

Welcome to E-XFL.COM

## What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

## Details

E·XFl

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 4MHz                                                                         |
| Connectivity               | -                                                                            |
| Peripherals                | POR, WDT                                                                     |
| Number of I/O              | 5                                                                            |
| Program Memory Size        | 768B (512 x 12)                                                              |
| Program Memory Type        | OTP                                                                          |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 25 x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 8-SOIC (0.209", 5.30mm Width)                                                |
| Supplier Device Package    | 8-SOIJ                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic12lc508at-04-sm |
|                            |                                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE OF CONTENTS

| 1.0   | General Description                                                                   | 4   |
|-------|---------------------------------------------------------------------------------------|-----|
| 2.0   | PIC12C5XX Device Varieties                                                            |     |
| 3.0   | Architectural Overview                                                                |     |
| 4.0   | Memory Organization                                                                   | 13  |
| 5.0   | I/O Port                                                                              |     |
| 6.0   | Timer0 Module and TMR0 Register                                                       | 25  |
| 7.0   | EEPROM Peripheral Operation                                                           | 29  |
| 8.0   | Special Features of the CPU                                                           | 35  |
| 9.0   | Instruction Set Summary                                                               | 47  |
| 10.0  | Development Support                                                                   |     |
| 11.0  | Electrical Characteristics - PIC12C508/PIC12C509                                      | 65  |
| 12.0  | DC and AC Characteristics - PIC12C508/PIC12C509                                       | 75  |
| 13.0  | Electrical Characteristics PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CR509A/ |     |
|       | PIC12CE518/PIC12CE519/                                                                |     |
|       | PIC12LCE518/PIC12LCE519/PIC12LCR509A                                                  | 79  |
| 14.0  | DC and AC Characteristics                                                             |     |
|       | PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CE518/PIC12CE519/PIC12CR509A/      |     |
|       | PIC12LCE518/PIC12LCE519/ PIC12LCR509A                                                 | 93  |
| 15.0  | Packaging Information                                                                 | 99  |
| Index | ۲                                                                                     | 105 |
|       | 2C5XX Product Identification System                                                   |     |
| Sales | and Support:                                                                          | 109 |

#### To Our Valued Customers

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

#### Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Corrections to this Data Sheet**

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

## 3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12C5XX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C5XX uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (1µs @ 4MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM), ROM memory, and non-volatile (EEPROM) for each device.

|             | Memory           |                |             |                |  |
|-------------|------------------|----------------|-------------|----------------|--|
| Device      | EPROM<br>Program | ROM<br>Program | RAM<br>Data | EEPROM<br>Data |  |
| PIC12C508   | 512 x 12         |                | 25          |                |  |
| PIC12C509   | 1024 x 12        |                | 41          |                |  |
| PIC12C508A  | 512 x 12         |                | 25          |                |  |
| PIC12C509A  | 1024 x 12        |                | 41          |                |  |
| PIC12CR509A |                  | 1024 x 12      | 41          |                |  |
| PIC12CE518  | 512 x 12         |                | 25 x 8      | 16 x 8         |  |
| PIC12CE519  | 1024 x 12        |                | 41 x 8      | 16 x 8         |  |

The PIC12C5XX can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC12C5XX has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC12C5XX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC12C5XX device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

#### 6.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 8.6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

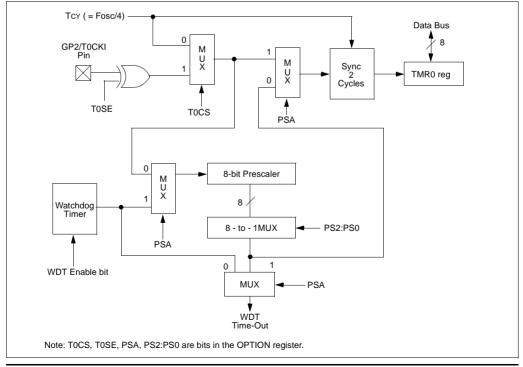
The PSA and PS2:PS0 bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

#### 6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

#### EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)


| 1.CLRWDT            | ;Clear WDT               |
|---------------------|--------------------------|
| 2.CLRF TMR0         | ;Clear TMR0 & Prescaler  |
| 3.MOVLW '00xx1111'b | ;These 3 lines (5, 6, 7) |
| 4.OPTION            | ; are required only if   |
|                     | ; desired                |
| 5.CLRWDT            | ;PS<2:0> are 000 or 001  |
| 6.MOVLW '00xx1xxx'b | ;Set Postscaler to       |
| 7.OPTION            | ; desired WDT rate       |

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

#### EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

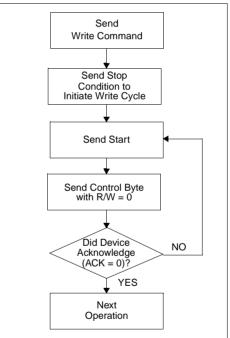
| CLRWDT | •          | Clear WDT and       |
|--------|------------|---------------------|
|        |            | ;prescaler          |
| MOVLW  | 'xxxx0xxx' | ;Select TMR0, new   |
|        |            | ;prescale value and |
|        |            | ;clock source       |
| OPTION |            |                     |

## FIGURE 6-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER



#### 7.3 WRITE OPERATIONS

#### 7.3.1 BYTE WRITE


Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/Wbit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don't cares. The address byte is acknowledgeable and the master device will then transmit the data word to be written into the addressed memory location. The memorv acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals (Figure 7-7). After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below minimum VDD.

Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high.

## 7.4 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 7-6 for flow diagram.

#### FIGURE 7-6: ACKNOWLEDGE POLLING FLOW



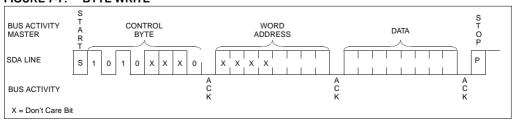



FIGURE 7-7: BYTE WRITE

#### 8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

#### FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

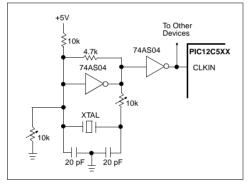
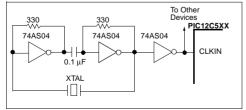



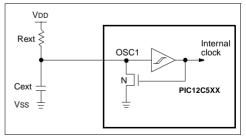

Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330  $\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.

#### FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



#### 8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.


Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k $\Omega$ , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M $\Omega$ ) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k $\Omega$  and 100 k $\Omega$ .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

## FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE



#### 8.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature.

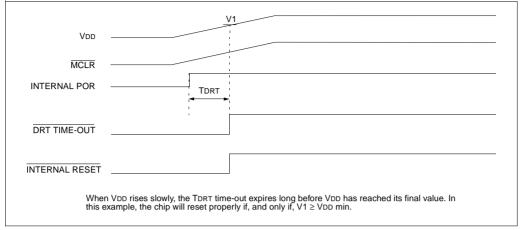
In addition, a calibration instruction is programmed into the top of memory which contains the calibration value for the internal RC oscillator. This location is never code protected regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part. so it can be reprogrammed correctly later.

For the PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, and PIC12CR509A, bits <7:2>, CAL5-CAL0 are used for calibration. Adjusting CAL5-0 from 000000 to 111111 yields a higher clock speed. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0 when modifying OSCCAL for compatibility with future devices.

For the PIC12C508 and PIC12C509, the upper 4 bits of the register are used. Writing a larger value in this location yields a higher clock speed.


#### 8.3 <u>RESET</u>

The device differentiates between various kinds of reset:

- a) Power on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT time-out reset during normal operation
- e) WDT time-out reset during SLEEP
- f) Wake-up from SLEEP on pin change

Some registers are not reset in any way; they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR),  $\overline{MCLR}$ , WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or  $\overline{MCLR}$  reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this are  $\overline{TO}$ ,  $\overline{PD}$ , and GPWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 8-3 for a full description of reset states of all registers.

### FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME



#### 8.5 Device Reset Timer (DRT)

In the PIC12C5XX, DRT runs from RESET and varies based on oscillator selection (see Table 8-5.)

The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min., and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after MCLR has reached a logic high (VIHMCLR) level. Thus, programming GP3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the GP3/MCLR/VPP pin as a general purpose input.

The Device Reset time delay will vary from chip to chip due to VDD, temperature, and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake from SLEEP mode automatically.

#### 8.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the external RC oscillator of the GP5/OSC1/CLKIN pin and the internal 4 MHz oscillator. That means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT reset or wake-up reset generates a device RESET.

The  $\overline{TO}$  bit (STATUS<4>) will be cleared upon a Watchdog Timer reset.

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 8.1). Refer to the PIC12C5XX Programming Specifications to determine how to access the configuration word.

TABLE 8-5: DRT (DEVICE RESET TIMER PERIOD)

| Oscillator<br>Configuration | POR Reset       | Subsequent<br>Resets |
|-----------------------------|-----------------|----------------------|
| IntRC &<br>ExtRC            | 18 ms (typical) | 300 µs (typical)     |
| XT & LP                     | 18 ms (typical) | 18 ms (typical)      |

