

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

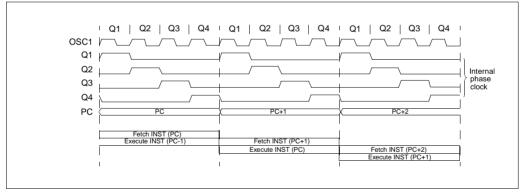
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	16 x 8
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12ce519-04-sn

Email: info@E-XFL.COM

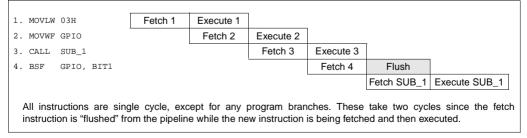
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.


3.2 Instruction Flow/Pipelining

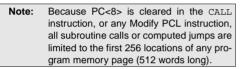
An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

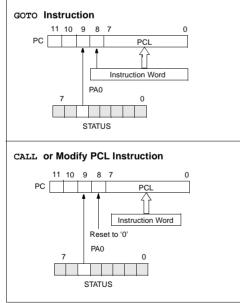
In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW


4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.


For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-8).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-8).

Instructions where the PCL is the destination, or Modify PCL instructions, include <code>MOVWF PC</code>, <code>ADDWF PC</code>, and <code>BSF PC</code>, <code>5</code>.

FIGURE 4-8: LOADING OF PC BRANCH INSTRUCTIONS -PIC12C5XX

4.6.1 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00h, and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7 Stack

PIC12C5XX devices have a 12-bit wide L.I.F.O. hardware push/pop stack.

A CALL instruction will *push* the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will *pop* the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Upon any reset, the contents of the stack remain unchanged, however the program counter (PCL) will also be reset to 0.

- Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

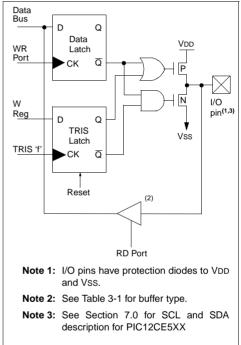
5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set. See Section 7.0 for SCL and SDA description for PIC12CE5XX.

5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as '0' during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pullup is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Register


The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

Note:	A read of the ports reads the pins, not the output data latches. That is, if an output			
	driver on a pin is enabled and driven high,			
	but the external system is holding it low, a read of the port will indicate that the pin is			
	low.			

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

7.0 EEPROM PERIPHERAL OPERATION

This section applies to PIC12CE518 and PIC12CE519 only.

The PIC12CE518 and PIC12CE519 each have 16 bytes of EEPROM data memory. The EEPROM memory has an endurance of 1,000,000 erase/write cycles and a data retention of greater than 40 years. The EEPROM data memory supports a bi-directional 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), that are mapped to bit6 and bit7, respectively, of the GPIO register (SFR 06h). Unlike the GP0-GP5 that are connected to the internal EEPROM peripheral. For most applications, all that is required is calls to the following functions:

; Byte_Write: Byte write routine Inputs: EEPROM Address EEADDR : ; EEPROM Data EEDATA Outputs: Return 01 in W if OK, else ; return 00 in W ; ; Read_Current: Read EEPROM at address currently held by EE device. Inputs: NONE ; Outputs: EEPROM Data EEDATA ; Return 01 in W if OK, else ; return 00 in W ; ; Read_Random: Read EEPROM byte at supplied address Inputs: EEPROM Address : FFADDR ; Outputs: EEPROM Data EEDATA Return 01 in W if OK, ; else return 00 in W

The code for these functions is available on our website www.microchip.com. The code will be accessed by either including the source code FL51XINC.ASM or by linking FLASH5IX.ASM.

It is very important to check the return codes when using these calls, and retry the operation if unsuccessful. Unsuccessful return codes occur when the EE data memory is busy with the previous write, which can take up to 4 mS.

7.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the device.

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

The EEPROM interface is a 2-wire bus protocol consisting of data (SDA) and a clock (SCL). Although these lines are mapped into the GPIO register, they are not accessible as external pins; only to the internal EEPROM peripheral. SDA and SCL operation is also slightly different than GPO-GP5 as listed below. Namely, to avoid code overhead in modifying the TRIS register, both SDA and SCL are always outputs. To read data from the EEPROM peripheral requires outputting a '1' on SDA placing it in high-Z state, where only the internal 100K pull-up is active on the SDA line.

