

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	16 x 8
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lce518-04i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC12C5XX DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12C5XX Product Identification System at the back of this data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in ceramic side brazed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

Microchip's PICSTART[®] PLUS and PRO MATE[®] programmers all support programming of the PIC12C5XX. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates or small volume applications.

The OTP devices, packaged in plastic packages permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

2.5 Read Only Memory (ROM) Device

Microchip offers masked ROM to give the customer a low cost option for high volume, mature products.

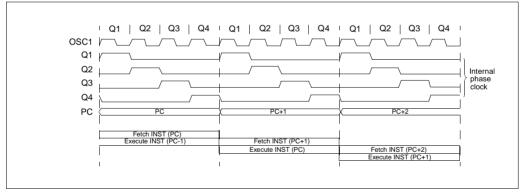
NOTES:

Name	DIP Pin #	SOIC Pin #	l/O/P Type	Buffer Type	Description
GP0	7	7	I/O	TTL/ST	Bi-directional I/O port/ serial programming data. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP1	6	6	I/O	TTL/ST	Bi-directional I/O port/ serial programming clock. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP2/T0CKI	5	5	I/O	ST	Bi-directional I/O port. Can be configured as T0CKI.
GP3/MCLR/Vpp	4	4	Ι	TTL/ST	Input port/master clear (reset) input/programming volt- age input. When configured as MCLR, this pin is an active low reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter programming mode. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. Weak pull-up always on if configured as MCLR. ST when in MCLR mode.
GP4/OSC2	3	3	I/O	TTL	Bi-directional I/O port/oscillator crystal output. Con- nections to crystal or resonator in crystal oscillator mode (XT and LP modes only, GPIO in other modes).
GP5/OSC1/CLKIN	2	2	I/O	TTL/ST	Bidirectional IO port/oscillator crystal input/external clock source input (GPIO in Internal RC mode only, OSC1 in all other oscillator modes). TTL input when GPIO, ST input in external RC oscillator mode.
Vdd	1	1	Р	_	Positive supply for logic and I/O pins
Vss	8	8	Р	_	Ground reference for logic and I/O pins

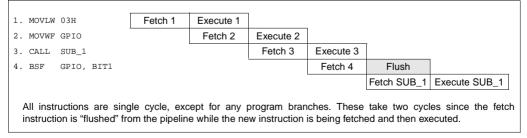
Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.


3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

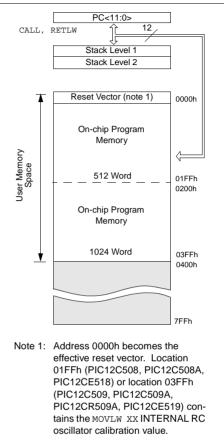

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.0 MEMORY ORGANIZATION


PIC12C5XX memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STA-TUS register bit. For the PIC12C509, PIC12C509A, PICCR509A and PIC12CE519 with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization

The PIC12C5XX devices have a 12-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space.

Only the first 512 x 12 (0000h-01FFh) for the PIC12C508. PIC12C508A and PIC12CE518 and 1K x 12 (0000h-03FFh) for the PIC12C509, PIC12C509A. PIC12CR509A, and PIC12CE519 are physically implemented. Refer to Figure 4-1. Accessing a location above these boundaries will cause a wraparound within the first 512 x 12 space (PIC12C508, PIC12C508A and PIC12CE518) or 1K x 12 space (PIC12C509, PIC12C509A, PIC12CR509A and PIC12CE519). The effective reset vector is at 000h, (see Figure 4-1). Location 01FFh (PIC12C508, PIC12C508A and PIC12CE518) or location 03FFh (PIC12C509, PIC12C509A, PIC12CR509A and PIC12CE519) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK

4.4 OPTION Register

The OPTION register is a 8-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<7:0> bits.

FIGURE 4-5: OPTION REGISTER

Note: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin; i.e., note that TRIS overrides OPTION control of GPPU and GPWU.

Note: If the TOCS bit is set to '1', GP2 is forced to be an input even if TRIS GP2 = '0'.