## PIC12C5XX

| OPTION                   | Load OP                 | TION Re | gister |          |
|--------------------------|-------------------------|---------|--------|----------|
| Syntax:                  | [ label ]               | OPTION  | l      |          |
| Operands:                | None                    |         |        |          |
| Operation:               | $(W)\toO$               | PTION   |        |          |
| Status Affected:         | None                    |         |        |          |
| Encoding:                | 0000                    | 0000    | 0010   |          |
| Description:             | The conte<br>into the O |         | 0      | s loaded |
| Words:                   | 1                       |         |        |          |
| Cycles:                  | 1                       |         |        |          |
| Example                  | OPTION                  |         |        |          |
| Before Instru<br>W       | ction<br>= 0x07         |         |        |          |
| After Instruct<br>OPTION |                         |         |        |          |

| RETLW                 | Return with                                                             | Liter            | al in W                                                                         |
|-----------------------|-------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|
| Syntax:               | [label] RE                                                              | TLW              | k                                                                               |
| Operands:             | $0 \le k \le 255$                                                       |                  |                                                                                 |
| Operation:            | $\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow PC \end{array}$ |                  |                                                                                 |
| Status Affected:      | None                                                                    |                  |                                                                                 |
| Encoding:             | 1000 kł                                                                 | kk               | kkkk                                                                            |
| Description:          | bit literal 'k'. T<br>loaded from th                                    | he pro<br>ne top | aded with the eight<br>gram counter is<br>of the stack (the<br>s is a two cycle |
| Words:                | 1                                                                       |                  |                                                                                 |
| Cycles:               | 2                                                                       |                  |                                                                                 |
| Example:              | CALL TABLE                                                              | ;tab<br>;val     | le offset<br>ue.<br>ow has table                                                |
| TABLE                 | ADDWF PC<br>RETLW k1<br>RETLW k2                                        | ; Beg            | offset<br>in table<br>d of table                                                |
| Before Instru<br>W =  | ox07                                                                    |                  |                                                                                 |
| After Instruct<br>W = | tion<br>value of k8                                                     |                  |                                                                                 |

| RLF                                                                                                                                                | Rotate Left f through Carry                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:                                                                                                                                            | [label] RLF f,d                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operands:                                                                                                                                          | $\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$                                                                                                                                                                                                                                                                                                                                                                   |
| Operation:                                                                                                                                         | See description below                                                                                                                                                                                                                                                                                                                                                                                                          |
| Status Affected:                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Encoding:                                                                                                                                          | 0011 01df ffff                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description:                                                                                                                                       | The contents of register 'f' are rotated<br>one bit to the left through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is stored<br>back in register 'f'.                                                                                                                                                                                                                    |
| Words:                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cycles:                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Example:                                                                                                                                           | RLF REG1,0                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Before Instru                                                                                                                                      | iction                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REG1<br>C                                                                                                                                          | = 1110 0110<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                             |
| After Instruct                                                                                                                                     | tion                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REG1<br>W                                                                                                                                          | = 1110 0110<br>= 1100 1100                                                                                                                                                                                                                                                                                                                                                                                                     |
| C                                                                                                                                                  | = 1                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RRF                                                                                                                                                | Rotate Right f through Carry                                                                                                                                                                                                                                                                                                                                                                                                   |
| RRF<br>Syntax:                                                                                                                                     | Rotate Right f through Carry<br>[ label ] RRF f,d                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Syntax:                                                                                                                                            | [ <i>label</i> ] RRF f,d<br>0 ≤ f ≤ 31                                                                                                                                                                                                                                                                                                                                                                                         |
| Syntax:<br>Operands:                                                                                                                               | $\begin{bmatrix} label \end{bmatrix} RRF f,d$<br>$0 \le f \le 31$<br>$d \in [0,1]$                                                                                                                                                                                                                                                                                                                                             |
| Syntax:<br>Operands:<br>Operation:                                                                                                                 | $ \begin{bmatrix} label \end{bmatrix} RRF f,d \\ 0 \le f \le 31 \\ d \in [0,1] \\ See description below $                                                                                                                                                                                                                                                                                                                      |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:                                                                                             | $ [label] RRF f,d  0 \le f \le 31  d \in [0,1]  See description below  C  0011 00df ffff  The contents of register 'f' are rotated  one bit to the right through the Carry  Flag. If 'd' is 0 the result is placed in the  W register. If 'd' is 1 the result is placed  back in register 'f'.$                                                                                                                                |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:                                                                                | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                        |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:                                                      | [ <i>label</i> ] RRF f,d<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>0011 00df ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'<br>T                                                                                              |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:                                           | [ <i>label</i> ] RRF f,d<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>0011  00df  ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'.<br>$c \rightarrow register 'f' \rightarrow 1$<br>1                                             |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:                                                      | [ <i>label</i> ] RRF f,d<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>0011 00df ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'<br>T                                                                                              |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:                                           | $\begin{bmatrix} label \end{bmatrix} RRF f,d$<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>$\boxed{0011  00df  ffff}$<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'.<br>$\boxed{C} \leftarrow register 'f'}$<br>1<br>1<br>RRF REG1,0 |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Example:<br>Before Instru-<br>REG1     | [ <i>label</i> ] RRF f,d<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>0011 00df ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'.<br>C register 'f'<br>1<br>1<br>RRF REG1,0<br>interimed<br>= 1110 0110<br>= 0                     |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Example:<br>Before Instru<br>REG1<br>C | [ <i>label</i> ] RRF f,d<br>$0 \le f \le 31$<br>$d \in [0,1]$<br>See description below<br>C<br>0011 00df ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>Flag. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'<br>1<br>1<br>RRF REG1,0<br>interimed<br>= 1110 0110<br>= 0                                        |