SDA:

Built-in 100K (typical) pull-up to VDD Open-drain (pull-down only) Always an output Outputs a '1' on reset

SCL: Full CMOS output Always an output Outputs a '1' on reset

The following example requires:

- · Code Space: 77 words
- RAM Space: 5 bytes (4 are overlayable)
- Stack Levels:1 (The call to the function itself. The functions do not call any lower level functions.)
- Timing:
 - WRITE_BYTE takes 328 cycles
 - READ_CURRENT takes 212 cycles
 - READ_RANDOM takes 416 cycles.
- IO Pins: 0 (No external IO pins are used)

This code must reside in the lower half of a page. The code achieves it's small size without additional calls through the use of a sequencing table. The table is a list of procedures that must be called in order. The table uses an ADDWF PCL,F instruction, effectively a computed goto, to sequence to the next procedure. However the ADDWF PCL,F instruction yields an 8 bit address, forcing the code to reside in the first 256 addresses of a page.

^{© 1999} Microchip Technology Inc.

BSF	Bit Set f	BTFSS	Bit Test f, Skip if Set		
Syntax:	[label] BSF f,b	Syntax:	[label] BTFSS f,b		
Operands:	$0 \le f \le 31$ $0 \le b \le 7$	Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$		
Operation:	$1 \rightarrow (f < b >)$	Operation:	skip if (f) = 1		
Status Affected:	None	Status Affected:	None		
Encoding:	0101 bbbf ffff	Encoding:	0111 bbbf ffff		
Description:	Bit 'b' in register 'f' is set.	Description:	If bit 'b' in register 'f' is '1' then the next		
Words:	1		instruction is skipped.		
Cycles:	1		If bit 'b' is '1', then the next instruction fetched during the current instruction		
Example:	BSF FLAG_REG, 7		execution, is discarded and an NOP is		
Before Instru	uction		executed instead, making this a 2 cycle instruction.		
_	EG = 0x0A	Words:	1		
After Instruc		Cycles:	1(2)		
FLAG_REG = 0x8A		Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE		
BTFSC	Bit Test f, Skip if Clear		TRUE •		
Syntax:	[label] BTFSC f,b		•		
Operands:	$0 \le f \le 31$	Before Instr	uction		
	$0 \le b \le 7$	PC	= address (HERE)		
Operation:	skip if $(f < b >) = 0$	After Instruc			
Status Affected: None		If FLAG PC	<1> = 0, = address (FALSE);		
Encoding:	0110 bbbf ffff	if FLAG<	<1> = 1,		
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped.	PC	= address (TRUE)		
	If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and an NOP is				

executed instead, making this a 2 cycle

BTFSC FLAG,1

address (HERE)

address (TRUE);

address(FALSE)

PROCESS_CODE

GOTO

٠ •

0, =

1, =

instruction.

1

1(2)

HERE

TRUE

Before Instruction PC

After Instruction if FLAG<1>

if FLAG<1>

PC

PC

FALSE

=

=

=

Words:

Cycles:

Example:

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z	= 0xFF = 0
After Instruct	
CNT Z	= 0x00 = 1
INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 31$

Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruc- tion, which is already fetched, is dis- carded and an NOP is executed instead making it a two cycle instruc- tion.					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP					
	CONTINUE • •					
Before Inst PC	ruction = address (HERE)					
After Instru CNT if CNT PC if CNT PC	= CNT + 1;					

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .OR. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	1101 kkkk kkkk				
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example:	IORLW 0x35				
Before Instru W =	uction 0x9A				
After Instruc W = Z =	tion 0xBF 0				

IORWF	Inclusive OR W with f				
Syntax:	[label] IORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$				
Operation:	(W).OR. (f) \rightarrow (dest)				
Status Affected	I: Z				
Encoding:	0001 00df ffff				
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	IORWF RESULT, 0				
Before Inst RESUL W After Instru	LT = 0x13 = 0x91				
RESUL W Z					

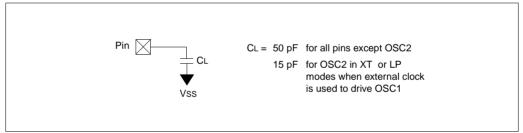
10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

