

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	16 × 8
RAM Size	41 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lce519-04-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12C5XX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C5XX uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (1µs @ 4MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM), ROM memory, and non-volatile (EEPROM) for each device.

	Memory							
Device	EPROM Program	ROM Program	RAM Data	EEPROM Data				
PIC12C508	512 x 12		25					
PIC12C509	1024 x 12		41					
PIC12C508A	512 x 12		25					
PIC12C509A	1024 x 12		41					
PIC12CR509A		1024 x 12	41					
PIC12CE518	512 x 12		25 x 8	16 x 8				
PIC12CE519	1024 x 12		41 x 8	16 x 8				

The PIC12C5XX can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC12C5XX has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC12C5XX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC12C5XX device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

TABLE 5-1:	SUMMARY OF PORT REGISTERS
------------	---------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRIS	—	Ι							11 1111	11 1111
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03H	STATUS	GPWUF		PAO	TO	PD	Z	DC	С	0001 1xxx	q00q quuu ⁽¹⁾
06h	GPIO (PIC12C508/ PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	_		GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, g = see tables in Section 8.7 for possible values.

Note 1: If reset was due to wake-up on change, then bit 7 = 1. All other resets will cause bit 7 = 0.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit5 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wiredand"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; 1 ; ;	Initial GPIO<5 GPIO<2	L GPIO S 5:3> Inp 2:0> Out	Settings puts puts		
;					
;			GPI) latch	GPIO pins
;					
	BCF	GPIO, 5	5 ;01	-ppp	11 pppp
	BCF	GPIO, 4	i ;10	-ppp	11 pppp
	MOVLW	007h	;		
	TRIS	GPIO	;10	-ppp	11 pppp

;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;GP5 to be latched as the pin value (High).

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

6.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 6.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 6-1.

FIGURE 6-1: TIMER0 BLOCK DIAGRAM

7.3 WRITE OPERATIONS

7.3.1 BYTE WRITE

Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/Wbit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don't cares. The address byte is acknowledgeable and the master device will then transmit the data word to be written into the addressed memory location. The memory acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals (Figure 7-7). After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below minimum VDD.

Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high.

7.4 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 7-6 for flow diagram.

FIGURE 7-6: ACKNOWLEDGE POLLING FLOW

FIGURE 7-7: BYTE WRITE

8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC12C5XX family of microcontrollers has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- · Oscillator selection
- Reset
 - Power-On Reset (POR)
 - Device Reset Timer (DRT)
 - Wake-up from SLEEP on pin change
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- · ID locations
- · In-circuit Serial Programming

The PIC12C5XX has a Watchdog Timer which can be shut off only through configuration bit WDTE. It runs off of its own RC oscillator for added reliability. If using XT or LP selectable oscillator options, there is always an 18 ms (nominal) delay provided by the Device Reset Timer (DRT), intended to keep the chip in reset until the crystal oscillator is stable. If using INTRC or EXTRC there is an 18 ms delay only on VDD power-up. With this timer on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through a change on input pins or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application, including an internal 4 MHz oscillator. The EXTRC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The PIC12C5XX configuration word consists of 12 bits. Configuration bits can be programmed to select various device configurations. Two bits are for the selection of the oscillator type, one bit is the Watchdog Timer enable bit, and one bit is the MCLR enable bit.

FIGURE 8-1: CONFIGURATION WORD FOR PIC12C5XX

_	_	_	_	_	_	_	MCI RE	CP	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit11	10	9	8	7	6	5	4	3	2	1	bit0	Address ⁽¹⁾ :	FFFh
bit 11-5:	Unim	plement	ed										
bit 4:	MCLRE: MCLR enable bit. 1 = MCLR pin enabled 0 = MCLR tied to VDD, (Internally)												
bit 3:	CP : C 1 = Cc 0 = Cc	 Code protection bit. Code protection off Code protection on 											
bit 2:	WDTE 1 = W 0 = W	WDTE: Watchdog timer enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0:	FOSC1:FOSC0: Oscillator selection bits 11 = EXTRC - external RC oscillator 10 = INTRC - internal RC oscillator 01 = XT oscillator 00 = LP oscillator												
Note 1:	 Refer to the PIC12C5XX Programming Specifications to determine how to access the configuration word. This register is not user addressable during device operation. 												

