

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	16 x 8
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lce518-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC12C5XX from Microchip Technology is a family of low-cost, high performance, 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (1 μ s) except for program branches which take two cycles. The PIC12C5XX delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12C5XX products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features also improve system cost, power and reliability.

The PIC12C5XX are available in the cost-effective One-Time-Programmable (OTP) versions which are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers while benefiting from the OTP's flexibility.

The PIC12C5XX products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, fuzzy logic support tools, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC12C5XX series fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies. etc.) extremely fast and convenient, while the EEPROM data memory technology allows for the changing of calibration factors and security codes. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12C5XX series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

		PIC12C508(A)	PIC12C509(A)	PIC12CR509A	PIC12CE518	PIC12CE519	PIC12C671	PIC12C672	PIC12CE673	PIC12CE674
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4	4	10	10	10	10
Memory	EPROM Program Memory	512 x 12	1024 x 12	1024 x 12 (ROM)	512 x 12	1024 x 12	1024 x 14	2048 x 14	1024 x 14	2048 x 14
	RAM Data Memory (bytes)	25	41	41	25	41	128	128	128	128
	EEPROM Data Memory (bytes)	_	_	_	16	16	_	—	16	16
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	A/D Con- verter (8-bit) Channels	_	_	_	_	_	4	4	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	—	—	-			4	4	4	4
Features	I/O Pins	5	5	5	5	5	5	5	5	5
	Input Pins	1	1	1	1	1	1	1	1	1
	Internal Pull-ups	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	_	Yes	Yes	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	33	33	33	35	35	35	35
	Packages	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW	8-pin DIP, JW

TABLE 1-1: PIC12CXXX & PIC12CEXXX FAMILY OF DEVICES

All PIC12CXXX & PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC12CXXX & PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

Name	DIP Pin #	SOIC Pin #	I/O/P Type	Buffer Type	Description
GP0	7	7	I/O	TTL/ST	Bi-directional I/O port/ serial programming data. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP1	6	6	I/O	TTL/ST	Bi-directional I/O port/ serial programming clock. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP2/T0CKI	5	5	I/O	ST	Bi-directional I/O port. Can be configured as T0CKI.
GP3/MCLR/Vpp	4	4	1	TTL/ST	Input port/master clear (reset) input/programming volt- age input. When configured as MCLR, this pin is an active low reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter programming mode. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. Weak pull-up always on if configured as MCLR. ST when in MCLR mode.
GP4/OSC2	3	3	I/O	TTL	Bi-directional I/O port/oscillator crystal output. Con- nections to crystal or resonator in crystal oscillator mode (XT and LP modes only, GPIO in other modes).
GP5/OSC1/CLKIN	2	2	I/O	TTL/ST	Bidirectional IO port/oscillator crystal input/external clock source input (GPIO in Internal RC mode only, OSC1 in all other oscillator modes). TTL input when GPIO, ST input in external RC oscillator mode.
VDD	1	1	Р	_	Positive supply for logic and I/O pins
Vss	8	8	Р	_	Ground reference for logic and I/O pins

TABLE 3-1:	PIC12C5XX	PINOUT	DESCRIPTION

Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.0 MEMORY ORGANIZATION

PIC12C5XX memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STA-TUS register bit. For the PIC12C509, PIC12C509A, PICCR509A and PIC12CE519 with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization

The PIC12C5XX devices have a 12-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space.

Only the first 512 x 12 (0000h-01FFh) for the PIC12C508. PIC12C508A and PIC12CE518 and 1K x 12 (0000h-03FFh) for the PIC12C509, PIC12C509A. PIC12CR509A, and PIC12CE519 are physically implemented. Refer to Figure 4-1. Accessing a location above these boundaries will cause a wraparound within the first 512 x 12 space (PIC12C508, PIC12C508A and PIC12CE518) or 1K x 12 space (PIC12C509, PIC12C509A, PIC12CR509A and PIC12CE519). The effective reset vector is at 000h, (see Figure 4-1). Location 01FFh (PIC12C508, PIC12C508A and PIC12CE518) or location 03FFh (PIC12C509, PIC12C509A, PIC12CR509A and PIC12CE519) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK

4.4 OPTION Register

The OPTION register is a 8-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<7:0> bits.

FIGURE 4-5: OPTION REGISTER

Note: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin; i.e., note that TRIS overrides OPTION control of GPPU and GPWU.