HCS200 HCS300 HCS301 > > > > 24CXX 25CXX 93CXX > \mathbf{i} \mathbf{i} PIC17C7XX > \mathbf{i} \mathbf{i} > \mathbf{i} PIC17C4X \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > PIC16C9XX \mathbf{i} > > > > > > PIC16C8X > > > > > > > PIC16C7XX \mathbf{i} > > > > \mathbf{i} > PIC16C6X \mathbf{i} \mathbf{i} > \mathbf{i} > \mathbf{i} > PIC16CXXX \mathbf{i} > > > > > > PIC16C5X > \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > \mathbf{i} PIC14000 > > > \mathbf{i} \mathbf{i} > PIC12C5XX \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} ICEPICTM Low-Cost In-Circuit Emulator Universal Dev. Kit Total Endurance™ fuzzyTECH[®]-MP Explorer/Edition **PICSTART[®]Plus** Software Model KEELoo Transponder Kit Integrated Development PRO MATE[®] II Evaluation Kit MPLABTM-ICE MPLABTM C17^{*} Fuzzy Logic Dev. Tool **Designers Kit** Environment PICDEM-14A Programmer Programmer KEELOQ® Universal SEEVAL® PICDEM-1 PICDEM-2 PICDEM-3 Compiler Low-Cost MPLABTM KEEL00[®] SIMICE Programmers Emulator Products Software Tools Demo Boards

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

11.3 Timing Parameter Symbology and Load Conditions - PIC12C508/C509


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

2. 1990			
т			
F	Frequency	т	Time
Lowerc	case subscripts (pp) and their meanings:		
рр			
2	to	mc	MCLR
ck	CLKOUT	OSC	oscillator
су	cycle time	os	OSC1
drt	device reset timer	tO	TOCKI
io	I/O port	wdt	watchdog timer
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance

FIGURE 11-1: LOAD CONDITIONS - PIC12C508/C509

13.0 ELECTRICAL CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A/PIC12CR509A/PIC12CE518/PIC12CE519/ PIC12LCE518/PIC12LCE519/PIC12LCR509A

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.0 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.3 V to (VDD + 0.3 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	200 mA
Max. Current into Vod pin	150 mA
Input Clamp Current, Iik (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, Ioк (Vo < 0 or Vo > VoD)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD - \sum IOH} + \sum {(VD - \sum IOH} + \sum {(VD - \sum IOH} + \sum {(VD - \sum IOH} + \sum {(VD - \sum IOH} + \sum {(VD - \sum IOH} +	-VOH) x IOH} + Σ (VOL x IOL)

[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.2 DC CHARACTERISTICS:

PIC12LC508A/509A (Commercial, Industrial) PIC12LCE518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

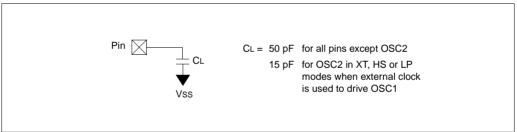
DC Characteristics Power Supply Pins				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \end{array}$				
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions	
D001	Supply Voltage	Vdd	2.5		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial)	
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode	
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details	
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details	
D010	Supply Current ⁽³⁾	IDD	—	0.4	0.8	mA	XT and EXTRC options (Note 4) Fosc = 4 MHz, VDD = 2.5V	
D010C			-	0.4	0.8	mA	INTRC Option Fosc = 4 MHz, VDD = 2.5V	
D010A			-	15	23	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz, VDD = 2.5V, WDT disabled	
			-	15	31	μA	LP OPTION, Industrial Temperature FOSC = 32 kHz, VDD = 2.5V, WDT disabled	
D020	Power-Down Current (5)	IPD						
D021 D021B				0.2 0.2	3 4	μΑ μΑ	VDD = 2.5V, Commercial VDD = 2.5V, Industrial	
		ΔIWDT	-	2.0 2.0	4	mA mA	VDD = 2.5V, Commercial VDD = 2.5V, Industrial	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

13.5 <u>Timing Parameter Symbology and Load Conditions - PIC12C508A, PIC12C509A,</u> PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519


