

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	16 x 8
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12ce518-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4 OPTION Register

The OPTION register is a 8-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<7:0> bits.

FIGURE 4-5: OPTION REGISTER

Note: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin; i.e., note that TRIS overrides OPTION control of GPPU and GPWU.

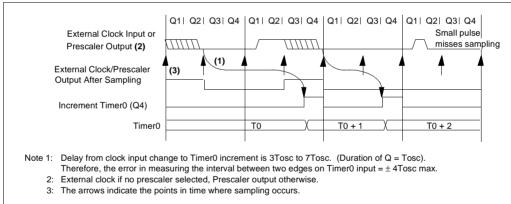
Note: If the TOCS bit is set to '1', GP2 is forced to be an input even if TRIS GP2 = '0'.

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1	
GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	W = Writable bit
oit7	6	5	4	3	2	1	bit0	U = Unimplemented bit - n = Value at POR reset Reference Table 4-1 for other resets.
bit 7:	GPWU : Ena 1 = Disable 0 = Enable	d	p on pin cl	hange (GP	0, GP1, GP3)		
bit 6:	GPPU : Ena 1 = Disable 0 = Enablec	d .	III-ups (GF	90, GP1, G	P3)			
bit 5:	TOCS : Time 1 = Transitio 0 = Transitio	on on TOCK	l pin		ock, Fosc/4			
bit 4:	TOSE: Time 1 = Increme 0 = Increme	ent on high t	o low trans	sition on th				
bit 3:	PSA : Presc 1 = Prescale 0 = Prescale	er assigned	to the WD					
bit 2-0:	PS2:PS0: P	Prescaler rat	e select bi	its				
	Bit Value	Timer0 R	ate WDT	Rate				
	000	1:2 1:4	1:	2				
	010 011	1:8	1:					
	100	1:32		0 16				
	101	1:64		32				
	110	1:128		64				
	111	1:256	: 1.	128				

6.1 Using Timer0 with an External Clock

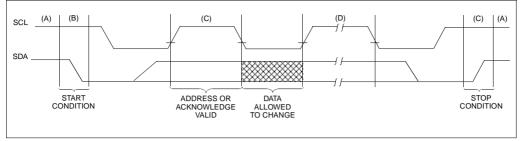
When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.


6.1.3 OPTION REGISTER EFFECT ON GP2 TRIS

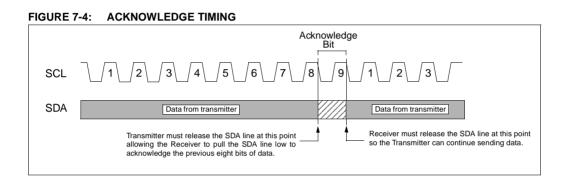
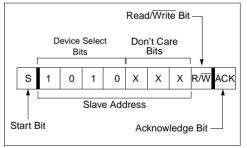

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

FIGURE 7-3: DATA TRANSFER SEQUENCE ON THE SERIAL BUS



7.2 Device Addressing

After generating a START condition, the bus master transmits a control byte consisting of a slave address and a Read/Write bit that indicates what type of operation is to be performed. The slave address consists of a 4-bit device code (1010) followed by three don't care bits.

The last bit of the control byte determines the operation to be performed. When set to a one a read operation is selected, and when set to a zero a write operation is selected. (Figure 7-5). The bus is monitored for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a programming mode.

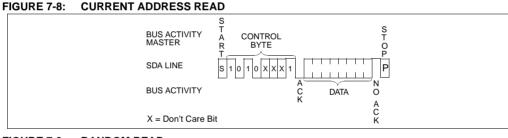
FIGURE 7-5: CONTROL BYTE FORMAT

7.5 READ OPERATIONS

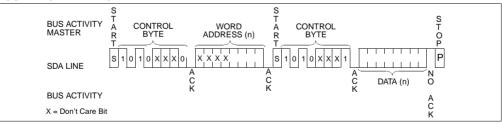
Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

7.5.1 CURRENT ADDRESS READ

It contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-8).


7.5.2 RANDOM READ

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the device as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/\overline{W} bit set to a one. It will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-9). After this command, the internal address counter will point to the address location following the one that was just read.


7.5.3 SEQUENTIAL READ

Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 7-10).

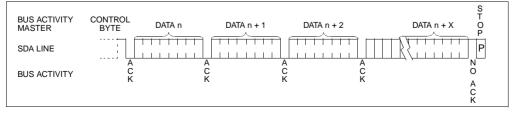
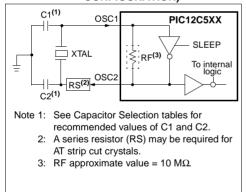

To provide sequential reads, it contains an internal address pointer which is incremented by one at the completion of each read operation. This address pointer allows the entire memory contents to be serially read during one operation.

