

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lc508a-04i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	General Description	4
2.0	PIC12C5XX Device Varieties	
3.0	Architectural Overview	
4.0	Memory Organization	13
5.0	I/O Port	
6.0	Timer0 Module and TMR0 Register	25
7.0	EEPROM Peripheral Operation	29
8.0	Special Features of the CPU	35
9.0	Instruction Set Summary	47
10.0	Development Support	
11.0	Electrical Characteristics - PIC12C508/PIC12C509	65
12.0	DC and AC Characteristics - PIC12C508/PIC12C509	75
13.0	Electrical Characteristics PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CR509A/	
	PIC12CE518/PIC12CE519/	
	PIC12LCE518/PIC12LCE519/PIC12LCR509A	79
14.0	DC and AC Characteristics	
	PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CE518/PIC12CE519/PIC12CR509A/	
	PIC12LCE518/PIC12LCE519/ PIC12LCR509A	93
15.0	Packaging Information	99
Index	۲	105
	2C5XX Product Identification System	
Sales	and Support:	109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

2.0 PIC12C5XX DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12C5XX Product Identification System at the back of this data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in ceramic side brazed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

Microchip's PICSTART[®] PLUS and PRO MATE[®] programmers all support programming of the PIC12C5XX. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates or small volume applications.

The OTP devices, packaged in plastic packages permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

2.5 Read Only Memory (ROM) Device

Microchip offers masked ROM to give the customer a low cost option for high volume, mature products.

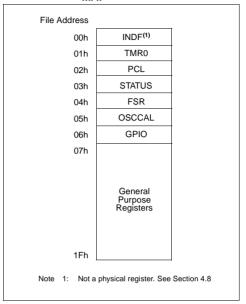
NOTES:

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.


For the PIC12C508, PIC12C508A and PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12C509, PIC12C509A, PIC12CR509A, and PIC12CE519 the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508, PIC12C508A AND PIC12CE518 REGISTER FILE MAP

FSR<6:5>-	•	00	01
File Address	· ·		1
00h		INDF ⁽¹⁾	20h
∲ 01h		TMR0	
02h		PCL	_
03h		STATUS	Addresses map back to
04h		FSR	addresses
05h		OSCCAL	in Bank 0.
06h		GPIO	
07h			1
		General Purpose	
		Registers	
0Fh		0	2Fh
	10h		30h
		General	General
		Purpose	Purpose
		Registers	Registers
	1Fh		3Fh
		Bank 0	Bank 1
Note 1	: No	t a physical regi	ster. See Section 4.8

FIGURE 4-3: PIC12C509, PIC12C509A, PIC12CR509A AND PIC12CE519 REGISTER FILE MAP

4.8 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 07 contains the value 10h
- · Register file 08 contains the value 0Ah
- · Load the value 07 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 08)
- A read of the INDR register now will return the value of 0Ah.

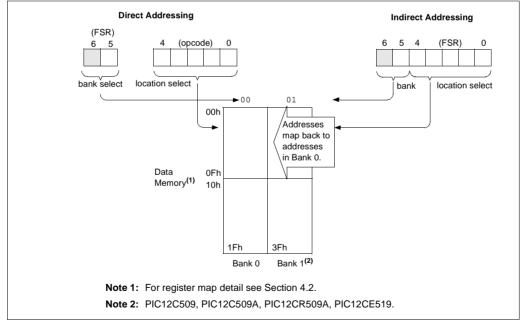
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x10	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	clear INDF register
	incf	FSR,F	;inc pointer
	btfsc	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE	9		-,
	:		;YES, continue

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.


The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC12C508/PIC12C508A/PIC12CE518: Does not use banking. FSR<7:5> are unimplemented and read as '1's.

PIC12C509/PIC12C509A/PIC12CR509A/

PIC12CE519: Uses FSR<5>. Selects between bank 0 and bank 1. FSR<7:6> is unimplemented, read as '1'.

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING

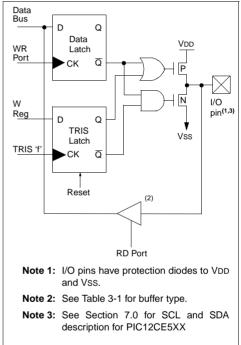
5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set. See Section 7.0 for SCL and SDA description for PIC12CE5XX.