# PIC12C5XX

| SLEEP            | Enter SL                                                                                                                            | EEP Mo                                      | de          |        | S         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|--------|-----------|
| Syntax:          | [label]                                                                                                                             | SLEEP                                       |             |        | S         |
| Operands:        | None                                                                                                                                |                                             |             |        | 0         |
| Operation:       | $\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$ | /DT;<br>T prescal                           | er;         |        | O<br>Si   |
| Status Affected: | TO, PD,                                                                                                                             | GPWUF                                       |             |        | E         |
| Encoding:        | 0000                                                                                                                                | 0000                                        | 0011        | Ī      | D         |
| Description:     |                                                                                                                                     | status bit (<br>vn status b                 | · · · ·     |        |           |
|                  | GPWUF is                                                                                                                            | s unaffecte                                 | ed.         |        | W         |
|                  | The WDT cleared.                                                                                                                    | and its pre                                 | escaler are | 9      | С         |
|                  | The proce<br>with the o                                                                                                             | essor is put<br>scillator sto<br>.EEP for m | opped. Se   | e sec- | <u>E:</u> |
| Words:           | 1                                                                                                                                   |                                             |             |        |           |
| Cycles:          | 1                                                                                                                                   |                                             |             |        |           |
| Example:         | SLEEP                                                                                                                               |                                             |             |        |           |

| SUBWF                | Su         | btra                | ct W from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                            |                             |
|----------------------|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
| Syntax:              | [lai       | bel]                | SUBWF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f,d                          |                             |
| Operands:            | 0 ≤        | ≦ f ≤ 3             | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                             |
|                      | d∈         | [0,1                | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                             |
| Operation:           | (f)        | – (W                | $) \rightarrow (dest)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                             |
| Status Affected      | : C,       | DC, Z               | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                             |
| Encoding:            | 0          | 000                 | 10df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ffff                         | ]                           |
| Description:         | W ı<br>res | registe<br>ult is : | (2's completer from register f | ster 'f'. If 'd<br>W registe | ' is 0 the<br>er. If 'd' is |
| Words:               | 1          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| Cycles:              | 1          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| Example 1:           | SUI        | BWF                 | REG1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                             |
| Before Inst          | ructio     | n                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| REG1                 | =          | 3                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    | =          | 2<br>?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| After Instru         |            | ŕ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| REG1                 | =          | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    | =          | 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| С                    | =          | 1                   | ; result is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | positive                     |                             |
| Example 2:           |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| Before Inst          | ructio     | n                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| REG1                 | =          | 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    | =          | 2<br>?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| After Instru         | =          | ?                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| REG1                 | =          | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    | _          | 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| С                    | =          | 1                   | ; result is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zero                         |                             |
| Example 3:           |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| Before Inst          | ructio     | n                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| REG1                 | =          | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    | =          | 2<br>?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| C                    | =          | ?                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| After Instru<br>REG1 | etion      | FF                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
|                      | _          | 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |
| W                    |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |

## PIC12C5XX

| SWAPF                       | Swap Nibbles in f                                                                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:                     | [label] SWAPF f,d                                                                                                                                                     |
| Operands:                   | $\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$                                                                                                      |
| Operation:                  | $(f<3:0>) \rightarrow (dest<7:4>);$<br>$(f<7:4>) \rightarrow (dest<3:0>)$                                                                                             |
| Status Affected:            | None                                                                                                                                                                  |
| Encoding:                   | 0011 10df ffff                                                                                                                                                        |
| Description:                | The upper and lower nibbles of register<br>'f' are exchanged. If 'd' is 0 the result is<br>placed in W register. If 'd' is 1 the result<br>is placed in register 'f'. |
| Words:                      | 1                                                                                                                                                                     |
| Cycles:                     | 1                                                                                                                                                                     |
| Example                     | SWAPF REG1, 0                                                                                                                                                         |
| Before Instru<br>REG1       | iction<br>= 0xA5                                                                                                                                                      |
| After Instruct<br>REG1<br>W | tion<br>= 0xA5<br>= 0X5A                                                                                                                                              |

| TRIS                   | Load TRIS Register                                                      |
|------------------------|-------------------------------------------------------------------------|
| Syntax:                | [label] TRIS f                                                          |
| Operands:              | f = 6                                                                   |
| Operation:             | (W) $\rightarrow$ TRIS register f                                       |
| Status Affected:       | None                                                                    |
| Encoding:              | 0000 0000 0fff                                                          |
| Description:           | TRIS register 'f' (f = 6) is loaded with the contents of the W register |
| Words:                 | 1                                                                       |
| Cycles:                | 1                                                                       |
| Example                | TRIS GPIO                                                               |
| Before Instru<br>W     | iction<br>= 0XA5                                                        |
| After Instruct<br>TRIS |                                                                         |
| <b>Note:</b> f = 6 f   | or PIC12C5XX only.                                                      |