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1	
GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	W = Writable bit
oit7	6	5	4	3	2	1	bit0	U = Unimplemented bit - n = Value at POR reset Reference Table 4-1 for other resets.
bit 7:	GPWU : Ena 1 = Disable 0 = Enable	d	p on pin cl	hange (GP	0, GP1, GP3)		
bit 6:	GPPU : Ena 1 = Disable 0 = Enablec	d .	III-ups (GF	90, GP1, G	P3)			
bit 5:	TOCS : Time 1 = Transitio 0 = Transitio	on on TOCK	l pin		ock, Fosc/4			
bit 4:	TOSE: Time 1 = Increme 0 = Increme	ent on high t	o low trans	sition on th				
bit 3:	PSA : Presc 1 = Prescale 0 = Prescale	er assigned	to the WD					
bit 2-0:	PS2:PS0: P	Prescaler rat	e select bi	its				
	Bit Value	Timer0 R	ate WDT	Rate				
	000	1:2 1:4	1:	2				
	010 011	1:8	1:					
	100	1:32		0 16				
	101	1:64		32				
	110	1:128		64				
	111	1:256	: 1.	128				

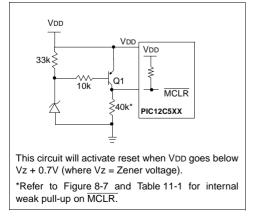
8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

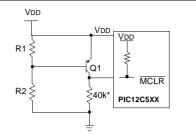
TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by		
0	0	0	WDT wake-up from SLEEP		
0	0	u	WDT time-out (not from SLEEP)		
0	1	0	MCLR wake-up from SLEEP		
0	1	1	Power-up		
0	u	u	MCLR not during SLEEP		
1	1	0	Wake-up from SLEEP on pin change		

Legend: u = unchanged


Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

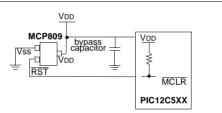
8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

CALL	Subroutine Call				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \le k \le 255$				
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack;} \\ k \rightarrow PC < 7:0 >; \\ (STATUS < 6:5 >) \rightarrow PC < 10:9 >; \\ 0 \rightarrow PC < 8 > \end{array}$				
Status Affected:	None				
Encoding:	1001 kkkk kkkk				
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STA-TUS<6:5>, PC<8> is cleared. CALL is a two cycle instruction.				
Words:	1				
Cycles:	2				
Example:	HERE CALL THERE				
Before Instru PC =					
	tion address (THERE) address (HERE + 1)				

CLRF

Syntax:	[label]	CLRF f			
Operands:	$0 \le f \le 31$				
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0000	011f	ffff		
Description:	The contents of register 'f' are cleared and the Z bit is set.				
Words:	1				
Cycles:	1				
Example:	CLRF	FLAG_REC	3		
Before Instru FLAG_RE		0x5A			
After Instruct FLAG_RE Z		0x00 1			

Clear f

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}); \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru W =	uction 0x5A
After Instruct W = Z =	tion 0x00 1
CLRWDT	Clear Watchdog Timer
CLRWDT Syntax:	Clear Watchdog Timer [label] CLRWDT
-	
Syntax:	[label] CLRWDT
Syntax: Operands:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$
Syntax: Operands: Operation:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] CLRWDT None $O0h \rightarrow WDT;$ $0 \rightarrow WDT prescaler (if assigned);$ $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT Intercomplete the state of the

MOVF	Move f				
Syntax:	[label] MOVF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	0010 00df ffff				
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register f'. 'd' is 1 is useful to test a file register since status flag Z is affected.				
Words:	1				
Cycles:	1				
Example:	MOVF FSR, 0				
After Instruc W =	tion value in FSR register				

MOVLW	Move Lit	eral to W	I			
Syntax:	[label]	MOVLW	k			
Operands:	$0 \le k \le 255$					
Operation:	$k \to (W)$					
Status Affected:	None					
Encoding:	1100	kkkk	kkkk			
Description:	0	bit literal 'k r. The don'				
Words:	1					
Cycles:	1					
Example:	MOVLW	0x5A				
After Instruc W =	tion 0x5A					

MOVWF	Move W	to f		
Syntax:	[label]	MOVWF	f	
Operands:	$0 \le f \le 3^{-1}$	1		
Operation:	$(W) \to (f$)		
Status Affected:	None			
Encoding:	0000	001f	ffff	
Description:	Move data ter 'f'.	a from the V	W register	to regis-
Words:	1			
Cycles:	1			
Example:	MOVWF	TEMP_REC	3	
Before Instru TEMP_R W		0xFF 0x4F		
After Instruct TEMP_R W		0x4F 0x4F		

