PIC12C509	1024 x 12		41				
PIC12C508A	512 x 12		25				
PIC12C509A	1024 x 12		41				
PIC12CR509A		1024 x 12	41				
PIC12CE518	512 x 12		25 x 8	16 x 8			
PIC12CE519	1024 x 12		41 x 8	16 x 8			

The PIC12C5XX can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC12C5XX has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC12C5XX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC12C5XX device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

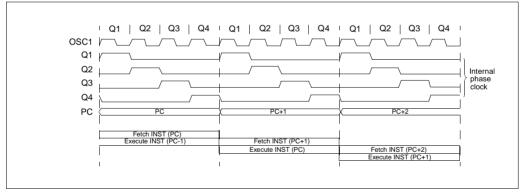
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

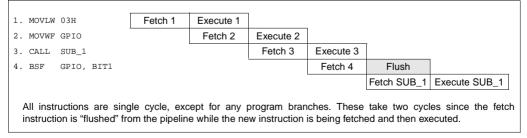
A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.


3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.8 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 07 contains the value 10h
- · Register file 08 contains the value 0Ah
- · Load the value 07 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 08)
- A read of the INDR register now will return the value of 0Ah.

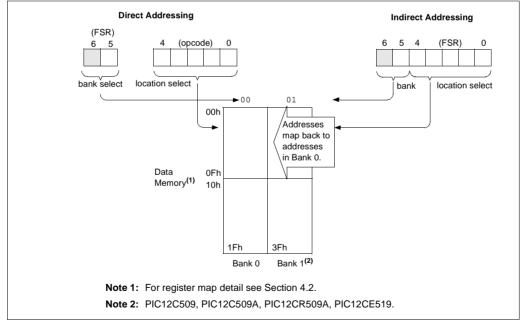
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x10	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	clear INDF register
	incf	FSR,F	;inc pointer
	btfsc	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE	9		-,
	:		;YES, continue

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.


The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC12C508/PIC12C508A/PIC12CE518: Does not use banking. FSR<7:5> are unimplemented and read as '1's.

PIC12C509/PIC12C509A/PIC12CR509A/

PIC12CE519: Uses FSR<5>. Selects between bank 0 and bank 1. FSR<7:6> is unimplemented, read as '1'.

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING

FIGURE 5-2: SUCCESSIVE I/O OPERATION

PC	Y PC + 1	X PC + 2	X PC + 3	This example shows a write to GPIO follower
MOVWF GPIO	MOVF GPIO,W	NOP	NOP	by a read from GPIO. Data setup time = (0.25 Tcy – TpD)
	1 1 1	X	1	where: TCY = instruction cycle. TPD = propagation delay
	Port pin written here	Port pin sampled here	, , , ,	Therefore, at higher clock frequencies, a write followed by a read may be problematic
	MOVWF GPIO (Write to GPIO)	MOVF GPIO,W (Read GPIO)	NOP	
		MOVWF GPIO MOVF GPIO,W Port pin written here MOVWF GPIO (Write to	MOVWF GPIO MOVF GPIO,W NOP Port pin written here MOVWF GPIO MOVF GPIO,W (Write to (Read	MOVWF GPIO MOVF GPIO,W NOP NOP Port pin written here MOVWF GPIO MOVF GPIO,W NOP (Write to (Read

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

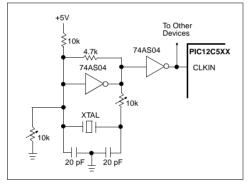
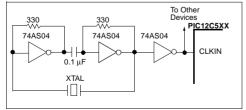
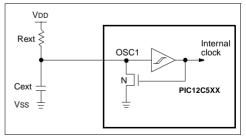



Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.


Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE

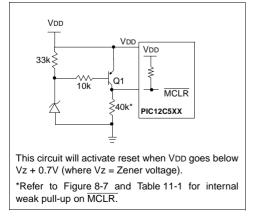
8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

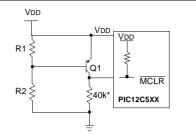
TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by
0	0	0	WDT wake-up from SLEEP
0	0	u	WDT time-out (not from SLEEP)
0	1	0	MCLR wake-up from SLEEP
0	1	1	Power-up
0	u	u	MCLR not during SLEEP
1	1	0	Wake-up from SLEEP on pin change

Legend: u = unchanged


Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

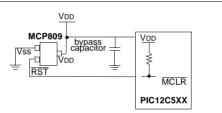
8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z	= 0xFF = 0
After Instruct	
CNT Z	= 0x00 = 1
INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 31$

Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Encoding:	0011 11df ffff
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruc- tion, which is already fetched, is dis- carded and an NOP is executed instead making it a two cycle instruc- tion.
Words:	1
Cycles:	1(2)
Example:	HERE INCFSZ CNT, 1 GOTO LOOP
	CONTINUE • •
Before Inst PC	ruction = address (HERE)
After Instru CNT if CNT PC if CNT PC	= CNT + 1;

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1101 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	IORLW 0x35
Before Instru W =	uction 0x9A
After Instruc W = Z =	tion 0xBF 0

IORWF Inclusive OR W with f				
Syntax:	[label] IORWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	(W).OR. (f) \rightarrow (dest)			
Status Affected	I: Z			
Encoding:	0001 00df ffff			
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	IORWF RESULT, 0			
Before Inst RESUL W After Instru	LT = 0x13 = 0x91			
RESUL W Z				

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$
Status Affected:	None
Encoding:	0011 10df ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Example	SWAPF REG1, 0
Before Instru REG1	iction = 0xA5
After Instruct REG1 W	tion = 0xA5 = 0X5A

TRIS	Load TRIS Register					
Syntax:	[label] TRIS f					
Operands:	f = 6					
Operation:	(W) \rightarrow TRIS register f					
Status Affected:	None					
Encoding:	0000 0000 0fff					
Description:	TRIS register 'f' (f = 6) is loaded with the contents of the W register					
Words:	1					
Cycles:	1					
Example	TRIS GPIO					
Before Instru W	iction = 0XA5					
After Instruct TRIS						
Note: f = 6 f	or PIC12C5XX only.					

XORLW	XORLW Exclusive OR literal with W							
Syntax:	[<i>label</i>]	XORLW	k					
Operands:	$0 \le k \le 2$	55						
Operation:	(W) .XO	$R. k \to (W)$	/)					
Status Affected:	Z	Z						
Encoding:	1111	kkkk	kkkk					
Description:	XOR'ed w	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1							
Cycles:	1							
Example:	XORLW	0xAF						
Before Instruction W = 0xB5								
After Instruc W =	tion 0x1A							

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0001 10df ffff						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	XORWF REG,1						
Before Instru REG W After Instruct REG	= 0xAF = 0xB5 ion = 0x1A						
W	= 0xB5						

10.6 <u>SIMICE Entry-Level Hardware</u> <u>Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB[™]-SIM. Both SIM-ICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro® 8-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entrylevel system development.

10.7 <u>PICDEM-1 Low-Cost PICmicro®</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.8 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

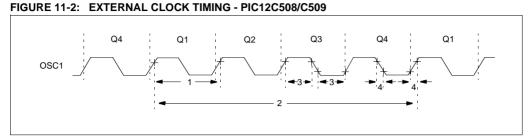
10.9 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 seqments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

11.2 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)

			rd Operati ng tempera	-	0°C ≤	TA ≤ +	s otherwise specified) 70°C (commercial)			
DC CHA	ARACTERISTICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)								
		Operati Section		Vdd ra			d in DC spec Section 11.1 and			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
NO.										
	Input Low Voltage	VIL								
D 000	•	VIL	Vee	-	0.01/	V				
D030	with TTL buffer		Vss	-	0.8V	V	4.5 < VDD ≤ 5.5V			
D031	with Coheritt Trigger huffer		Vee	-	0.15VDD 0.15VDD	V V	otherwise			
D031 D032	with Schmitt Trigger buffer MCLR, GP2/T0CKI (in EXTRC mode)		Vss Vss	-	0.15VDD 0.15VDD	V				
			VSS VSS	-	0.15VDD	v				
D033	OSC1 (EXTRC) ⁽¹⁾			-						
D033	OSC1 (in XT and LP)		Vss	-	0.3Vdd	V	Note1			
	Input High Voltage									
	I/O ports	VIH		-						
D040	with TTL buffer	Vss	2.0V	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$			
D040A			0.25VDD+ 0.8V	-	Vdd	V	otherwise			
D041	with Schmitt Trigger buffer		0.85VDD	-	VDD	v	For entire VDD range			
D042	MCLR/GP2/T0CKI		0.85VDD	-	VDD	v				
-			0.7VDD	-	VDD	V	Note1			
D043	OSC1 (in EXTRC mode)		0.85VDD	-	VDD	V				
D070	GPIO weak pull-up current	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS			
	Input Leakage Current ^(2, 3)					1.	For VDD ≤5.5V			
D060	I/O ports	١L	-1	0.5	<u>+</u> 1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi-impedance			
D061	MCLR, GP2/T0CKI		20	130	250	μA	$V_{PIN} = V_{SS} + 0.25 V^{(2)}$			
2001				0.5	+5	μΑ	VPIN = VDD			
D063	OSC1		-3	0.5	+3	μΑ	$Vss \leq VPIN \leq VDD$,			
							XT and LP options			
	Output Low Voltage									
D080	I/O ports/CLKOUT	Vol	-	-	0.6	V	IOL = 8.7 mA, VDD = 4.5V			
	Output High Voltage									
D090	I/O ports/CLKOUT (3)	Voh	Vdd - 0.7	-	-	V	IOH = -5.4 mA, VDD = 4.5V			
	Capacitive Loading Specs on									
	Output Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins	Cio	-	-	50	pF				
	Data in "Typ" column is at 51/ 25°C ur		l				l			