| XORLW                | Exclusiv         | ve OR lite                                    | ral with      | w          |  |  |  |  |
|----------------------|------------------|-----------------------------------------------|---------------|------------|--|--|--|--|
| Syntax:              | [ <i>label</i> ] | XORLW                                         | k             |            |  |  |  |  |
| Operands:            | $0 \le k \le 2$  | $0 \le k \le 255$                             |               |            |  |  |  |  |
| Operation:           | (W) .XO          | $R. k \to (W$                                 | /)            |            |  |  |  |  |
| Status Affected:     | Z                |                                               |               |            |  |  |  |  |
| Encoding:            | 1111             | kkkk                                          | kkkk          |            |  |  |  |  |
| Description:         | XOR'ed w         | ents of the<br>vith the eight<br>laced in the | ht bit litera | l 'k'. The |  |  |  |  |
| Words:               | 1                |                                               |               |            |  |  |  |  |
| Cycles:              | 1                |                                               |               |            |  |  |  |  |
| Example:             | XORLW            | 0xAF                                          |               |            |  |  |  |  |
| Before Instru<br>W = | uction<br>0xB5   |                                               |               |            |  |  |  |  |
| After Instruc<br>W = | tion<br>0x1A     |                                               |               |            |  |  |  |  |

| XORWF                                              | Exclusive OR W with f                                                                                                                                                              |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                                            | [label] XORWF f,d                                                                                                                                                                  |  |  |  |  |  |
| Operands:                                          | $\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$                                                                                                                   |  |  |  |  |  |
| Operation:                                         | (W) .XOR. (f) $\rightarrow$ (dest)                                                                                                                                                 |  |  |  |  |  |
| Status Affected:                                   | Z                                                                                                                                                                                  |  |  |  |  |  |
| Encoding:                                          | 0001 10df ffff                                                                                                                                                                     |  |  |  |  |  |
| Description:                                       | Exclusive OR the contents of the W<br>register with register 'f'. If 'd' is 0 the<br>result is stored in the W register. If 'd' is<br>1 the result is stored back in register 'f'. |  |  |  |  |  |
| Words:                                             | 1                                                                                                                                                                                  |  |  |  |  |  |
| Cycles:                                            | 1                                                                                                                                                                                  |  |  |  |  |  |
| Example                                            | XORWF REG,1                                                                                                                                                                        |  |  |  |  |  |
| Before Instru<br>REG<br>W<br>After Instruct<br>REG | = 0xAF<br>= 0xB5<br>ion<br>= 0x1A                                                                                                                                                  |  |  |  |  |  |
| W                                                  | = 0xB5                                                                                                                                                                             |  |  |  |  |  |

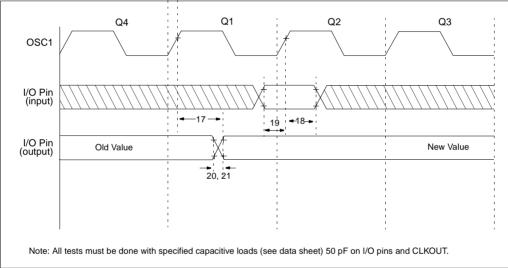
## 10.16 <u>KEELOQ<sup>®</sup> Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

## 11.0 ELECTRICAL CHARACTERISTICS - PIC12C508/PIC12C509

## Absolute Maximum Ratings†

| Ambient Temperature under bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40°C to +125°C                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65°C to +150°C                     |
| Voltage on VDD with respect to VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to +7.5 V                        |
| Voltage on MCLR with respect to Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to +14 V                         |
| Voltage on all other pins with respect to Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | –0.6 V to (VDD + 0.6 V)            |
| Total Power Dissipation <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700 mW                             |
| Max. Current out of Vss pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 mA                             |
| Max. Current into VDD pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 mA                             |
| Input Clamp Current, Iik (VI < 0 or VI > VDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±20 mA                             |
| Output Clamp Current, Iок (Vo < 0 or Vo > Voo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ±20 mA                             |
| Max. Output Current sunk by any I/O pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 mA                              |
| Max. Output Current sourced by any I/O pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 mA                              |
| Max. Output Current sourced by I/O port (GPIO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 mA                             |
| Max. Output Current sunk by I/O port (GPIO )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 mA                             |
| <b>Note 1:</b> Power Dissipation is calculated as follows: PDIS = VDD x {IDD - $\Sigma$ IOH} + $\Sigma$ {(VDD-VDD) + $\Sigma$ {VDD-VDD} + $\Sigma$ {(VDD-VDD) + $\Sigma$ {(VDD-VDD) + $\Sigma$ {(VDD-VDD) + $\Sigma$ {(VDD) + $\Sigma$ {(VD) + $\Sigma} {(VD) + {\Sigma} {(VD) + \Sigma} {(VD) + {\Sigma} {(VD) +$ | VOH) x IOH} + $\Sigma$ (VOL x IOL) |