FIGURE 7-9: RANDOM READ

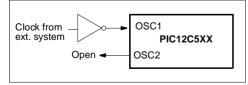
FIGURE 7-10: SEQUENTIAL READ

8.2 Oscillator Configurations

8.2.1 OSCILLATOR TYPES


The PIC12C5XX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low Power Crystal
- XT: Crystal/Resonator
- INTRC: Internal 4 MHz Oscillator
- EXTRC: External Resistor/Capacitor


8.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 8-2). The PIC12C5XX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT or LP modes, the device can have an external clock source drive the GP5/ OSC1/CLKIN pin (Figure 8-3).

FIGURE 8-2: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (XT OR LP OSC CONFIGURATION)

FIGURE 8-3: EXTERNAL CLOCK INPUT OPERATION (XT OR LP OSC CONFIGURATION)

TABLE 8-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC12C5XX

Osc	Resonator	Cap. Range	Cap. Range
Type	Freq	C1	C2
XT	4.0 MHz	30 pF	30 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC12C5XX

Osc Type	Resonator Freq	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

BSF	Bit Set f	BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BSF f,b	Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 31$ $0 \le b \le 7$	Operands:	$0 \le f \le 31$ $0 \le b < 7$
Operation:	$1 \rightarrow (f < b >)$	Operation:	skip if (f) = 1
Status Affected:	None	Status Affected:	None
Encoding:	0101 bbbf ffff	Encoding:	0111 bbbf ffff
Description:	Bit 'b' in register 'f' is set.	Description:	If bit 'b' in register 'f' is '1' then the next
Words:	1		instruction is skipped.
Cycles:	1		If bit 'b' is '1', then the next instruction fetched during the current instruction
Example:	BSF FLAG_REG, 7		execution, is discarded and an NOP is
Before Instru	uction		executed instead, making this a 2 cycle instruction.
_	EG = 0x0A	Words:	1
After Instruc	tion EG = 0x8A	Cycles:	1(2)
FLAG_K		Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE
BTFSC	Bit Test f, Skip if Clear		TRUE •
Syntax:	[label] BTFSC f,b		•
Operands:	$0 \le f \le 31$	Before Instr	uction
	$0 \le b \le 7$	PC	= address (HERE)
Operation:	skip if $(f < b >) = 0$	After Instruc	
Status Affected:	None	If FLAG PC	<1> = 0, = address (FALSE);
Encoding:	0110 bbbf ffff	if FLAG<	<1> = 1,
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped.	PC	= address (TRUE)
	If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and an NOP is		

executed instead, making this a 2 cycle

BTFSC FLAG,1

address (HERE)

address (TRUE);

address(FALSE)

PROCESS_CODE

GOTO

٠ •

0, =

1, =

instruction.

1

1(2)

HERE

TRUE

Before Instruction PC

After Instruction if FLAG<1>

if FLAG<1>

PC

PC

FALSE

=

=

=

Words:

Cycles:

Example:

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 00df ffff
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' is 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
After Instruc W =	tion value in FSR register

MOVLW	Move Lit	eral to W	I	
Syntax:	[label]	MOVLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	1100	kkkk	kkkk	
Description:	0	bit literal 'k r. The don'		
Words:	1			
Cycles:	1			
Example:	MOVLW	0x5A		
After Instruc W =	tion 0x5A			

MOVWF	Move W	to f		
Syntax:	[label]	MOVWF	f	
Operands:	$0 \le f \le 3^{-1}$	1		
Operation:	$(W) \to (f$)		
Status Affected:	None			
Encoding:	0000	001f	ffff	
Description:	Move data ter 'f'.	a from the V	W register	to regis-
Words:	1			
Cycles:	1			
Example:	MOVWF	TEMP_REC	3	
Before Instru TEMP_R W		0xFF 0x4F		
After Instruct TEMP_R W		0x4F 0x4F		

NOP	No Oper	ration	
Syntax:	[label]	NOP	
Operands:	None		
Operation:	No opera	ation	
Status Affected:	None		
Encoding:	0000	0000	0000
Description:	No opera	ation.	
Words:	1		
Cycles:	1		
Example:	NOP		

OPTION	Load OP	TION Re	gister	
Syntax:	[label]	OPTION	l	
Operands:	None			
Operation:	$(W)\toO$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:	The conte into the O		0	s loaded
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru W	ction = 0x07			
After Instruct OPTION				