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE

9.0 INSTRUCTION SET SUMMARY

Each PIC12C5XX instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC12C5XX instruction set summary in Table 9-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-Out bit
PD	Power-Down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 µs. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 µs.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations							
	11	65	4		0		
	OPCODE	d		f (FILE #)			
	d = 0 for destination W d = 1 for destination f f = 5-bit file register address						
Bit-oriented file register operations							
	11	87	5	4	0		
	OPCODE	b (Bl	T #)	f (FILE #)			
	b = 3-bit bit address f = 5-bit file register address						
Li	teral and control o	peratio	ns (e	except GOTO)			
	11	8	7		0		
	OPCODE			k (literal)			
	k = 8-bit immediate value						
Li	teral and control o	peratio	ns -	GOTO instructio	n		
	11	9	8		0		
	OPCODE			k (literal)			

k = 9-bit immediate value

CALL Subroutine Call									
Syntax:	[label]	[<i>label</i>] CALL k							
Operands:	$0 \le k \le 255$								
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack}; \\ k \rightarrow PC < 7:0 >; \\ (STATUS < 6:5 >) \rightarrow PC < 10:9 >; \\ 0 \rightarrow PC < 8 > \end{array}$								
Status Affected:	None								
Encoding:	1001	kkkk	kkkk						
Description: Subroutine call. First, return addr (PC+1) is pushed onto the stack. eight bit immediate address is loc into PC bits <7:0>. The upper bit PC<10:9> are loaded from STA- TUS<6:5>, PC<8> is cleared. CA a two cycle instruction.									
Words:	1								
Cycles:	2								
Example:	HERE	CALL	THERE						
Before Instru PC =	ction address (HERE)							
After Instruct PC = TOS =	ion address (address (THERE) HERE + 1)						

CLRF

Syntax:	[label] CLRF f						
Operands:	$0 \le f \le 31$						
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	0000	011f	ffff				
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Example:	CLRF	FLAG_REG	3				
Before Instruc FLAG_RE	ction G =	0x5A					
After Instructi FLAG_RE Z	ion EG = =	0x00 1					

Clear f

CLRW	Clear W					
Syntax:	[label] CLRW					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	0000 0100 0000					
Description:	The W register is cleared. Zero bit (Z) is set.					
Words:	1					
Cycles:	1					
Example:	CLRW					
Before Instru W =	uction 0x5A					
After Instruc W = Z =	tion 0x00 1					
CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO;} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	0000 0000 0100					
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set.					
Words:						
Cualasi	1					
Cycles:	1 1					
Example:	1 1 CLRWDT					
Example: Before Instru WDT cor	1 CLRWDT Juction Junter = ?					
Example: Before Instru WDT cou After Instruc	1 CLRWDT Joction Junter = ? tion					

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 01df ffff
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	COMF REG1,0
Before Instru REG1	ction = 0x13
After Instruct REG1 W	ion = 0x13 = 0xEC

DECF	Decrement f						
Syntax:	[label] DECF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$						
Operation:	$(f)-1 \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	0000 11df ffff						
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	decf cnt, 1						
Before Instru CNT Z After Instruct CNT Z	$ \begin{array}{rcl} \text{ction} \\ = & 0x01 \\ = & 0 \\ \text{ion} \\ = & 0x00 \\ = & 1 \end{array} $						

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) $- 1 \rightarrow d$; skip if result = 0					
Status Affected:	None					
Encoding:	0010 11df ffff					
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded and an NOP is executed instead mak- ing it a two cycle instruction					
Words:	1					
Cycles:	1(2)					
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •					
Before Instru	ction					
PC	= address (HERE)					
After Instruct CNT if CNT PC if CNT PC	tion = CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)					
GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					

Syntax:	[label]	GOTO	k			
Operands:	$0 \le k \le 511$					
Operation:	$k \rightarrow PC < 8:0>;$ STATUS <6:5> $\rightarrow PC < 10:9>$					
Status Affected:	None					
Encoding:	101k	kkkk	kkkk			
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two cvcle instruction.					
Words:	1					
Cycles:	2					
Example:	GOTO THERE					
After Instruct PC =	ion address	(THERE)				

OPTION	Load OF	TION Re	gister			
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow OPTION$					
Status Affected:	None					
Encoding:	0000	0000	0010			
Description:	The content of the W register is loaded into the OPTION register.					
Words:	1					
Cycles:	1					
Example	OPTION					
Before Instru	ruction					
W	= 0x07					
After Instruct OPTION	truction FION = 0x07					

RETLW	Return with Literal in W							
Syntax:	[label] RE	[label] RETLW k						
Operands:	$0 \le k \le 255$	0 ≤ k ≤ 255						
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$	$k \rightarrow (W);$ TOS \rightarrow PC						
Status Affected:	None							
Encoding:	1000 kł	kk kkkk						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.							
Words:	1							
Cycles:	2							
Example:	CALL TABLE	;W contains ;table offset ;value. ;W now has table ;value.						
TABLE	ADDWF PC RETLW k1 RETLW k2 • • RETLW kn	;W = offset ;Begin table ; ; ; End of table						
Before Instru W =	uction 0x07							
After Instruc W =	tion value of k8							