<sup>†</sup>NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

## TABLE 11-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508/C509

| AC Chara         | cteristics |                                  |      |                    |      |       |            |  |
|------------------|------------|----------------------------------|------|--------------------|------|-------|------------|--|
| Parameter<br>No. | Sym        | Characteristic                   | Min* | Typ <sup>(1)</sup> | Max* | Units | Conditions |  |
|                  |            | Internal Calibrated RC Frequency | 3.58 | 4.00               | 4.32 | MHz   | VDD = 5.0V |  |
|                  |            | Internal Calibrated RC Frequency | 3.50 | —                  | 4.26 | MHz   | VDD = 2.5V |  |

\* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



## FIGURE 11-3: I/O TIMING - PIC12C508/C509

## TABLE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC12C508/C509

| AC Characteristics |      | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 11.1} \end{array}$ |       |                    |       |       |                        |  |
|--------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-------|-------|------------------------|--|
| Parameter<br>No.   | Sym  | Characteristic                                                                                                                                                                                                                                                                                                                                                                                    | Min   | Typ <sup>(1)</sup> | Max   | Units | Conditions             |  |
| 30                 | TmcL | MCLR Pulse Width (low)                                                                                                                                                                                                                                                                                                                                                                            | 2000* | _                  | —     | ns    | VDD = 5 V              |  |
| 31                 | Twdt | Watchdog Timer Time-out Period<br>(No Prescaler)                                                                                                                                                                                                                                                                                                                                                  | 9*    | 18*                | 30*   | ms    | VDD = 5 V (Commercial) |  |
| 32                 | TDRT | Device Reset Timer Period <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                          | 9*    | 18*                | 30*   | ms    | VDD = 5 V (Commercial) |  |
| 34                 | Tioz | I/O Hi-impedance from MCLR Low                                                                                                                                                                                                                                                                                                                                                                    | —     | —                  | 2000* | ns    |                        |  |

\* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: See Table 11-6.

#### TABLE 11-6: DRT (DEVICE RESET TIMER PERIOD - PIC12C508/C509)

| Oscillator Configuration | POR Reset       | Subsequent Resets |
|--------------------------|-----------------|-------------------|
| IntRC & ExtRC            | 18 ms (typical) | 300 µs (typical)  |
| XT & LP                  | 18 ms (typical) | 18 ms (typical)   |

## 13.2 DC CHARACTERISTICS:

#### PIC12LC508A/509A (Commercial, Industrial) PIC12LCE518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

| DC Characteristics<br>Power Supply Pins |                                               |       |       | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ (commercial)} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ (industrial)} \end{array}$ |        |          |                                                                              |  |
|-----------------------------------------|-----------------------------------------------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------------------------------------------------------------------------------|--|
| Parm<br>No.                             | Characteristic                                | Sym   | Min   | Typ <sup>(1)</sup>                                                                                                                                                                                                                                       | Max    | Units    | Conditions                                                                   |  |
| D001                                    | Supply Voltage                                | Vdd   | 2.5   |                                                                                                                                                                                                                                                          | 5.5    | V        | Fosc = DC to 4 MHz (Commercial/<br>Industrial)                               |  |
| D002                                    | RAM Data Retention<br>Voltage <sup>(2)</sup>  | Vdr   |       | 1.5*                                                                                                                                                                                                                                                     |        | V        | Device in SLEEP mode                                                         |  |
| D003                                    | VDD Start Voltage to ensure<br>Power-on Reset | VPOR  |       | Vss                                                                                                                                                                                                                                                      |        | V        | See section on Power-on Reset for details                                    |  |
| D004                                    | VDD Rise Rate to ensure<br>Power-on Reset     | SVDD  | 0.05* |                                                                                                                                                                                                                                                          |        | V/ms     | See section on Power-on Reset for details                                    |  |
| D010                                    | Supply Current <sup>(3)</sup>                 | IDD   | —     | 0.4                                                                                                                                                                                                                                                      | 0.8    | mA       | XT and EXTRC options (Note 4)<br>Fosc = 4 MHz, VDD = 2.5V                    |  |
| D010C                                   |                                               |       | -     | 0.4                                                                                                                                                                                                                                                      | 0.8    | mA       | INTRC Option<br>Fosc = 4 MHz, VDD = 2.5V                                     |  |
| D010A                                   |                                               |       | -     | 15                                                                                                                                                                                                                                                       | 23     | μA       | LP OPTION, Commercial Temperature<br>Fosc = 32 kHz, VDD = 2.5V, WDT disabled |  |
|                                         |                                               |       | -     | 15                                                                                                                                                                                                                                                       | 31     | μA       | LP OPTION, Industrial Temperature<br>FOSC = 32 kHz, VDD = 2.5V, WDT disabled |  |
| D020                                    | Power-Down Current (5)                        | IPD   |       |                                                                                                                                                                                                                                                          |        |          |                                                                              |  |
| D021<br>D021B                           |                                               |       |       | 0.2<br>0.2                                                                                                                                                                                                                                               | 3<br>4 | μΑ<br>μΑ | VDD = 2.5V, Commercial<br>VDD = 2.5V, Industrial                             |  |
|                                         |                                               | ΔIWDT | -     | 2.0<br>2.0                                                                                                                                                                                                                                               | 4      | mA<br>mA | VDD = 2.5V, Commercial<br>VDD = 2.5V, Industrial                             |  |

\* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
  - a) The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
  - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

## TABLE 13-8: EEPROM MEMORY BUS TIMING REQUIREMENTS - PIC12CE5XX ONLY.

| AC Characteristics                                                                   | Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ , Vcc = 3.0V to 5.5V (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ , Vcc = 3.0V to 5.5V (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ , Vcc = 4.5V to 5.5V (extended)Operating Voltage VDD range is described in Section 13.1 |                      |                     |        |                                                                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                                                                            | Symbol Min Max Units Conditions                                                                                                                                                                                                                                                                                                                                 |                      |                     |        |                                                                                                                                     |  |  |  |
| Clock frequency                                                                      | FCLK                                                                                                                                                                                                                                                                                                                                                            | <br>                 | 100<br>100<br>400   | kHz    | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| Clock high time                                                                      | Тнідн                                                                                                                                                                                                                                                                                                                                                           | 4000<br>4000<br>600  |                     | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| Clock low time                                                                       | TLOW                                                                                                                                                                                                                                                                                                                                                            | 4700<br>4700<br>1300 |                     | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| SDA and SCL rise time<br>(Note 1)                                                    | TR                                                                                                                                                                                                                                                                                                                                                              |                      | 1000<br>1000<br>300 | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| SDA and SCL fall time                                                                | TF                                                                                                                                                                                                                                                                                                                                                              | —                    | 300                 | ns     | (Note 1)                                                                                                                            |  |  |  |
| START condition hold time                                                            | THD:STA                                                                                                                                                                                                                                                                                                                                                         | 4000<br>4000<br>600  |                     | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| START condition setup time                                                           | TSU:STA                                                                                                                                                                                                                                                                                                                                                         | 4700<br>4700<br>600  |                     | ns     | $\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \mbox{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$ |  |  |  |
| Data input hold time                                                                 | THD:DAT                                                                                                                                                                                                                                                                                                                                                         | 0                    |                     | ns     | (Note 2)                                                                                                                            |  |  |  |
| Data input setup time                                                                | TSU:DAT                                                                                                                                                                                                                                                                                                                                                         | 250<br>250<br>100    |                     | ns     | $\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \mbox{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$ |  |  |  |
| STOP condition setup time                                                            | Tsu:sto                                                                                                                                                                                                                                                                                                                                                         | 4000<br>4000<br>600  |                     | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| Output valid from clock<br>(Note 2)                                                  | ΤΑΑ                                                                                                                                                                                                                                                                                                                                                             |                      | 3500<br>3500<br>900 | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| Bus free time: Time the bus must<br>be free before a new transmis-<br>sion can start | TBUF                                                                                                                                                                                                                                                                                                                                                            | 4700<br>4700<br>1300 |                     | ns     | 4.5V ≤ Vcc ≤ 5.5V (E Temp range)<br>3.0V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V                                                          |  |  |  |
| Output fall time from VIH<br>minimum to VIL maximum                                  | Tof                                                                                                                                                                                                                                                                                                                                                             | 20+0.1<br>CB         | 250                 | ns     | (Note 1), CB ≤ 100 pF                                                                                                               |  |  |  |
| Input filter spike suppression (SDA and SCL pins)                                    | TSP                                                                                                                                                                                                                                                                                                                                                             |                      | 50                  | ns     | (Notes 1, 3)                                                                                                                        |  |  |  |
| Write cycle time                                                                     | Twc                                                                                                                                                                                                                                                                                                                                                             | —                    | 4                   | ms     |                                                                                                                                     |  |  |  |
| Endurance                                                                            |                                                                                                                                                                                                                                                                                                                                                                 | 1M                   | _                   | cycles | 25°C, Vcc = 5.0V, Block Mode (Note 4)                                                                                               |  |  |  |

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

**3:** The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on Microchip's website.

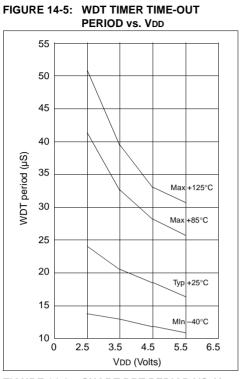



FIGURE 14-6: SHORT DRT PERIOD VS. VDD

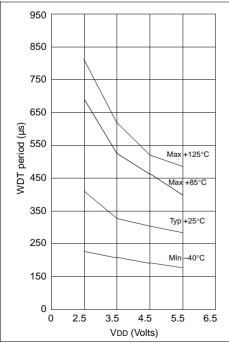



FIGURE 14-7: IOH vs. VOH, VDD = 2.5 V

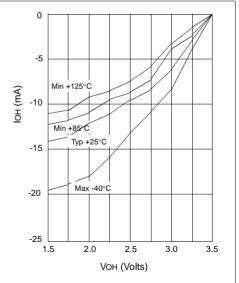
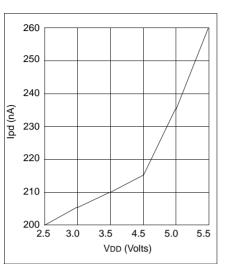