The timing parameter symbols have been created following one of the following formats:

1. Tp	oS2ppS
-------	--------

2. TppS

2. TppS				
т				
F	Frequency	Т	Time	
Lowerc	ase subscripts (pp) and their meaning	s:		
рр				
2	to	mc	MCLR	
ck	CLKOUT	osc	oscillator	
су	cycle time	os	OSC1	
drt	device reset timer	tO	TOCKI	
io	I/O port	wdt	watchdog timer	
Upperc	ase letters and their meanings:	÷		
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	

FIGURE 13-1: LOAD CONDITIONS - PIC12C508A/C509A, PIC12CE518/519, PIC12LC508A/509A, PIC12LCE518/519, PIC12LCR509A

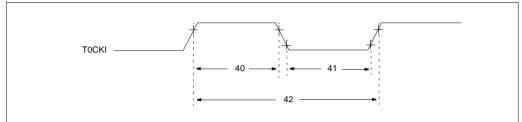


TABLE 13-6: DRT (DEVICE RESET TIMER PERIOD) - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

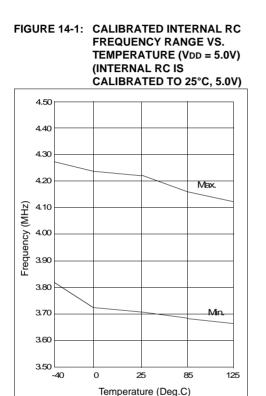
Oscillator Configuration	POR Reset	Subsequent Resets			
IntRC & ExtRC	18 ms (typical) ⁽¹⁾	300 µs (typical) ⁽¹⁾			
XT & LP	18 ms (typical) ⁽¹⁾	18 ms (typical) ⁽¹⁾			

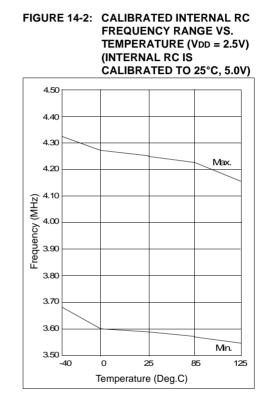
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

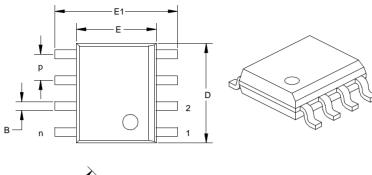
TABLE 13-7: TIMER0 CLOCK REQUIREMENTS - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

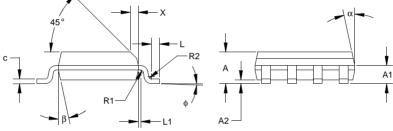
Operating Tempera								
Parameter No.	Sym	Characteristic		Min	Тур ⁽¹⁾	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse V	Vidth - No Prescaler	0.5 TCY + 20*	—	—	ns	
			- With Prescaler	10*	-	—	ns	
41	Tt0L	T0CKI Low Pulse W	/idth - No Prescaler	0.5 TCY + 20*	-	—	ns	
			- With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period		20 or <u>Tcy + 40</u> * N	_		ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)


* These parameters are characterized but not tested.


Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14.0 DC AND AC CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A, PIC12CE518/PIC12CE519/PIC12CR509A/ PIC12LCE518/PIC12LCE519/ PIC12LCR509A


The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.


The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil

Units		INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	A	0.054	0.061	0.069	1.37	1.56	1.75
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20
Chamfer Distance	х	0.010	0.015	0.020	0.25	0.38	0.51
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B [†]	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent						
RE:	Reader Response						
Fror	n: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: () FAX: ()						
	lication (optional):						
Wou	uld you like a reply?YN						
Device: PIC12C5XX Literature Number: DS40139E							
Que	estions:						
1.	What are the best features of this document?						
2.	. How does this document meet your hardware and software development needs?						
з	Do you find the organization of this data sheet easy to follow? If not, why?						
0.							
4.	What additions to the data sheet do you think would enhance the structure and subject?						
5.	What deletions from the data sheet could be made without affecting the overall usefulness?						
6.	Is there any incorrect or misleading information (what and where)?						
7.	How would you improve this document?						
8	How would you improve our software, systems, and silicon products?						
0.							