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

11.4 Timing Diagrams and Specifications

AC Characteristics									
Parameter No.	Sym	Characteristic		Typ ⁽¹⁾	Мах	Units	Conditions		
	Fosc	External CLKIN Frequency ⁽²⁾							
			DC	—	4	MHz	XT osc mode		
			DC	—	200	kHz	LP osc mode		
		Oscillator Frequency ⁽²⁾							
			0.1	_	4	MHz	XT osc mode		
			DC	—	200	kHz	LP osc mode		
1	Tosc	External CLKIN Period ⁽²⁾	250	—	_	ns	EXTRC osc mode		
			250	_	_	ns	XT osc mode		
			5	—	—	ms	LP osc mode		
		Oscillator Period ⁽²⁾	250	_	_	ns	EXTRC osc mode		
			250	_	10,000	ns	XT osc mode		
			5	—	—	ms	LP osc mode		
2	Тсу	Instruction Cycle Time ⁽³⁾	—	4/Fosc	—				
3	TosL, TosH	Clock in (OSC1) Low or High Time	50*	—	—	ns	XT oscillator		
			2*	_	—	ms	LP oscillator		
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time	—	-	25*	ns	XT oscillator		
			—	—	50*	ns	LP oscillator		

* These parameters are characterized but not tested.

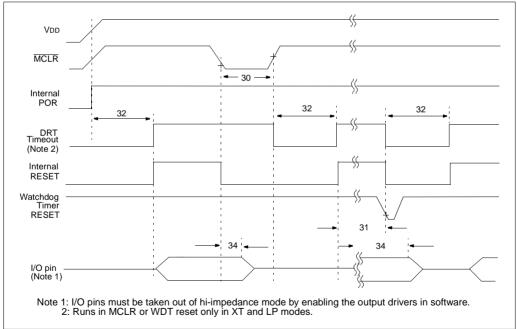
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Instruction cycle period (Tcy) equals four times the input oscillator time base period.

TABLE 11-4: TIMING REQUIREMENTS - PIC12C508/C509

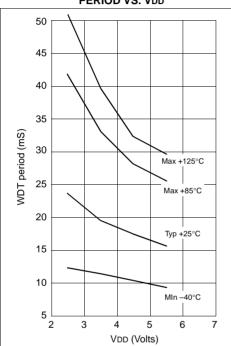
AC CharacteristicsStandard Operating Conditions (unless otherwise spect Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercia) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended Operating Voltage VDD range is described in Section 11.1						
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽³⁾	_	-	100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns
20	TioR	Port output rise time ^(2, 3)	_	10	25**	ns
21	TioF	Port output fall time ^(2, 3)	_	10	25**	ns


* These parameters are characterized but not tested.

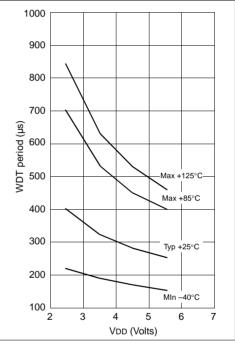
** These parameters are design targets and are not tested. No characterization data available at this time.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: Measurements are taken in EXTRC mode.
- 3: See Figure 11-1 for loading conditions.


FIGURE 11-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC12C508/C509

Oscillator	Frequency	VDD = 2.5V	VDD = 5.5V
External RC	4 MHz	250 µA*	780 µA*
Internal RC	4 MHz	420 µA	1.1 mA
XT	4 MHz	251 µA	780 µA
LP	32 KHz	15 µA	37 µA


TABLE 12-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

FIGURE 12-3: WDT TIMER TIME-OUT PERIOD VS. VDD

FIGURE 12-4: SHORT DRT PERIOD VS. VDD

13.3 DC CHARACTERISTICS:

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12C518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

