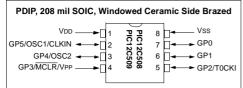


Welcome to E-XFL.COM

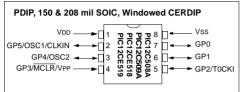
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

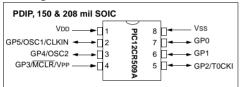
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	16 x 8
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12ce519-04e-sn


Email: info@E-XFL.COM

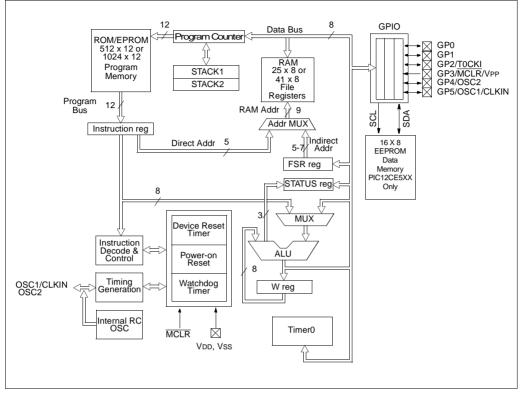
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagram - PIC12C508/509

Pin Diagram - PIC12C508A/509A, PIC12CE518/519

Pin Diagram - PIC12CR509A


Device Differences


Device	Voltage Range	Oscillator	Oscillator Calibration ² (Bits)	Process Technology (Microns)
PIC12C508A	3.0-5.5	See Note 1	6	0.7
PIC12LC508A	2.5-5.5	See Note 1	6	0.7
PIC12C508	2.5-5.5	See Note 1	4	0.9
PIC12C509A	3.0-5.5	See Note 1	6	0.7
PIC12LC509A	2.5-5.5	See Note 1	6	0.7
PIC12C509	2.5-5.5	See Note 1	4	0.9
PIC12CR509A	2.5-5.5	See Note 1	6	0.7
PIC12CE518	3.0-5.5	-	6	0.7
PIC12LCE518	2.5-5.5	-	6	0.7
PIC12CE519	3.0-5.5	-	6	0.7
PIC12LCE519	2.5-5.5	-	6	0.7

Note 1: If you change from the PIC12C50X to the PIC12C50XA or to the PIC12CR50XA, please verify oscillator characteristics in your application.

Note 2: See Section 7.2.5 for OSCCAL implementation differences.

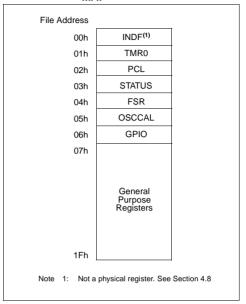
NOTES:

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.


For the PIC12C508, PIC12C508A and PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12C509, PIC12C509A, PIC12CR509A, and PIC12CE519 the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508, PIC12C508A AND PIC12CE518 REGISTER FILE MAP

FSR<6:5>-	•	00	01
File Address	· ·		1
00h		INDF ⁽¹⁾	20h
∲ 01h		TMR0	
02h		PCL	_
03h		STATUS	Addresses map back to
04h		FSR	addresses
05h		OSCCAL	in Bank 0.
06h		GPIO	
07h			1
		General Purpose	
		Registers	
0Fh		0	2Fh
	10h		30h
		General	General
		Purpose	Purpose
		Registers	Registers
	1Fh		3Fh
		Bank 0	Bank 1
Note 1	: No	t a physical regi	ster. See Section 4.8

FIGURE 4-3: PIC12C509, PIC12C509A, PIC12CR509A AND PIC12CE519 REGISTER FILE MAP

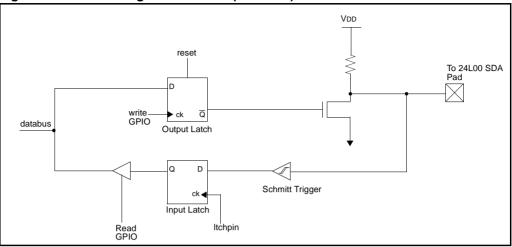
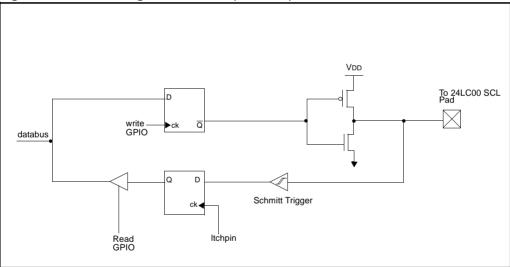