RLF	Rotate Left f through Carry				
Syntax:	[label] RLF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Encoding:	0011 01df ffff				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	RLF REG1,0				
Before Instru REG1 C After Instruc	uction = 1110 0110 = 0 tion				
REG1 W	= 1110 0110 = 1100 1100				
C	= 1				
RRF	Rotate Right f through Carry				
RRF Syntax:	Rotate Right f through Carry				
RRF Syntax: Operands:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d $\in [0,1]$				
RRF Syntax: Operands: Operation:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d ∈[0,1]See description below				
RRF Syntax: Operands: Operation: Status Affected:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ d $\in [0,1]$ See description belowC				
RRF Syntax: Operands: Operation: Status Affected: Encoding:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dfffff				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry [label] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dffffffffThe contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \longrightarrow$ register 'f'.				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ fffffffThe contents of register 'f' are rotatedone bit to the right through the CarryFlag. If 'd' is 0 the result is placed in theW register. If 'd' is 1 the result is placedback in register 'f'. c				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'I1				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register 'f' $f' = C$ $f' = $				
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Description: Words: Cycles: Example: Before Instru REG1 C	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \longrightarrow register 'f'$ 1111111111110				

SLEEP	Enter SLEEP Mode					
Syntax:	[<i>label</i>]	SLEEP			S	
Operands:	None				C	
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$	VDT; T prescal	er;		C S	
Status Affected:	TO, PD,	GPWUF			с г	
Encoding:	0000	0000	0011	Ī	L	
Description:	Time-out	Time-out status bit (TO) is set. The power down status bit (PD) is cleared				
	GPWUF i	s unaffecte	ed.		V	
	The WDT and its prescaler are cleared.					
	The proce with the o tion on SL	essor is put scillator sto EEP for m	into SLEE opped. Se ore detail	EP mode ee sec- s.	<u></u>	
Words:	1					
Cycles:	1					
Example:	SLEEP					

SUBWF	Subtract W from f				
Syntax:	[lai	bel]	SUBWF	f,d	
Operands:	0 ≤ d ∈	≦f≤3 [0,1]	1]		
Operation:	(f)	– (W)	\rightarrow (dest)		
Status Affected:	С,	DC, Z	2		
Encoding:	0	000	10df	ffff	
Description:	Sul W r res 1 th	otract registe ult is s ne res	(2's comple er from regis stored in the ult is stored	ement meth ster 'f'. If 'd e W registe I back in re	nod) the ' is 0 the r. If 'd' is gister 'f
Words:	1				
Cycles:	1				
Example 1:	SUI	BWF	REG1, 1		
Before Instr	uctio	n			
REG1	=	3			
W	=	2			
Aftor Instruc	= tion	<i>!</i>			
REG1	=	1			
W	=	2			
С	=	1	; result is	positive	
Example 2:					
Before Instr	uctio	n			
REG1	=	2			
W	=	2			
	=	ſ			
Arter Instruc		0			
W	_	2			
С	=	1	; result is	zero	
Example 3:					
Before Instr	uctio	n			
REG1	=	1			
W	=	2			
	=	?			
After Instruc	tion	EE			
W	=	2			
C	=	0	; result is	negative	

HCS200 HCS300 HCS301 > > > > 24CXX 25CXX 93CXX > \mathbf{i} \mathbf{i} PIC17C7XX > \mathbf{i} \mathbf{i} > \mathbf{i} PIC17C4X \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > PIC16C9XX \mathbf{i} > > > > > > PIC16C8X > > > > > > > PIC16C7XX \mathbf{i} > > > > \mathbf{i} > PIC16C6X \mathbf{i} \mathbf{i} > \mathbf{i} > \mathbf{i} > PIC16CXXX \mathbf{i} > > > > > > PIC16C5X > \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > \mathbf{i} PIC14000 \mathbf{i} > > \mathbf{i} \mathbf{i} > PIC12C5XX \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} ICEPICTM Low-Cost In-Circuit Emulator Universal Dev. Kit Total Endurance™ fuzzyTECH[®]-MP Explorer/Edition **PICSTART[®]Plus** Software Model KEELoo Transponder Kit Integrated Development PRO MATE[®] II Evaluation Kit MPLABTM-ICE MPLABTM C17^{*} Fuzzy Logic Dev. Tool **Designers Kit** Environment PICDEM-14A Programmer Programmer KEELOQ® Universal SEEVAL® PICDEM-1 PICDEM-2 PICDEM-3 Compiler Low-Cost MPLABTM KEEL00[®] SIMICE Programmers Emulator Products Software Tools Demo Boards