RETLW	Return with	Liter	al in W
Syntax:	[label] RE	TLW	k
Operands:	$0 \le k \le 255$		
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow PC \end{array}$		
Status Affected:	None		
Encoding:	1000 kł	kk	kkkk
Description:	bit literal 'k'. T loaded from th	he pro ne top	aded with the eight gram counter is of the stack (the s is a two cycle
Words:	1		
Cycles:	2		
Example:	CALL TABLE	;tab ;val	le offset ue. ow has table
TABLE	ADDWF PC RETLW k1 RETLW k2	; Beg	offset in table d of table
Before Instru W =	ox07		
After Instruct W =	tion value of k8		

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru	iction
REG1 C	= 1110 0110 = 0
After Instruct	tion
REG1 W	= 1110 0110 = 1100 1100
C	= 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry [label] RRF f,d
Syntax:	[<i>label</i>] RRF f,d 0 ≤ f ≤ 31
Syntax: Operands:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$
Syntax: Operands: Operation:	$ \begin{bmatrix} label \end{bmatrix} RRF f,d \\ 0 \le f \le 31 \\ d \in [0,1] \\ See description below $
Syntax: Operands: Operation: Status Affected:	$ [label] RRF f,d 0 \le f \le 31 d \in [0,1] See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' T
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \rightarrow register 'f' \rightarrow 1$ 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' T
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REG1,0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru- REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. C register 'f' 1 1 RRF REG1,0 interimed = 1110 0110 = 0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru REG1 C	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REG1,0 interimed = 1110 0110 = 0

SWAPF	Swap Nibbles in f						
Syntax:	[label] SWAPF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$						
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$						
Status Affected:	None						
Encoding:	0011 10df ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Example	SWAPF REG1, 0						
Before Instru REG1	iction = 0xA5						
After Instruct REG1 W							

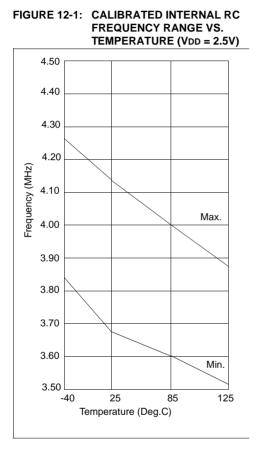
TRIS	Load TRIS Register					
Syntax:	[label] TRIS f					
Operands:	f = 6					
Operation:	$(W) \to TRIS \text{ register f}$					
Status Affected:	None					
Encoding:	0000 0000 0fff					
Description:	TRIS register 'f' ($f = 6$) is loaded with the contents of the W register					
Words:	1					
Cycles:	1					
Example	TRIS GPIO					
Before Instruction W = 0XA5						
After Instruction TRIS = 0XA5						
Note: f = 6 f	or PIC12C5XX only.					

XORLW	RLW Exclusive OR literal with W								
Syntax:	[<i>label</i>]	XORLW	k						
Operands:	$0 \le k \le 2$	$0 \le k \le 255$							
Operation:	(W) .XO	$R. k \to (W$	/)						
Status Affected:	Z								
Encoding:	1111	kkkk	kkkk						
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Example:	XORLW	0xAF							
Before Instru W =	uction 0xB5								
After Instruc W =	tion 0x1A								

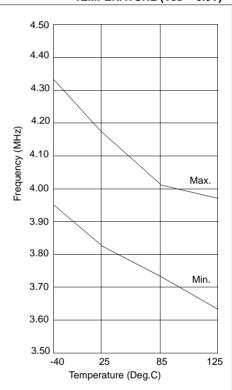
XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0001 10df ffff						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	XORWF REG,1						
Before Instru REG W After Instruct REG	= 0xAF = 0xB5 ion = 0x1A						
W	= 0xB5						

11.0 ELECTRICAL CHARACTERISTICS - PIC12C508/PIC12C509

Absolute Maximum Ratings†

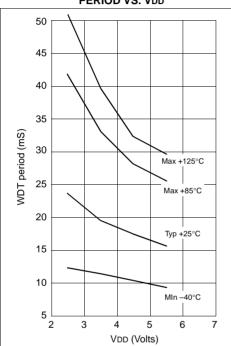

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.6 V to (VDD + 0.6 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	200 mA
Max. Current into VDD pin	150 mA
Input Clamp Current, Iik (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD-VDD) + Σ {VDD-VDD} + Σ {(VDD-VDD) + Σ {(VDD-VDD) + Σ {(VDD-VDD) + Σ {(VDD) + Σ {(VD) + $\Sigma} {(VD) + {\Sigma} {(VD) + \Sigma} {(VD) + {\Sigma} {(VD) +$	VOH) x IOH} + Σ (VOL x IOL)

[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

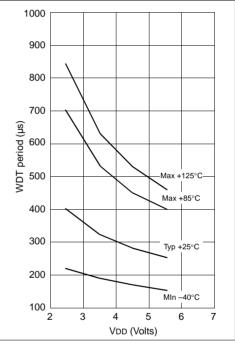

12.0 DC AND AC CHARACTERISTICS - PIC12C508/PIC12C509

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.