5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as '0' during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pullup is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Register


The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

Note:	A read of the ports reads the pins, not the output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a read of the port will indicate that the pin is
	low.

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

TABLE 5-1: S	UMMARY OF PORT	REGISTERS
--------------	----------------	------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRIS	—	-							11 1111	11 1111
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03H	STATUS	GPWUF	-	PAO	TO	PD	Z	DC	С	0001 1xxx	q00q quuu ⁽¹⁾
06h	GPIO (PIC12C508/ PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)		_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, g = see tables in Section 8.7 for possible values.

Note 1: If reset was due to wake-up on change, then bit 7 = 1. All other resets will cause bit 7 = 0.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit5 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wiredand"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

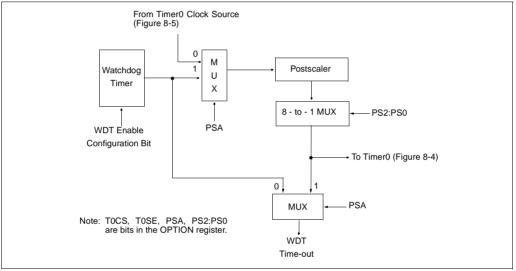
;	;Initial GPIO Settings						
;	; GPIO<5:3> Inputs						
;	GPIO<2	2:0> Ou	itput	s			
;							
;				GPIC) latch	GPI) pins
;							
	BCF	GPIO,	5	;01	-ppp	11	pppp
	BCF	GPIO,	4	;10	-ppp	11	pppp
	MOVLW	007h		;			
	TRIS	GPIO		;10	-ppp	11	pppp

;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;GP5 to be latched as the pin value (High).

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

8.6.1 WDT PERIOD


The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

8.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT wake-up reset.

FIGURE 8-12: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer, - = unimplemented, read as '0', u = unchanged

9.0 INSTRUCTION SET SUMMARY

Each PIC12C5XX instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC12C5XX instruction set summary in Table 9-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-Out bit
PD	Power-Down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 µs. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 µs.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations								
	11	6	5	4		0		
	OPCODE		d		f (FILE #)			
	d = 0 for destination W d = 1 for destination f f = 5-bit file register address							
Bi	t-oriented file regi	iste	er ope	eratio	ins			
	11	8	7	5	4	0		
	OPCODE		b (B	IT #)	f (FILE #)			
b = 3-bit bit address f = 5-bit file register address Literal and control operations (except GOTO)								
	11		8	7		0		
	OPCODE				k (literal)			
k = 8-bit immediate value								
Literal and control operations - GOTO instruction								
r	11		9	8		0		
	OPCODE				k (literal)			

k = 9-bit immediate value

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$					
Operation:	(W) + (f) \rightarrow (dest)					
Status Affected:	C, DC, Z					
Encoding:	0001 11df ffff					
Description:	Add the contents of the W register and register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	ADDWF FSR, 0					
Before Instru W = FSR = After Instruct W = FSR =	0x17 0xC2 tion 0xD9					

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF FSR, 1
Before Instru W = FSR =	0x17
After Instruct W = FSR =	0x17

ANDLW	And literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1110 kkkk kkkk
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	ANDLW 0x5F
Before Instru W =	iction 0xA3
After Instruct W =	tion 0x03

BCF	Bit Clear	f		
Syntax:	[<i>label</i>] E	BCF f,b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	0100	bbbf	ffff	
Description:	Bit 'b' in re	gister 'f' is	cleared.	
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_REC	3, 7	
Before Instru FLAG_R	iction EG = 0xC7	7		
After Instruc FLAG_R	tion EG = 0x47			

BSF	Bit Set f	BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BSF f,b	Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 31$ $0 \le b \le 7$	Operands:	$0 \le f \le 31$ $0 \le b < 7$
Operation:	$1 \rightarrow (f < b >)$	Operation:	skip if (f) = 1
Status Affected:	None	Status Affected:	None
Encoding:	0101 bbbf ffff	Encoding:	0111 bbbf ffff
Description:	Bit 'b' in register 'f' is set.	Description:	If bit 'b' in register 'f' is '1' then the next
Words:	1		instruction is skipped.
Cycles:	1		If bit 'b' is '1', then the next instruction fetched during the current instruction
Example:	BSF FLAG_REG, 7		execution, is discarded and an NOP is
Before Instru	uction		executed instead, making this a 2 cycle instruction.
_	EG = 0x0A	Words:	1
After Instruc	tion EG = 0x8A	Cycles:	1(2)
FLAG_K		Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE
BTFSC	Bit Test f, Skip if Clear		TRUE •
Syntax:	[label] BTFSC f,b		•
Operands:	$0 \le f \le 31$	Before Instr	uction
	$0 \le b \le 7$	PC	= address (HERE)
Operation:	skip if $(f < b >) = 0$	After Instruc	
Status Affected:	None	If FLAG PC	<1> = 0, = address (FALSE);
Encoding:	0110 bbbf ffff	if FLAG<	<1> = 1,
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped.	PC	= address (TRUE)
	If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and an NOP is		