Note: If the TOCS bit is set to '1', GP2 is forced to be an input even if TRIS GP2 = '0'.

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1	
GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	W = Writable bit
bit7	6	5	4	3	2	1	bit0	U = Unimplemented bit - n = Value at POR reset Reference Table 4-1 for other resets.
bit 7:	GPWU: Ena 1 = Disable 0 = Enabled	able wake- d I	up on pin c	hange (GP	0, GP1, GP3)		
bit 6:	GPPU : Ena 1 = Disable 0 = Enable	ble weak p d I	ull-ups (GF	90, GP1, GI	P3)			
bit 5:	TOCS : Time 1 = Transitio 0 = Transitio	er0 clock so on on T0Cł on on interr	ource selec (I pin nal instructi	t bit on cycle clo	ock, Fosc/4			
bit 4:	TOSE : Timer0 source edge select bit 1 = Increment on high to low transition on the TOCKI pin 0 = Increment on low to high transition on the TOCKI pin							
bit 3:	PSA: Prescaler assignment bit 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0							
bit 2-0:	PS2:PS0: P	rescaler ra	ate select b	its				
	Bit Value	Timer0 F	Rate WD1	Rate				
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:12	1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	1 2 4 8 16 32 64 128				

5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set. See Section 7.0 for SCL and SDA description for PIC12CE5XX.

5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as '0' during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pullup is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Register

The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

6.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4ToSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

6.1.3 OPTION REGISTER EFFECT ON GP2 TRIS

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT time-out Wake-up on Pin Change
W (PIC12C508/509)	_	qqqq xxxx (1)	qqqq uuuu (1)
W (PIC12C508A/509A/ PIC12CE518/519/ PIC12CE509A)	_	qqqq qqxx (1)	qqqq qquu (1)
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu ^(2,3)
FSR (PIC12C508/ PIC12C508A/ PIC12CE518)	04h	111x xxxx	111u uuuu
FSR (PIC12C509/ PIC12C509A/ PIC12CE519/ PIC12CR509A)	04h	110x xxxx	lluu uuuu
OSCCAL (PIC12C508/509)	05h	0111	uuuu
OSCCAL (PIC12C508A/509A/ PIC12CE518/512/ PIC12CR509A)	05h	1000 00	uuuu uu
GPIO (PIC12C508/PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	06h	xx xxxx	uu uuuu
GPIO (PIC12CE518/ PIC12CE519)	06h	llxx xxxx	lluu uuuu
OPTION	—	1111 1111	1111 1111
TRIS	—	11 1111	11 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

Note 2: See Table 8-7 for reset value for specific conditions

Note 3: If reset was due to wake-up on pin change, then bit 7 = 1. All other resets will cause bit 7 = 0.

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power on reset	0001 1xxx	1111 1111
MCLR reset during normal operation	000u uuuu	1111 1111
MCLR reset during SLEEP	0001 0uuu	1111 1111
WDT reset during SLEEP	0000 0uuu	1111 1111
WDT reset normal operation	0000 uuuu	1111 1111
Wake-up from SLEEP on pin change	1001 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by
0	0	0	WDT wake-up from
			SLEEP
0	0	u	WDT time-out (not from
			SLEEP)
0	1	0	MCLR wake-up from
			SLEEP
0	1	1	Power-up
0	u	u	MCLR not during SLEEP
1	1	0	Wake-up from SLEEP on
			pin change

Legend: u = unchanged

Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

8.8 Reset on Brown-Out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

8.12 In-Circuit Serial Programming

The PIC12C5XX microcontrollers with EPROM program memory can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the GP1 and GP0 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1 becomes the programming clock and GP0 becomes the programming data. Both GP1 and GP0 are Schmitt Trigger inputs in this mode.

After reset, a 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC12C5XX Programming Specifications.

A typical in-circuit serial programming connection is shown in Figure 8-16.