Oscillator	Frequency	VDD = 2.5V	VDD = 5.5V
External RC	4 MHz	250 µA*	780 µA*
Internal RC	4 MHz	420 µA	1.1 mA
XT	4 MHz	251 µA	780 µA
LP	32 KHz	15 µA	37 µA


TABLE 12-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

FIGURE 12-3: WDT TIMER TIME-OUT PERIOD VS. VDD

FIGURE 12-4: SHORT DRT PERIOD VS. VDD

13.4 DC CHARACTERISTICS:

PIC12LC508A/509A (Commercial, Industrial) PIC12LC518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)							
		Operating voltage VDD range as described in DC spec Section 13.1 an Section 13.2.							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.8V	V	For $4.5V \le VDD \le 5.5V$		
			Vss	-	0.15Vdd	V	otherwise		
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V			
D032	MCLR, GP2/T0CKI (in EXTRC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in EXTRC mode)		Vss	-	0.2Vdd	V	Note 1		
D033	OSC1 (in XT and LP)		Vss	-	0.3Vdd	V	Note 1		
	Input High Voltage	1							
	I/O ports	VIH		-					
D040	with TTL buffer		0.25Vdd +	-	Vdd	V	$4.5V \le VDD \le 5.5V$		
			0.8V						
D040A			2.0V	-	Vdd	V	otherwise		
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range		
D042	MCLR, GP2/T0CKI		0.8Vdd	-	Vdd	V			
D042A	OSC1 (XT and LP)		0.7Vdd	-	Vdd	V	Note 1		
D043	OSC1 (in EXTRC mode)		0.9Vdd	-	Vdd	V			
D070	GPIO weak pull-up current (Note 4)	IPUR	30	250	400	μA	VDD = 5V, VPIN = VSS		
	MCLR pull-up current	-	-	-	30	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)					-			
D060	I/O ports	lι∟	-	-	<u>+</u> 1	μΑ	Vss \leq VPIN \leq VDD, Pin at hi-imped ance		
D061	тоскі		-	-	<u>+</u> 5	μA	$Vss \leq VPIN \leq VDD$		
D063	OSC1		-	-	<u>+</u> 5	μA	Vss \leq VPIN \leq VDD, XT and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, −40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, −40°C to +125°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, −40°C to +85°C		
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
	Capacitive Loading Specs on Output Pins								
D100	OSC2 pin	COSC 2	-	-	15	pF	In XT and LP modes when exter- nal clock is used to drive OSC1.		
D101	All I/O pins	Сю	-	-	50	pF			
†	Data in "Typ" column is at 5V, 25°C unles	e othory	vise stated	Those	naramete	re aro fo	r design guidance only and are not		

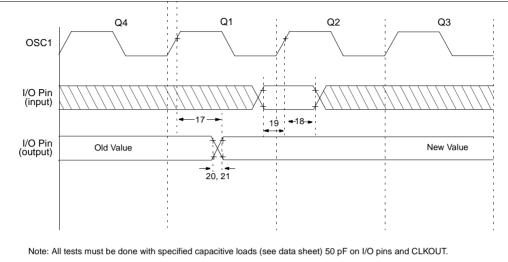
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This spec. applies when GP3/MCLR is configured as MCLR. The leakage current of the MCLR circuit is higher than the standard I/O logic.


TABLE 13-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

_40°C				70°C (co 85°C (in 125°C (€	mmerci dustrial) extendeo	al), ,	
Parameter No.	Sym	Characteristic	Min*	Typ ⁽¹⁾	Max*	Units	Conditions
		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V
		Internal Calibrated RC Frequency	3.55	—	4.31	MHz	VDD = 2.5V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 13-4: TIMING REQUIREMENTS - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCF509A, PIC12LCE518 and PIC12LCE519

AC Charae	ecified) cial) al) led) 1					
Parameter No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Max	Units
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽³⁾	—	-	100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	_	—	ns
19	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	TBD	—	—	ns
20	TioR	Port output rise time ^(2, 3)	—	10	25**	ns
21	TioF	Port output fall time ^(2, 3)	—	10	25**	ns

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

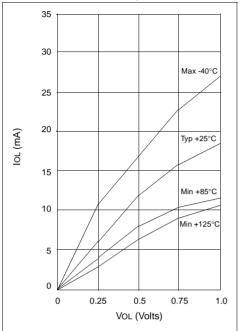
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: Measurements are taken in EXTRC mode.