executed instead, making this a 2 cycle

BTFSC FLAG,1

address (HERE)

address (TRUE);

address(FALSE)

PROCESS_CODE

GOTO

٠ •

0, =

1, =

instruction.

1

1(2)

HERE

TRUE

Before Instruction PC

After Instruction if FLAG<1>

if FLAG<1>

PC

PC

FALSE

=

=

=

Words:

Cycles:

Example:

CALL	Subroutine Call			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le k \le 255$			
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack;} \\ k \rightarrow PC < 7:0>; \\ (STATUS < 6:5>) \rightarrow PC < 10:9>; \\ 0 \rightarrow PC < 8> \end{array}$			
Status Affected:	None			
Encoding:	1001 kkkk kkkk			
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STA-TUS<6:5>, PC<8> is cleared. CALL is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example:	HERE CALL THERE			
Before Instru PC =				
	tion address (THERE) address (HERE + 1)			

CLRF

Syntax:	[label]	CLRF f		
Operands:	$0 \le f \le 31$			
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	0000	011f	ffff	
Description:	The contents of register 'f' are cleared and the Z bit is set.			
Words:	1			
Cycles:	1			
Example:	CLRF	FLAG_REC	3	
Before Instruction FLAG_REG = 0x5A				
After Instruct FLAG_RE Z		0x00 1		

Clear f

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}); \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru W =	uction 0x5A
After Instruc W = Z =	tion 0x00 1
CLRWDT	Clear Watchdog Timer
CLRWDT Syntax:	Clear Watchdog Timer [label] CLRWDT
	-
Syntax:	[label] CLRWDT
Syntax: Operands:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$
Syntax: Operands: Operation:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{l l} \textit{[label]} & \textit{CLRWDT} \\ \hline None \\ 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler \ (if \ assigned); \\ 1 \rightarrow \overline{\text{TO}}; \\ 1 \rightarrow \overline{\text{PD}} \\ \hline \overline{\text{TO}}, \overline{\text{PD}} \\ \hline \hline \hline 0000 & 0000 & 0100 \\ \hline \hline \text{The } \ \text{CLRWDT} \ instruction \ resets \ the \\ WDT. \ It \ also \ resets \ the \ prescaler, \ if \ the \\ prescaler \ is \ assigned \ to \ the \ WDT \ and \\ not \ Timer0. \ Status \ bits \ \overline{\text{TO}} \ and \ \overline{\text{PD}} \ are \\ \end{array} $
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$ \begin{array}{l l} \textit{[label]} & \textit{CLRWDT} \\ \hline None \\ 00h \rightarrow \textit{WDT}; \\ 0 \rightarrow \textit{WDT} \textit{ prescaler} (if assigned); \\ 1 \rightarrow \overrightarrow{\textit{TO}}; \\ 1 \rightarrow \overrightarrow{\textit{PD}} \\ \hline \overrightarrow{\textit{TO}}, \overrightarrow{\textit{PD}} \\ \hline \hline \overrightarrow{\textit{TO}}, \overrightarrow{\textit{PD}} \\ \hline \hline \hline \textit{O000} & 0000 & 0100 \\ \hline \hline \hline \textit{The } \textit{CLRWDT} \textit{ instruction resets the} \\ \textit{WDT. It also resets the prescaler, if the} \\ \textit{prescaler is assigned to the WDT and} \\ \textit{not Timer0. Status bits } \overrightarrow{\textit{TO}} \textit{ and } \overrightarrow{\textit{PD}} \textit{ are} \\ \textit{set.} \end{array} $
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] CLRWDT None $OOh \rightarrow WDT;$ $0 \rightarrow WDT prescaler (if assigned);$ $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT uction

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 00df ffff
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' is 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
After Instruc W =	tion value in FSR register

MOVLW	Move Lit	eral to W	I	
Syntax:	[label]	MOVLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	1100	kkkk	kkkk	
Description:	0	bit literal 'k r. The don'		
Words:	1			
Cycles:	1			
Example:	MOVLW	0x5A		
After Instruc W =	tion 0x5A			

MOVWF	Move W	to f		
Syntax:	[label]	MOVWF	f	
Operands:	$0 \le f \le 3^{-1}$	1		
Operation:	$(W) \to (f$)		
Status Affected:	None			
Encoding:	0000	001f	ffff	
Description:	Move data ter 'f'.	a from the V	W register	to regis-
Words:	1			
Cycles:	1			
Example:	MOVWF	TEMP_REC	3	
Before Instru TEMP_R W		0xFF 0x4F		
After Instruct TEMP_R W		0x4F 0x4F		

NOP	No Oper	ration	
Syntax:	[label]	NOP	
Operands:	None		
Operation:	No opera	ation	
Status Affected:	None		
Encoding:	0000	0000	0000
Description:	No opera	ation.	
Words:	1		
Cycles:	1		
Example:	NOP		

SLEEP	Enter SL	EEP Mo	de		S
Syntax:	[label]	SLEEP			S
Operands:	None				0
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$	/DT; T prescal	er;		O Si
Status Affected:	TO, PD,	GPWUF			E
Encoding:	0000	0000	0011	Ī	D
Description:		status bit (vn status b	· · · ·		
	GPWUF is	s unaffecte	ed.		W
	The WDT cleared.	and its pre	escaler are	9	С
	The proce with the o	essor is put scillator sto .EEP for m	opped. Se	e sec-	<u>E:</u>
Words:	1				
Cycles:	1				
Example:	SLEEP				

SUBWF	Su	btra	ct W from	f
Syntax:	[lab	oel]	SUBWF	f,d
Operands:		f ≤ 3		
	d∈	[0,1]	
Operation:	(f) -	- (W	$) \rightarrow (dest)$	
Status Affected:	C, I	DC, Z	Z	
Encoding:	00	000	10df	ffff
Description:	W r res	egiste ult is :	er from regis stored in the	ment method) the ster 'f'. If 'd' is 0 the W register. If 'd' is back in register 'f'.
Words:	1			
Cycles:	1			
Example 1:	SUE	BWF	REG1, 1	
Before Instru	ictio	n		
REG1	=	3		
W	=	2 ?		
After Instruct	tion			
REG1	=	1		
W C	=	2 1		
	=	I	; result is	positive
Example 2:				
Before Instru REG1	ictio	n 2		
W	=	2		
С	=	?		
After Instruct	tion			
REG1	=	0		
W C	=	2 1	; result is	zero
Example 3:			,	
Before Instru	ictio	n		
REG1	=	1		
W	=	2		
С	=	?		
After Instruct REG1	tion =	FF		
W	=	гг 2		

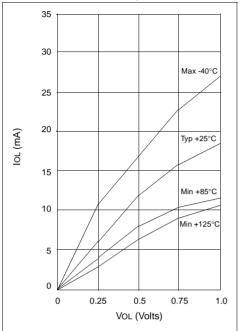
NOTES:

NOTES:

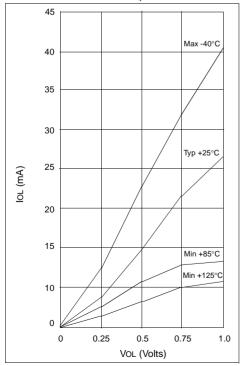
TABLE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC12C508/C509

$\begin{array}{ c c c c c } \mbox{AC Characteristics} & \mbox{Standard Operating Conditions (unless otherwise spectropole of the standard Operating Temperature} & 0^\circ C \leq Ta \leq +70^\circ C \ (commercial -40^\circ C \leq Ta \leq +85^\circ C \ (industrial) -40^\circ C \leq Ta \leq +125^\circ C \ (extended Operating Voltage VDD range is described in Section 11.1 \ (compared operating VDD range) \ (compared operating) \ (compared operating $		al)					
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000*	_	—	ns	VDD = 5 V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9*	18*	30*	ms	VDD = 5 V (Commercial)
32	TDRT	Device Reset Timer Period ⁽²⁾	9*	18*	30*	ms	VDD = 5 V (Commercial)
34	Tioz	I/O Hi-impedance from MCLR Low	—	—	2000*	ns	

* These parameters are characterized but not tested.


Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: See Table 11-6.


TABLE 11-6: DRT (DEVICE RESET TIMER PERIOD - PIC12C508/C509)

Oscillator Configuration	POR Reset	Subsequent Resets
IntRC & ExtRC	18 ms (typical)	300 µs (typical)
XT & LP	18 ms (typical)	18 ms (typical)

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

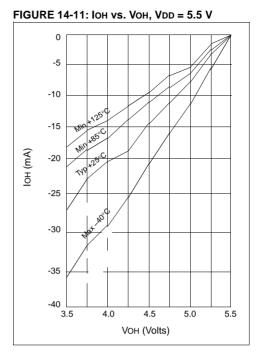
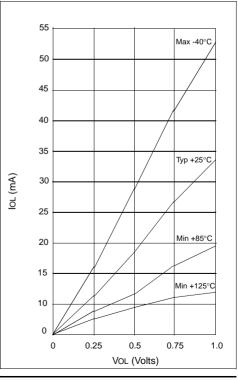
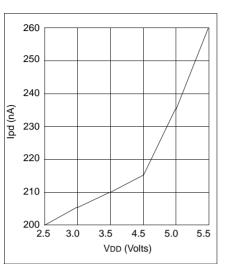




FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

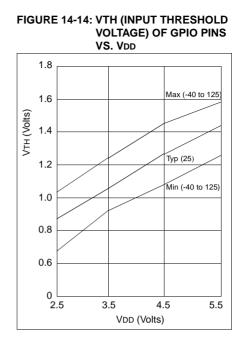


FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

INDEX
Α
ALU
Applications
Architectural Overview
Assembler
MPASM Assembler
В
Block Diagram
On-Chip Reset Circuit 41
Timer025
TMR0/WDT Prescaler28
Watchdog Timer43
Brown-Out Protection Circuit 44
С
CAL0 bit
CAL0 bit
CAL1 bit
CAL2 bit
CALS DIT
CALFS1 bit
CALSEW DIT
Clocking Scheme
Code Protection
Configuration Bits
Configuration Word
D
DC and AC Characteristics
Development Support
Development Tools
Device Varieties
Digit Carry9
E
-
EEPROM Peripheral Operation
Errata
F
Family of Devices5
Features1
FSR
Fuzzy Logic Dev. System (fuzzyTECH®-MP)61
I/O Interfacing
I/O Ports
I/O Programming Considerations
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator
ID Locations
INDF
Indirect Data Addressing
Instruction Cycle
Instruction Flow/Pipelining
Instruction Set Summary
К
KeeLoq® Evaluation and Programming Tools
-
Loading of PC 19
Μ
Momony Organization 12

M
Memory Organization
Data Memory14
Program Memory13
MPLAB Integrated Development Environment Software 61

0
OPTION Register 17
OSC selection
OSCCAL Register
Oscillator Configurations
Oscillator Types HS
HS
RC
XT
P
-
Package Marking Information
Packaging Information
PICDEM-2 Low-Cost PIC16CXX Demo Board
PICDEM-3 Low-Cost PIC16CXXX Demo Board
PICSTART® Plus Entry Level Development System
POR
Device Reset Timer (DRT) 35, 42
PD
Power-On Reset (POR)
TO
PORTA
Power-Down Mode 45
Prescaler
PRO MATE® II Universal Programmer 59
Program Counter 19
Q
Q cycles
R
RC Oscillator
Read Modify Write
Register File Map
Registers
Special Function
Reset
Reset on Brown-Out 44
S
SEEVAL® Evaluation and Programming System
SLEEP
Software Simulator (MPLAB-SIM)
Special Features of the CPU
Special Function Registers
Stack
STATUS
STATUS Register 16
т
Timer0
Switching Prescaler Assignment
Timer0
Timer0 (TMR0) Module
TMR0 with External Clock 27
Timing Diagrams and Specifications 70, 86
Timing Parameter Symbology and Load Conditions 69, 85
TRIS Registers
W
Wake-up from SLEEP 45
Watchdog Timer (WDT)
Period 43
Programming Considerations 43
WWW, On-Line Support 3
Z
Zero bit9