FIGURE 14-8: IOH vs. VOH, VDD = 3.5 V





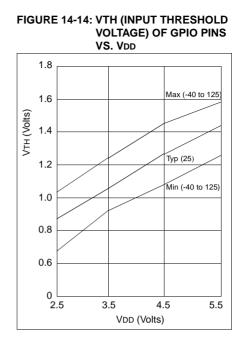



FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

Е w D 2 n 1 U t А A1 ı. A2 с B1р eВ В

| Package Type: | K04-084 8-Lead Ceramic Side Brazed Dual In-line with Window (JW) – 300 mil |
|---------------|----------------------------------------------------------------------------|
|---------------|----------------------------------------------------------------------------|

| Units                        |    |       | INCHES* |       | М     | ILLIMETERS | S     |
|------------------------------|----|-------|---------|-------|-------|------------|-------|
| Dimension Limits             |    | MIN   | NOM     | MAX   | MIN   | NOM        | MAX   |
| PCB Row Spacing              |    |       | 0.300   |       |       | 7.62       |       |
| Number of Pins               | n  |       | 8       |       |       | 8          |       |
| Pitch                        | р  | 0.098 | 0.100   | 0.102 | 2.49  | 2.54       | 2.59  |
| Lower Lead Width             | В  | 0.016 | 0.018   | 0.020 | 0.41  | 0.46       | 0.51  |
| Upper Lead Width             | B1 | 0.050 | 0.055   | 0.060 | 1.27  | 1.40       | 1.52  |
| Lead Thickness               | с  | 0.008 | 0.010   | 0.012 | 0.20  | 0.25       | 0.30  |
| Top to Seating Plane         | А  | 0.145 | 0.165   | 0.185 | 3.68  | 4.19       | 4.70  |
| Top of Body to Seating Plane | A1 | 0.103 | 0.123   | 0.143 | 2.62  | 3.12       | 3.63  |
| Base to Seating Plane        | A2 | 0.025 | 0.035   | 0.045 | 0.64  | 0.89       | 1.14  |
| Tip to Seating Plane         | L  | 0.130 | 0.140   | 0.150 | 3.30  | 3.56       | 3.81  |
| Package Length               | D  | 0.510 | 0.520   | 0.530 | 12.95 | 13.21      | 13.46 |
| Package Width                | E  | 0.280 | 0.290   | 0.300 | 7.11  | 7.37       | 7.62  |
| Overall Row Spacing          | eB | 0.310 | 0.338   | 0.365 | 7.87  | 8.57       | 9.27  |
| Window Diameter              | W  | 0.161 | 0.166   | 0.171 | 4.09  | 4.22       | 4.34  |
| Lid Length                   | Т  | 0.440 | 0.450   | 0.460 | 11.18 | 11.43      | 11.68 |
| Lid Width                    | U  | 0.260 | 0.270   | 0.280 | 6.60  | 6.86       | 7.11  |

\* Controlling Parameter.

## **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

| To:  | Technical Publications Manager Total Pages Sent                                            |
|------|--------------------------------------------------------------------------------------------|
| RE:  | Reader Response                                                                            |
| Fron | n: Name                                                                                    |
|      | Company                                                                                    |
|      | Address                                                                                    |
|      | City / State / ZIP / Country                                                               |
|      | Telephone: () FAX: ()                                                                      |
|      | lication (optional):                                                                       |
| Wou  | Id you like a reply?YN                                                                     |
| Devi | ce: PIC12C5XX Literature Number: DS40139E                                                  |
| Que  | stions:                                                                                    |
| 1.   | What are the best features of this document?                                               |
|      |                                                                                            |
|      |                                                                                            |
| 2.   | How does this document meet your hardware and software development needs?                  |
|      |                                                                                            |
| 3    | Do you find the organization of this data sheet easy to follow? If not, why?               |
| 0.   |                                                                                            |
|      |                                                                                            |
| 4.   | What additions to the data sheet do you think would enhance the structure and subject?     |
| -    |                                                                                            |
| 5    | What deletions from the data sheet could be made without affecting the overall usefulness? |
| 5.   |                                                                                            |
| -    |                                                                                            |
| 6.   | Is there any incorrect or misleading information (what and where)?                         |
| -    |                                                                                            |
|      |                                                                                            |
| 7.   | How would you improve this document?                                                       |
| -    |                                                                                            |
| 8.   | How would you improve our software, systems, and silicon products?                         |
|      |                                                                                            |