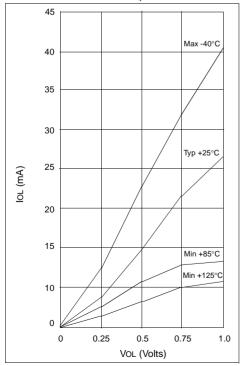
3: See Figure 13-1 for loading conditions.

TABLE 13-8: EEPROM MEMORY BUS TIMING REQUIREMENTS - PIC12CE5XX ONLY.

AC Characteristics Standard Operating Conditions (unless otherwise specified) Operating Temperature 0°C ≤ TA ≤ +70°C, Vcc = 3.0V to 5.5V (commercial) -40°C ≤ TA ≤ +85°C, Vcc = 3.0V to 5.5V (industrial) -40°C ≤ TA ≤ +125°C, Vcc = 4.5V to 5.5V (extended) Operating Voltage VDD range is described in Section 13.1								
Parameter	Symbol Min Max Units Conditions							
Clock frequency	FCLK	 	100 100 400	kHz	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Clock high time	Тнідн	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Clock low time	TLOW	4700 4700 1300		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
SDA and SCL rise time (Note 1)	TR		1000 1000 300	ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
SDA and SCL fall time	TF	—	300	ns	(Note 1)			
START condition hold time	THD:STA	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
START condition setup time	TSU:STA	4700 4700 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Data input hold time	THD:DAT	0		ns	(Note 2)			
Data input setup time	TSU:DAT	250 250 100		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \mbox{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
STOP condition setup time	Tsu:sto	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Output valid from clock (Note 2)	ΤΑΑ		3500 3500 900	ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Bus free time: Time the bus must be free before a new transmis- sion can start	TBUF	4700 4700 1300		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V			
Output fall time from VIH minimum to VIL maximum	Tof	20+0.1 CB	250	ns	(Note 1), CB ≤ 100 pF			
Input filter spike suppression (SDA and SCL pins)	TSP		50	ns	(Notes 1, 3)			
Write cycle time	Twc	—	4	ms				
Endurance		1M	_	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)			


Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.


3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on Microchip's website.

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

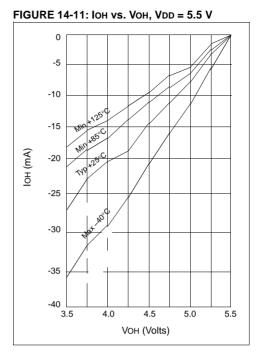
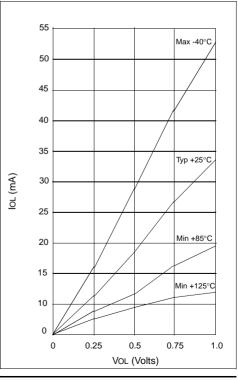



FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

Е w D 2 n 1 U t А A1 ı. A2 с B1р eВ В

Package Type:	K04-084 8-Lead Ceramic Side Brazed Dual In-line with Window (JW) – 300 mil
---------------	--

Units			INCHES*		М	ILLIMETERS	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		8			8	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.018	0.020	0.41	0.46	0.51
Upper Lead Width	B1	0.050	0.055	0.060	1.27	1.40	1.52
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	А	0.145	0.165	0.185	3.68	4.19	4.70
Top of Body to Seating Plane	A1	0.103	0.123	0.143	2.62	3.12	3.63
Base to Seating Plane	A2	0.025	0.035	0.045	0.64	0.89	1.14
Tip to Seating Plane	L	0.130	0.140	0.150	3.30	3.56	3.81
Package Length	D	0.510	0.520	0.530	12.95	13.21	13.46
Package Width	E	0.280	0.290	0.300	7.11	7.37	7.62
Overall Row Spacing	eB	0.310	0.338	0.365	7.87	8.57	9.27
Window Diameter	W	0.161	0.166	0.171	4.09	4.22	4.34
Lid Length	Т	0.440	0.450	0.460	11.18	11.43	11.68
Lid Width	U	0.260	0.270	0.280	6.60	6.86	7.11

* Controlling Parameter.

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

981103

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*-LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

NOTES: