

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K × 12)
Program Memory Type	OTP
EEPROM Size	16 × 8
RAM Size	41 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12ce519-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC12C508(A)	PIC12C509(A)	PIC12CR509A	PIC12CE518	PIC12CE519	PIC12C671	PIC12C672	PIC12CE673	PIC12CE674
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4	4	10	10	10	10
Memory	EPROM Program Memory	512 x 12	1024 x 12	1024 x 12 (ROM)	512 x 12	1024 x 12	1024 x 14	2048 x 14	1024 x 14	2048 x 14
Memory	RAM Data Memory (bytes)	25	41	41	25	41	128	128	128	128
	EEPROM Data Memory (bytes)	_	_	_	16	16	_	—	16	16
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	A/D Con- verter (8-bit) Channels	_	_	_	_	_	4	4	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	—	—	-			4	4	4	4
Features	I/O Pins	5	5	5	5	5	5	5	5	5
	Input Pins	1	1	1	1	1	1	1	1	1
	Internal Pull-ups	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	_	Yes	Yes	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	33	33	33	35	35	35	35
	Packages	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW	8-pin DIP, JW

TABLE 1-1: PIC12CXXX & PIC12CEXXX FAMILY OF DEVICES

All PIC12CXXX & PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC12CXXX & PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

7.5 READ OPERATIONS

Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

7.5.1 CURRENT ADDRESS READ

It contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-8).

7.5.2 RANDOM READ

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the device as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/\overline{W} bit set to a one. It will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-9). After this command, the internal address counter will point to the address location following the one that was just read.

7.5.3 SEQUENTIAL READ

Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 7-10).

To provide sequential reads, it contains an internal address pointer which is incremented by one at the completion of each read operation. This address pointer allows the entire memory contents to be serially read during one operation.

FIGURE 7-9: RANDOM READ

FIGURE 7-10: SEQUENTIAL READ

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT time-out Wake-up on Pin Change
W (PIC12C508/509)	_	qqqq xxxx (1)	qqqq uuuu (1)
W (PIC12C508A/509A/ PIC12CE518/519/ PIC12CE509A)	_	qqqq qqxx (1)	qqqq qquu (1)
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu ^(2,3)
FSR (PIC12C508/ PIC12C508A/ PIC12CE518)	04h	111x xxxx	111u uuuu
FSR (PIC12C509/ PIC12C509A/ PIC12CE519/ PIC12CR509A)	04h	110x xxxx	lluu uuuu
OSCCAL (PIC12C508/509)	05h	0111	uuuu
OSCCAL (PIC12C508A/509A/ PIC12CE518/512/ PIC12CR509A)	05h	1000 00	uuuu uu
GPIO (PIC12C508/PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	06h	xx xxxx	uu uuuu
GPIO (PIC12CE518/ PIC12CE519)	06h	llxx xxxx	lluu uuuu
OPTION	—	1111 1111	1111 1111
TRIS	—	11 1111	11 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

Note 2: See Table 8-7 for reset value for specific conditions

Note 3: If reset was due to wake-up on pin change, then bit 7 = 1. All other resets will cause bit 7 = 0.

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power on reset	0001 1xxx	1111 1111
MCLR reset during normal operation	000u uuuu	1111 1111
MCLR reset during SLEEP	0001 0uuu	1111 1111
WDT reset during SLEEP	0000 0uuu	1111 1111
WDT reset normal operation	0000 uuuu	1111 1111
Wake-up from SLEEP on pin change	1001 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

TABLE 9-2:	INSTRUCTION SET	SUMMARY
------------	-----------------	---------

Mnemo	nomonia			12-	Bit Opc	ode	Status	
Operar	nds	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	-	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	1	1			I	
BCF	f. b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f. b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f. b	Bit Test f. Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A		NTROL OPERATIONS					1	
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (Section 4.6)

2: When an I/O register is modified as a function of itself (e.g. MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6 causes the contents of the W register to be written to the tristate latches of GPIO. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

PIC12C5XX

MOVF	Move f						
Syntax:	[label] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$						
Operation:	(f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0010 00df ffff						
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' is 1 is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Example:	MOVF FSR, 0						
After Instruct	ion						
W =	value in FSR register						

MOVLW	Move Literal to W									
Syntax:	[label]	MOVLW	k							
Operands:	$0 \le k \le 2$	55								
Operation:	$k \rightarrow (W)$									
Status Affected:	tatus Affected: None									
Encoding:	1100	kkkk	kkkk	I						
Description:	The eight bit literal 'k' is loaded into the W register. The don't cares will assemble as 0s.									
Words:	1									
Cycles:	1									
Example:	MOVLW	0x5A								
After Instruct W =	ion 0x5A									

MOVWF	Move W to f							
Syntax:	[label]	MOVWF	f					
Operands:	$0 \le f \le 3^{2}$	1						
Operation:	$(W) \to (f$)						
Status Affected:	None							
Encoding:	0000	001f	ffff					
Description:	Move data ter 'f'.	a from the \	V register	to regis-				
Words:	1							
Cycles:	1							
Example:	MOVWF	TEMP_REG	}					
Before Instru TEMP_RI W	ction EG = =	0xFF 0x4F						
After Instruct TEMP_RI W	ion EG = =	0x4F 0x4F						

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No operation						
Status Affected:	None						
Encoding:	0000	0000	0000				
Description:	No opera	ation.					
Words:	1						
Cycles:	1						
Example:	NOP						

10.0 DEVELOPMENT SUPPORT

10.1 <u>Development Tools</u>

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- MPLAB[™]-ICE Real-Time In-Circuit Emulator
- ICEPIC[™] Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- SIMICE
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)
- KEELOQ[®] Evaluation Kits and Programmer

10.2 MPLAB-ICE: High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro[®] microcontrollers (MCUs). MPLAB-ICE is supplied with the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support all new Microchip microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x or Windows 95 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE is available in two versions. MPLAB-ICE 1000 is a basic, low-cost emulator system with simple trace capabilities. It shares processor modules with the MPLAB-ICE 2000. This is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems will operate across the entire operating speed range of the PICmicro[®] MCU.

10.3 ICEPIC: Low-Cost PICmicro[®] In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC12CXXX, PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 386 through Pentium[™] based machines under Windows 3.x, Windows 95, or Windows NT environment. ICEPIC features real time, non-intrusive emulation.

10.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

10.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923, PIC16C924 and PIC17C756 may be supported with an adapter socket. PICSTART Plus is CE compliant.

11.1 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)

	DC Characteristics Power Supply Pins		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \end{array}$					
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions	
D001	Supply Voltage	Vdd	2.5 3.0		5.5 5.5	V V	Fosc = DC to 4 MHz (Commercial/ Industrial) Fosc = DC to 4 MHz (Extended)	
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode	
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details	
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05 *			V/ms	See section on Power-on Reset for details	
D010	Supply Current ⁽³⁾	Idd	_	.78	2.4	mA	XT and EXTRC options ⁽⁴⁾ Fosc = 4 MHz, VDD = 5.5V	
D010C			—	1.1	2.4	mA	INTRC Option Fosc = 4 MHz, VDD = 5.5V	
D010A			—	10	27	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
			—	14	35	μA	LP OPTION, Industrial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
				14	35	μA	LP OPTION, Extended Temperature FOSC = 32 kHz, VDD = 3.0V, WDT disabled	
D020 D021 D021B	Power-Down Current ⁽⁵⁾	IPD		0.25 0.25 2	4 5 18	μΑ μΑ μΑ	VDD = 3.0V, Commercial WDT disabled VDD = 3.0V, Industrial WDT disabled VDD = 3.0V, Extended WDT disabled	
D022		ΔİWDT		3.75 3.75 3.75	8 9 14	μΑ μΑ μΑ	VDD = 3.0V, Commercial VDD = 3.0V, Industrial VDD = 3.0V, Extended	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to V_{ss} , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units					
GP0/GP1										
2.5	-40	38K	42K	63K	Ω					
	25	42K	48K	63K	Ω					
	85	42K	49K	63K	Ω					
	125	50K	55K	63K	Ω					
5.5	-40	15K	17K	20K	Ω					
	25	18K	20K	23K	Ω					
	85	19K	22K	25K	Ω					
	125	22K	24K	28K	Ω					
		GI	23							
2.5	-40	285K	346K	417K	Ω					
	25	343K	414K	532K	Ω					
	85	368K	457K	532K	Ω					
	125	431K	504K	593K	Ω					
5.5	-40	247K	292K	360K	Ω					
	25	288K	341K	437K	Ω					
	85	306K	371K	448K	Ω					
	125	351K	407K	500K	Ω					

TABLE 11-1: PULL-UP RESISTOR RANGES - PIC12C508/C509

* These parameters are characterized but not tested.

13.0 ELECTRICAL CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A/PIC12CR509A/PIC12CE518/PIC12CE519/ PIC12LCE518/PIC12LCE519/PIC12LCR509A

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.0 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.3 V to (VDD + 0.3 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	200 mA
Max. Current into Vod pin	150 mA
Input Clamp Current, Iк (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, Iок (Vo < 0 or Vo > Vod)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD-VDD) + Σ {(VDD-VD) + Σ {(VDD-VD) + Σ {(VDD-VD) + Σ {(VDD-VD) + Σ {(VDD) + Σ {(VD) + $\Sigma} {(VD) + \Sigma} {(VD) + \Sigma} {(VD) + {\Sigma} {(VD) + \Sigma} {(VD) + {\Sigma} {(V$	VOH) X IOH} + Σ (VOL X IOL)

[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC CHARACTERISTICS:

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12CE518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