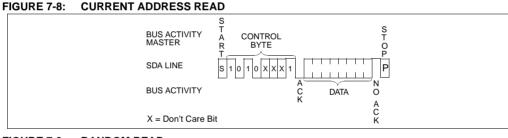
Figure 7-2: Block diagram of GPIO7 (SCL line)

7.5 READ OPERATIONS

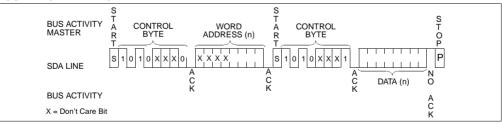
Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

7.5.1 CURRENT ADDRESS READ

It contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-8).


7.5.2 RANDOM READ

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the device as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/\overline{W} bit set to a one. It will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 7-9). After this command, the internal address counter will point to the address location following the one that was just read.


7.5.3 SEQUENTIAL READ

Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 7-10).

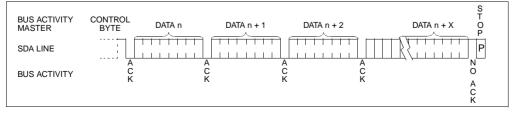

To provide sequential reads, it contains an internal address pointer which is incremented by one at the completion of each read operation. This address pointer allows the entire memory contents to be serially read during one operation.

FIGURE 7-9: RANDOM READ

FIGURE 7-10: SEQUENTIAL READ

8.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the top of memory which contains the calibration value for the internal RC oscillator. This location is never code protected regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part. so it can be reprogrammed correctly later.

For the PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, and PIC12CR509A, bits <7:2>, CAL5-CAL0 are used for calibration. Adjusting CAL5-0 from 000000 to 111111 yields a higher clock speed. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0 when modifying OSCCAL for compatibility with future devices.

For the PIC12C508 and PIC12C509, the upper 4 bits of the register are used. Writing a larger value in this location yields a higher clock speed.

8.3 <u>RESET</u>

The device differentiates between various kinds of reset:

- a) Power on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT time-out reset during normal operation
- e) WDT time-out reset during SLEEP
- f) Wake-up from SLEEP on pin change

Some registers are not reset in any way; they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR), \overline{MCLR} , WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or \overline{MCLR} reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this are \overline{TO} , \overline{PD} , and GPWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 8-3 for a full description of reset states of all registers.

9.0 INSTRUCTION SET SUMMARY

Each PIC12C5XX instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC12C5XX instruction set summary in Table 9-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-Out bit
PD	Power-Down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 µs. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 µs.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations							
	11	6	5	4		0	
	OPCODE		d		f (FILE #)		
d = 0 for destination W d = 1 for destination f f = 5-bit file register address							
Bi	t-oriented file regi	iste	er ope	eratio	ins		
	11	8	7	5	4	0	
	OPCODE		b (B	o (BIT #) f (FILE #)			
b = 3-bit bit address f = 5-bit file register address Literal and control operations (except GOTO)							
	11		8	7		0	
	OPCODE				k (literal)		
k = 8-bit immediate value							
Literal and control operations - GOTO instruction							
r	11		9	8		0	
	OPCODE				k (literal)		

k = 9-bit immediate value

CALL	Subroutine Call			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le k \le 255$			
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack}; \\ k \rightarrow PC < 7:0 >; \\ (STATUS < 6:5 >) \rightarrow PC < 10:9 >; \\ 0 \rightarrow PC < 8 > \end{array}$			
Status Affected:	None			
Encoding:	1001 kkkk kkkk			
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STA-TUS<6:5>, PC<8> is cleared. CALL is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example:	HERE CALL THERE			
Before Instru PC =				
	tion address (THERE) address (HERE + 1)			

CLRF

Syntax:	[label]	CLRF f		
Operands:	$0 \le f \le 31$	I		
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	0000	011f	ffff	
Description:	The contents of register 'f' are cleared and the Z bit is set.			
Words:	1			
Cycles:	1			
Example:	CLRF	FLAG_REC	3	
Before Instruction FLAG_REG = 0x5A				
After Instruct FLAG_RE Z		0x00 1		

Clear f

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}); \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru W =	uction 0x5A
After Instruct W = Z =	tion 0x00 1
CLRWDT	Clear Watchdog Timer
CLRWDT Syntax:	Clear Watchdog Timer [label] CLRWDT
-	
Syntax:	[label] CLRWDT
Syntax: Operands:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$
Syntax: Operands: Operation:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] CLRWDT None $O0h \rightarrow WDT;$ $0 \rightarrow WDT prescaler (if assigned);$ $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT Intercomplete the state of the

COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (dest)$			
Status Affected:	Z			
Encoding:	0010 01df ffff			
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	COMF REG1,0			
Before Instruction REG1 = 0x13				
After Instruc REG1 W	xtion = 0x13 = 0xEC			

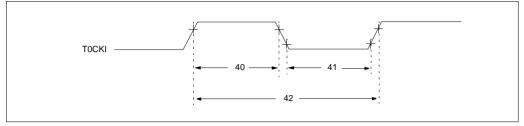
DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Encoding:	0000 11df ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	DECF CNT, 1
Before Instru CNT Z After Instruc CNT Z	= 0x01 = 0

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f.d
Operands:	$0 \le f \le 31$ $d \in [0,1]$
Operation:	(f) $- 1 \rightarrow d$; skip if result = 0
Status Affected:	None
Encoding:	0010 11df ffff
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded and an NOP is executed instead mak- ing it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •
Before Instru	iction
PC	= address (HERE)
After Instruc CNT if CNT PC if CNT PC	tion = CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)
GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
-	

Syntax:	[label]	GOTO	k	
Operands:	$0 \le k \le 511$			
Operation:	$k \rightarrow$ PC<8:0>; STATUS<6:5> \rightarrow PC<10:9>			
Status Affected:	None			
Encoding:	101k	kkkk	kkkk	
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example:	GOTO THE	ERE		
After Instruct PC =	ion address	(THERE)		

11.1 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)


	DC Characteristics Power Supply Pins	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions		
D001	Supply Voltage	Vdd	2.5		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial)		
			3.0		5.5	V	Fosc = DC to 4 MHz (Extended)		
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode		
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details		
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05 *			V/ms	See section on Power-on Reset for details		
D010	Supply Current ⁽³⁾	Idd	_	.78	2.4	mA	XT and EXTRC options ⁽⁴⁾ Fosc = 4 MHz, VDD = $5.5V$		
D010C			—	1.1	2.4	mA	INTRC Option Fosc = 4 MHz, VDD = 5.5V		
D010A			—	10	27	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz , VDD = $3.0V$, WDT disabled		
			—	14	35	μA	LP OPTION, Industrial Temperature FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
			-	14	35	μA	LP OPTION, Extended Temperature FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
	Power-Down Current (5)		l						
D020		IPD		0.25	4	μA	VDD = 3.0V, Commercial WDT disabled		
D021				0.25	5	μA	VDD = 3.0V, Industrial WDT disabled		
D021B				2	18	μA	VDD = 3.0V, Extended WDT disabled		
D022		ΔIWDT		3.75	8	μΑ	VDD = 3.0V, Commercial		
2022				3.75	9	μΑ	VDD = 3.0V, Commercial $VDD = 3.0V$. Industrial		
				3.75	14	μΑ	VDD = 3.0V, Extended		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to V_{ss} , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

FIGURE 11-5: TIMER0 CLOCK TIMINGS - PIC12C508/C509

TABLE 11-7: TIMER0 CLOCK REQUIREMENTS - PIC12C508/C509

AC Characteristics										
Parameter No.	Sym	Characteristic		Min	Тур ⁽¹⁾	Max	Units	Conditions		
40	Tt0H	T0CKI High Pulse Width - No Prescaler		0.5 TCY + 20*	-	_	ns			
			- With Prescaler	10*	—	—	ns			
41	Tt0L	T0CKI Low Pulse W	/idth - No Prescaler	0.5 TCY + 20*	—	—	ns			
			- With Prescaler	10*	—	_	ns			
42	Tt0P	T0CKI Period		20 or <u>Tcy + 40</u> * N	_	_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

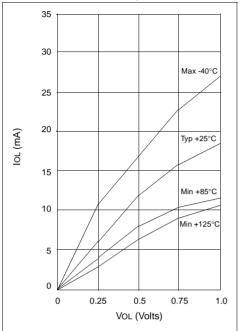
NOTES:

13.4 DC CHARACTERISTICS:

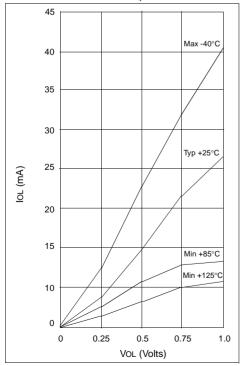
PIC12LC508A/509A (Commercial, Industrial) PIC12LC518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