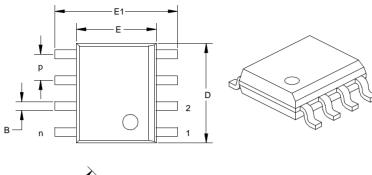
			r d Operati ng tempera		0°C ≤	TA ≤ +	s otherwise specified) 70°C (commercial)		
DC CH	ARACTERISTICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)							
		Operatii Section		VDD ra			d in DC spec Section 13.1 and		
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.8V	V	For $4.5V \le VDD \le 5.5V$		
			Vss	-	0.15Vdd	V	otherwise		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V			
D032	MCLR, GP2/T0CKI (in EXTRC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in EXTRC mode)		Vss	-	0.2VDD		Note 1		
D033	OSC1 (in XT and LP)		Vss	-	0.3VDD	V	Note 1		
	Input High Voltage	.,							
B a 4 a	I/O ports	Vih		-	.,				
D040	with TTL buffer		0.25Vdd + 0.8V	-	Vdd	V	$4.5V \le VDD \le 5.5V$		
D040A			2.0V	-	Vdd	V	otherwise		
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range		
D042	MCLR, GP2/T0CKI		0.8Vdd	-	Vdd	V			
	OSC1 (XT and LP)		0.7Vdd	-	Vdd	V	Note 1		
D043	OSC1 (in EXTRC mode)		0.9Vdd	-	Vdd	V			
D070	GPIO weak pull-up current (Note 4)	IPUR	30	250	400	μA	VDD = 5V, VPIN = VSS		
	MCLR pull-up current	-	-	-	30	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)					_			
D060	I/O ports	lı∟	-	-	<u>+</u> 1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance		
D061	TOCKI		-	-	<u>+</u> 5	μΑ	$Vss \le Vpin \le Vdd$		
D063	OSC1		-	-	<u>+</u> 5	μA	Vss \leq VPIN \leq VDD, XT and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, −40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, −40°C to +125°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	Юн = -3.0 mA, VDD = 4.5V, −40°C to +85°C		
D090A			Vdd - 0.7	-	-	V	$IOH = -2.5 \text{ mA}, \text{VDD} = 4.5 \text{V}, -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$		
	Capacitive Loading Specs on								
	Output Pins					_			
D100	OSC2 pin	COSC2	-	-	15	pF	In XT and LP modes when exter- nal clock is used to drive OSC1.		
D101	All I/O pins	Сю	-	-	50	pF			

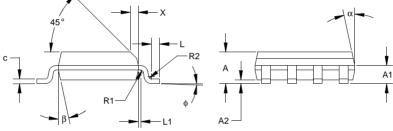
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.


4: This spec. applies when GP3/MCLR is configured as MCLR. The leakage current of the MCLR circuit is higher than the standard I/O logic.


TABLE 13-1: PULL-UP RESISTOR RANGES* - PIC12C508A, PIC12C509A, PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units					
	GP0/GP1									
2.5	-40	38K	42K	63K	Ω					
	25	42K	48K	63K	Ω					
	85	42K	49K	63K	Ω					
	125	50K	55K	63K	Ω					
5.5	-40	15K	17K	20K	Ω					
	25	18K	20K	23K	Ω					
	85	19K	22K	25K	Ω					
	125	22K	24K	28K	Ω					
		G	P3							
2.5	-40	285K	346K	417K	Ω					
	25	343K	414K	532K	Ω					
	85	368K	457K	532K	Ω					
	125	431K	504K	593K	Ω					
5.5	-40	247K	292K	360K	Ω					
	25	288K	341K	437K	Ω					
	85	306K	371K	448K	Ω					
	125	351K	407K	500K	Ω					

* These parameters are characterized but not tested.

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	A	0.054	0.061	0.069	1.37	1.56	1.75
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20
Chamfer Distance	х	0.010	0.015	0.020	0.25	0.38	0.51
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B [†]	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Е w D 2 n 1 U t А A1 ı. A2 с B1р eВ В

Package Type:	K04-084 8-Lead Ceramic Side Brazed Dual In-line with Window (JW) – 300 mil
---------------	--

Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		8			8	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.018	0.020	0.41	0.46	0.51
Upper Lead Width	B1	0.050	0.055	0.060	1.27	1.40	1.52
Lead Thickness	С	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	А	0.145	0.165	0.185	3.68	4.19	4.70
Top of Body to Seating Plane	A1	0.103	0.123	0.143	2.62	3.12	3.63
Base to Seating Plane	A2	0.025	0.035	0.045	0.64	0.89	1.14
Tip to Seating Plane	L	0.130	0.140	0.150	3.30	3.56	3.81
Package Length	D	0.510	0.520	0.530	12.95	13.21	13.46
Package Width	E	0.280	0.290	0.300	7.11	7.37	7.62
Overall Row Spacing	eB	0.310	0.338	0.365	7.87	8.57	9.27
Window Diameter	W	0.161	0.166	0.171	4.09	4.22	4.34
Lid Length	Т	0.440	0.450	0.460	11.18	11.43	11.68
Lid Width	U	0.260	0.270	0.280	6.60	6.86	7.11

* Controlling Parameter.

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.