FIGURE 8-16: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

PIC12C5XX

ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF	f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (des	t)
Status Affected:	C, DC, Z	
Encoding:	0001 11df	ffff
Description:	Add the contents or register 'f'. If 'd' is (in the W register. If stored back in regi	of the W register and the result is stored i 'd' is '1' the result is ster 'f'.
Words:	1	
Cycles:	1	
Example:	ADDWF FSR, 0	
Before Instru W = FSR =	ction 0x17 0xC2	
After Instruct W = FSR =	on 0xD9 0xC2	

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF FSR, 1
Before Instru W = FSR =	ction 0x17 0xC2
After Instruct W = FSR =	ion 0x17 0x02

ANDLW	And literal with W						
Syntax:	[label] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W).AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	1110	kkkk	kkkk				
Description:	The conte AND'ed w result is p	ents of the rith the eigl laced in th	W register ht-bit litera e W registe	are I 'k'. The er.			
Words:	1						
Cycles:	1						
Example:	ANDLW	0x5F					
Before Instru W =	iction 0xA3						
After Instruct W =	tion 0x03						

BCF	Bit Clear	f						
Syntax:	[label] BCF f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$0 \rightarrow$ (f)							
Status Affected:	None							
Encoding:	0100	bbbf	ffff					
Description:	Bit 'b' in register 'f' is cleared.							
Words:	1							
Cycles:	1							
Example:	BCF	FLAG_REG	G, 7					
Before Instruction FLAG_REG = 0xC7								
After Instruction FLAG_REG = 0x47								

10.10 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro[®] tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.11 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from MPLAB-ICE, Microchip's Universal Emulator System.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PICmicro[®]. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.12 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PICmicro[®] series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.13 MPLAB-C17 Compiler

The MPLAB-C17 Code Development System is a complete ANSI 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.14 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

HCS200 HCS300 HCS301 > > > > 24CXX 25CXX 93CXX > \mathbf{i} \mathbf{i} PIC17C7XX > \mathbf{i} \mathbf{i} > \mathbf{i} PIC17C4X \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > PIC16C9XX \mathbf{i} > > > > > > PIC16C8X > > > > > > > PIC16C7XX \mathbf{i} > > > > \mathbf{i} > PIC16C6X \mathbf{i} \mathbf{i} > \mathbf{i} > \mathbf{i} > PIC16CXXX \mathbf{i} > > > > > > PIC16C5X > \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > \mathbf{i} PIC14000 \mathbf{i} > > \mathbf{i} \mathbf{i} > PIC12C5XX \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} ICEPICTM Low-Cost In-Circuit Emulator Universal Dev. Kit Total Endurance™ fuzzyTECH[®]-MP Explorer/Edition **PICSTART[®]Plus** Software Model KEELoo Transponder Kit Integrated Development PRO MATE[®] II Evaluation Kit MPLABTM-ICE MPLABTM C17^{*} Fuzzy Logic Dev. Tool **Designers Kit** Environment PICDEM-14A Programmer Programmer KEELOQ® Universal SEEVAL® PICDEM-1 PICDEM-2 PICDEM-3 Compiler Low-Cost MPLABTM KEEL00[®] SIMICE Programmers Emulator Products Software Tools Demo Boards

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

11.1 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)

	DC Characteristics Power Supply Pins	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5 3.0		5.5 5.5	V V	Fosc = DC to 4 MHz (Commercial/ Industrial) Fosc = DC to 4 MHz (Extended)
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05 *			V/ms	See section on Power-on Reset for details
D010	Supply Current ⁽³⁾	Idd	_	.78	2.4	mA	XT and EXTRC options ⁽⁴⁾ Fosc = 4 MHz, VDD = 5.5V
D010C			—	1.1	2.4	mA	INTRC Option Fosc = 4 MHz, VDD = 5.5V
D010A			—	10	27	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
			—	14	35	μA	LP OPTION, Industrial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
				14	35	μA	LP OPTION, Extended Temperature FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D020 D021 D021B	Power-Down Current ⁽⁵⁾	IPD		0.25 0.25 2	4 5 18	μΑ μΑ μΑ	VDD = 3.0V, Commercial WDT disabled VDD = 3.0V, Industrial WDT disabled VDD = 3.0V, Extended WDT disabled
D022		ΔİWDT		3.75 3.75 3.75	8 9 14	μΑ μΑ μΑ	VDD = 3.0V, Commercial VDD = 3.0V, Industrial VDD = 3.0V, Extended

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to V_{ss} , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

FIGURE 12-8: IOL vs. VOL, VDD = 5.5 V

PIC12C5XX

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

FIGURE 14-15: VIL, VIH OF NMCLR, AND TOCKI VS. VDD

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	А	0.054	0.061	0.069	1.37	1.56	1.75
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20
Chamfer Distance	Х	0.010	0.015	0.020	0.25	0.38	0.51
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	С	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	Bţ	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."