DC CHARACTERISTICS										
		Operat Section		VDD ra	ange as d	escribe	d in DC spec Section 13.1 and			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
	Input Low Voltage									
	I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.8V	V	For $4.5V \le VDD \le 5.5V$			
			Vss	-	0.15Vdd	V	otherwise			
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V				
D032	MCLR, GP2/T0CKI (in EXTRC mode)		Vss	-	0.2Vdd	V				
D033	OSC1 (in EXTRC mode)		Vss	-	0.2Vdd	V	Note 1			
D033	OSC1 (in XT and LP)		Vss	-	0.3Vdd	V	Note 1			
	Input High Voltage	1								
	I/O ports	VIH		-						
D040	with TTL buffer		0.25Vdd +	-	Vdd	V	$4.5V \le VDD \le 5.5V$			
			0.8V							
D040A			2.0V	-	Vdd	V	otherwise			
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range			
D042	MCLR, GP2/T0CKI		0.8Vdd	-	Vdd	V				
D042A	OSC1 (XT and LP)		0.7Vdd	-	Vdd	V	Note 1			
D043	OSC1 (in EXTRC mode)		0.9Vdd	-	Vdd	V				
D070	GPIO weak pull-up current (Note 4)	IPUR	30	250	400	μA	VDD = 5V, VPIN = VSS			
	MCLR pull-up current	-	-	-	30	μA	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)					-				
D060	I/O ports	ΙιL	-	-	<u>+</u> 1	μΑ	Vss \leq VPIN \leq VDD, Pin at hi-imped ance			
D061	тоскі		-	-	<u>+</u> 5	μA	$Vss \leq VPIN \leq VDD$			
D063	OSC1		-	-	<u>+</u> 5	μA	Vss \leq VPIN \leq VDD, XT and LP osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, −40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, −40°C to +125°C			
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, −40°C to +85°C			
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
	Capacitive Loading Specs on Output Pins									
D100	OSC2 pin	COSC 2	-	-	15	pF	In XT and LP modes when exter- nal clock is used to drive OSC1.			
D101	All I/O pins	Сю	-	-	50	pF				
†	Data in "Typ" column is at 5V, 25°C unles	r dealar auidenee entrend ere net								

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

4: This spec. applies when GP3/MCLR is configured as MCLR. The leakage current of the MCLR circuit is higher than the standard I/O logic.

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

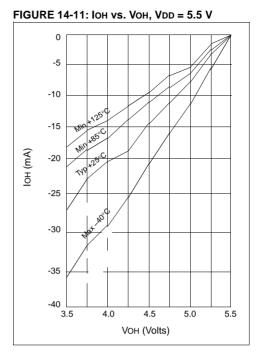
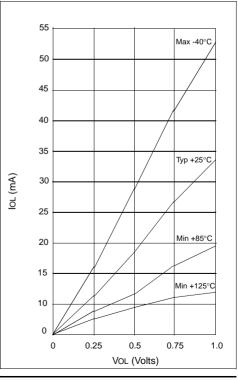
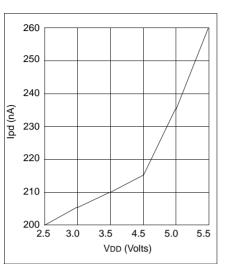




FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

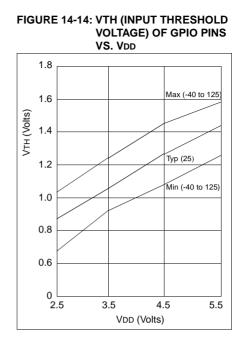
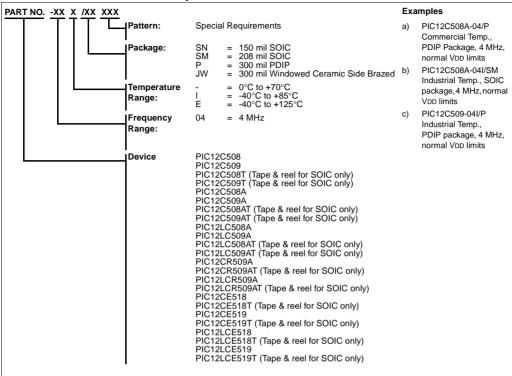



FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

PIC12C5XX Product Identification System

Please contact your local sales office for exact ordering procedures.

Sales and Support:

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.