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No opera	ation						
Status Affected:	None							
Encoding:	0000	0000	0000					
Description:	No opera	ation.						
Words:	1							
Cycles:	1							
Example:	NOP							

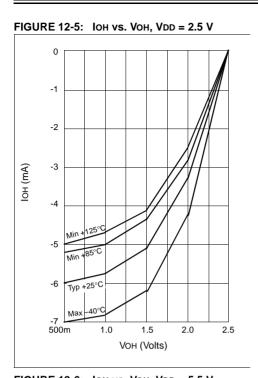
OPTION	Load OP	TION Re	gister			
Syntax:	[label]	OPTION	l			
Operands:	None					
Operation:	$(W)\toO$	PTION				
Status Affected:	None					
Encoding:	0000	0000	0010			
Description:	The content of the W register is loaded into the OPTION register.					
Words:	1					
Cycles:	1					
Example	OPTION					
Before Instru W	ction = 0x07					
After Instruct OPTION						

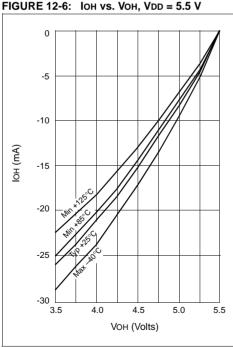
RETLW	Return with	Liter	al in W
Syntax:	[label] RE	ETLW	k
Operands:	$0 \le k \le 255$		
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$		
Status Affected:	None		
Encoding:	1000 kł	kk	kkkk
Description:	bit literal 'k'. T loaded from th	he pro ne top	aded with the eight gram counter is of the stack (the s is a two cycle
Words:	1		
Cycles:	2		
Example:	CALL TABLE	;tab ;val	le offset ue. ow has table
TABLE	ADDWF PC RETLW k1 RETLW k2	;Beg	offset in table d of table
Before Instru W =	ox07		
After Instruct W =	tion value of k8		

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru	iction
REG1 C	= 1110 0110 = 0
After Instruct	tion
REG1	= 1110 0110
W C	= 1100 1100 = 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry [label] RRF f,d
Syntax:	[<i>label</i>] RRF f,d 0 ≤ f ≤ 31
Syntax: Operands:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$
Syntax: Operands: Operation:	$ \begin{bmatrix} label \end{bmatrix} RRF f,d \\ 0 \le f \le 31 \\ d \in [0,1] \\ See description below $
Syntax: Operands: Operation: Status Affected:	$ [label] RRF f,d 0 \le f \le 31 d \in [0,1] See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Syntax: Operands: Operation: Status Affected: Encoding:	$ [label] RRF f,d 0 \le f \le 31 d \in [0,1] See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \rightarrow register 'f' \rightarrow 1$ 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' T
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $\boxed{0011 00df ffff}$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $\boxed{C} \leftarrow register 'f'}$ 1 1 RRF REG1,0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru- REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. C register 'f' 1 1 RRF REG1,0 interimed = 1110 0110 = 0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instruct REG1 C After Instruct REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REG1,0 intion = 1110 0110 = 0 tion = 1110 0110
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instruct REG1 C After Instruct	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REGI, 0 interval 1 100110 = 0 tion

NOTES:

11.1 DC CHARACTERISTICS:


PIC12C508/509 (Commercial, Industrial, Extended)


DC Characteristics Power Supply PinsStandard Operating Conditions (unless otherwise specified Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)							$0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5		5.5	V V	Fosc = DC to 4 MHz (Commercial/ Industrial)
			3.0		5.5		FOSC = DC to 4 MHz (Extended)
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05 *			V/ms	See section on Power-on Reset for details
D010	Supply Current ⁽³⁾	Idd	_	.78	2.4	mA	XT and EXTRC options ⁽⁴⁾ Fosc = 4 MHz, VDD = $5.5V$
D010C			—	1.1	2.4	mA	INTRC Option Fosc = 4 MHz, VDD = 5.5V
D010A			—	10	27	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz , VDD = 3.0V , WDT disabled
			—	14	35	μA	LP OPTION, Industrial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
			-	14	35	μA	LP OPTION, Extended Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
	Power-Down Current ⁽⁵⁾						
D020		IPD		0.25	4	μA	VDD = 3.0V, Commercial WDT disabled
D021				0.25	5	μΑ	VDD = 3.0V, Industrial WDT disabled
D021B			—	2	18	μA	VDD = 3.0V, Extended WDT disabled
D022		ΔIWDT	_	3.75	8	μA	VDD = 3.0V, Commercial
				3.75	9	μA	VDD = 3.0V, Industrial
			—	3.75	14	μΑ	VDD = 3.0V, Extended