	DC Characteristics Power Supply Pins		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions		
D001	Supply Voltage	Vdd	3.0		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial, Extended)		
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode		
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details		
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details		
D010	Supply Current ⁽³⁾	IDD	_	0.8	1.4	mA	XT and EXTRC options (Note 4) Fosc = 4 MHz, VDD = 5.5V		
D010C			—	0.8	1.4	mA	INTRC Option FOSC = 4 MHz VDD = 5.5V		
D010A			—	19	27	μA	LP OPTION, Commercial Temperature $E_{OSC} = 32 \text{ kHz}$ Vpp = 3 0V WDT disabled		
			—	19	35	μA	LP OPTION, Industrial Temperature EOSC = 32 kHz , VDD = 3 OV WDT disabled		
			-	30	55	μA	LP OPTION, Extended Temperature FOSC = 32 kHz , VDD = 3.0V , WDT disabled		
D020	Power-Down Current ⁽⁵⁾	IPD	—	0.25	4	μA	VDD = 3.0V, Commercial WDT disabled		
D021 D021B			_	2	5 12	μΑ μΑ	VDD = 3.0V, industrial WDT disabled VDD = 3.0V, Extended WDT disabled		
D022	Power-Down Current	ΔIWDT	_	2.2	5	μA	VDD = 3.0V, Commercial		
				4	ь 11	μΑ μΑ	VDD = 3.0V, industrial $VDD = 3.0V$, Extended		
	Supply Current ⁽³⁾ During read/write to EEPROM peripheral	ΔIEE	_	0.1	0.2	mA	FOSC = 4 MHz, Vdd = 5.5V, SCL = 400kHz		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to
 - Vss, T0CKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

13.5 <u>Timing Parameter Symbology and Load Conditions - PIC12C508A, PIC12C509A,</u> PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

The timing parameter symbols have been created following one of the following formats:

1. TPPSZPPS	1.	Тр	pS2	ppS
-------------	----	----	-----	-----

2. TppS

z. rpps						
т						
F	Frequency	Т	Time			
Lowercase subscripts (pp) and their meanings:						
рр						
2	to	mc	MCLR			
ck	CLKOUT	osc	oscillator			
су	cycle time	os	OSC1			
drt	device reset timer	t0	TOCKI			
io	I/O port	wdt	watchdog timer			
Upperc	ase letters and their meanings:					
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (Hi-impedance)	V	Valid			
L	Low	Z	Hi-impedance			

FIGURE 13-1: LOAD CONDITIONS - PIC12C508A/C509A, PIC12CE518/519, PIC12LC508A/509A, PIC12LCE518/519, PIC12LCR509A

TABLE 13-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

AC Chara	AC Characteristics Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial), $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial), $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating Voltage VDD range is described in Section 10.1						
Parameter No.	Sym	Characteristic	Min*	Тур ⁽¹⁾	Max*	Units	Conditions
		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V
		Internal Calibrated RC Frequency	3.55	—	4.31	MHz	VDD = 2.5V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

FIGURE 14-15: VIL, VIH OF NMCLR, AND TOCKI VS. VDD

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead SOIC (208 mil)

xxxxxxx
XXXXXXX
AABBCDE
Э)

Example 12C508A 04I/PSAZ \$\$ 9825

Example

Example

8-Lead Windowed Ceramic Side Brazed (300 mil)

Example

Legend	: MMM	Microchip part number information				
Ū	XXX	Customer specific information*				
	AA	Year code (last 2 digits of calendar year)				
	BB	Week code (week of January 1 is week '01')				
	С	Facility code of the plant at which wafer is manufactured				
		O = Outside Vendor				
		C = 5" Line				
		S = 6" Line				
		H = 8" Line				
	D	Mask revision number				
	E	Assembly code of the plant or country of origin in which				
		part was assembled				
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will				
	be carried over to the next line thus limiting the number of available characters					
	for customer specific information.					

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	А	0.054	0.061	0.069	1.37	1.56	1.75
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20
Chamfer Distance	Х	0.010	0.015	0.020	0.25	0.38	0.51
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B [†]	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent
RE:	Reader Response
Fron	n: Name
	Company
	Address
	City / State / ZIP / Country
	Telephone: () FAX: ()
Appl	lication (optional):
Wou	Id you like a reply?YN
Devi	ce: PIC12C5XX Literature Number: DS40139E
Que	stions:
1.	What are the best features of this document?
2.	How does this document meet your hardware and software development needs?
3	Do you find the organization of this data sheet easy to follow? If not, why?
0.	
4.	What additions to the data sheet do you think would enhance the structure and subject?
-	
5	What delations from the data short could be made without offecting the swarell useful accord
5.	
-	
6.	Is there any incorrect or misleading information (what and where)?
-	
7.	How would you improve this document?
-	
8.	How would you improve our software, systems, and silicon products?

PIC12C5XX Product Identification System

Please contact your local sales office for exact ordering procedures.

Sales and Support:

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.