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to V_{ss} , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

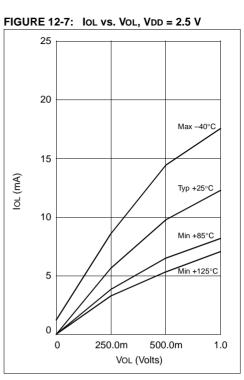
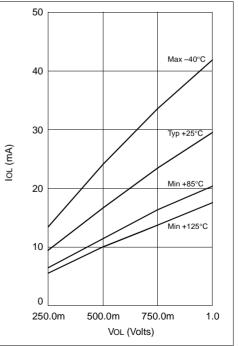
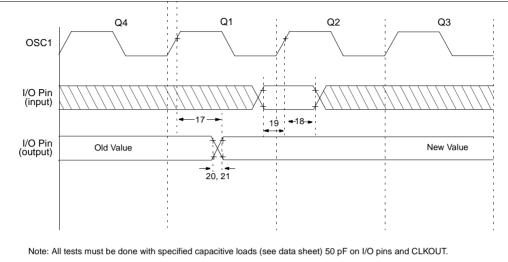



FIGURE 12-8: IOL vs. VOL, VDD = 5.5 V


13.0 ELECTRICAL CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A/PIC12CR509A/PIC12CE518/PIC12CE519/ PIC12LCE518/PIC12LCE519/PIC12LCR509A

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.0 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.3 V to (VDD + 0.3 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	200 mA
Max. Current into Vod pin	150 mA
Input Clamp Current, Iik (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD = 200 x {IDD - \sum IOH})	-VOH) x IOH} + Σ (VOL x IOL)

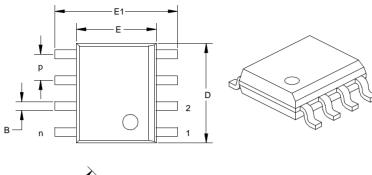
[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

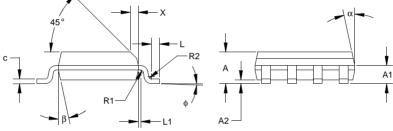
TABLE 13-4: TIMING REQUIREMENTS - PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCF509A, PIC12LCE518 and PIC12LCE519

AC Charae	AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating Voltage VDD range is described in Section 13.1					
Parameter No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Max	Units
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽³⁾	—	-	100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	_	—	ns
19	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	TBD	—	—	ns
20	TioR	Port output rise time ^(2, 3)	—	10	25**	ns
21	TioF	Port output fall time ^(2, 3)	—	10	25**	ns

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

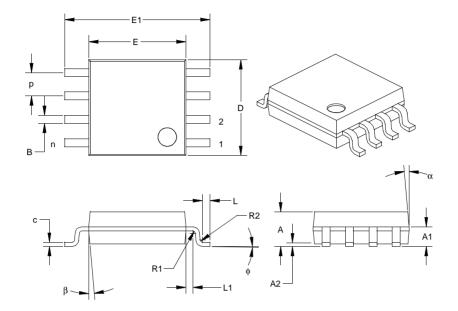

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


2: Measurements are taken in EXTRC mode.

3: See Figure 13-1 for loading conditions.

NOTES:

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil



Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	A	0.054	0.061	0.069	1.37	1.56	1.75
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20
Chamfer Distance	х	0.010	0.015	0.020	0.25	0.38	0.51
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B [†]	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Package Type: K04-056 8-Lead Plastic Small Outline (SM) - Medium, 208 mil

Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	A	0.070	0.074	0.079	1.78	1.89	2.00
Shoulder Height	A1	0.037	0.042	0.048	0.94	1.08	1.21
Standoff	A2	0.002	0.005	0.009	0.05	0.14	0.22
Molded Package Length	D‡	0.200	0.205	0.210	5.08	5.21	5.33
Molded Package Width	E‡	0.203	0.208	0.213	5.16	5.28	5.41
Outside Dimension	E1	0.300	0.313	0.325	7.62	7.94	8.26
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B†	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.