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

11.1 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)

	DC Characteristics Standard Operating Conditions (unless otherwise specified) Operating Temperature 0°C ≤ TA ≤ +70°C (commercial) -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended)						
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5 3.0		5.5 5.5	V V	Fosc = DC to 4 MHz (Commercial/ Industrial) Fosc = DC to 4 MHz (Extended)
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05 *			V/ms	See section on Power-on Reset for details
D010	Supply Current ⁽³⁾	Idd	_	.78	2.4	mA	XT and EXTRC options ⁽⁴⁾ Fosc = 4 MHz, VDD = 5.5V
D010C			—	1.1	2.4	mA	INTRC Option Fosc = 4 MHz, VDD = 5.5V
D010A			—	10	27	μA	LP OPTION, Commercial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
			—	14	35	μA	LP OPTION, Industrial Temperature Fosc = 32 kHz, VDD = 3.0V, WDT disabled
				14	35	μA	LP OPTION, Extended Temperature FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D020 D021 D021B	Power-Down Current ⁽⁵⁾	IPD		0.25 0.25 2	4 5 18	μΑ μΑ μΑ	VDD = 3.0V, Commercial WDT disabled VDD = 3.0V, Industrial WDT disabled VDD = 3.0V, Extended WDT disabled
D022		ΔİWDT		3.75 3.75 3.75	8 9 14	μΑ μΑ μΑ	VDD = 3.0V, Commercial VDD = 3.0V, Industrial VDD = 3.0V, Extended

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to V_{ss} , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

TABLE 11-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508/C509

AC Chara	cteristics	Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial), $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial), $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating Voltage VDD range is described in Section 10.1					
Parameter No.	Sym	Characteristic	Min*	Тур ⁽¹⁾	Max*	Units	Conditions
		Internal Calibrated RC Frequency	3.58	4.00	4.32	MHz	VDD = 5.0V
		Internal Calibrated RC Frequency	3.50	—	4.26	MHz	VDD = 2.5V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 11-3: I/O TIMING - PIC12C508/C509

TABLE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC12C508/C509

AC Charac	teristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 11.1} \end{array}$					
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000*	—	—	ns	VDD = 5 V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9*	18*	30*	ms	VDD = 5 V (Commercial)
32	TDRT	Device Reset Timer Period ⁽²⁾	9*	18*	30*	ms	VDD = 5 V (Commercial)
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	2000*	ns	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: See Table 11-6.

TABLE 11-6: DRT (DEVICE RESET TIMER PERIOD - PIC12C508/C509)

Oscillator Configuration	POR Reset	Subsequent Resets
IntRC & ExtRC	18 ms (typical)	300 µs (typical)
XT & LP	18 ms (typical)	18 ms (typical)

Oscillator	Frequency	VDD =3.0V	VDD = 5.5V
External RC	4 MHz	240 µA*	800 µA*
Internal RC	4 MHz	320 µA	800 µA
ХТ	4 MHz	300 µA	800 µA
LP	32 KHz	19 µA	50 µA

TABLE 14-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

FIGURE 14-3: TYPICAL IDD VS. VDD (WDT DIS, 25°C, FREQUENCY

FIGURE 14-4: TYPICAL IDD VS. FREQUENCY (WDT DIS, 25°C, VDD = 5.5V)

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead SOIC (208 mil)

xxxxxxx
XXXXXXX
AABBCDE
Э)

Example 12C508A 04I/PSAZ \$\$ 9825

Example

Example

8-Lead Windowed Ceramic Side Brazed (300 mil)

Example

Legend	: MMM	Microchip part number information
Ū	XXX	Customer specific information*
	AA	Year code (last 2 digits of calendar year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured
		O = Outside Vendor
		C = 5" Line
		S = 6" Line
		H = 8" Line
	D	Mask revision number
	E	Assembly code of the plant or country of origin in which
		part was assembled
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
	be carried	l over to the next line thus limiting the number of available characters
	for custom	ner specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Type: K04-018 8-Lead Plastic Dual In-line (P) - 300 mil

Units			INCHES*		М	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		8			8	
Pitch	р		0.100			2.54	
Lower Lead Width	В	0.014	0.018	0.022	0.36	0.46	0.56
Upper Lead Width	B1 [†]	0.055	0.060	0.065	1.40	1.52	1.65
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.006	0.012	0.015	0.20	0.29	0.38
Top to Seating Plane	A	0.140	0.150	0.160	3.56	3.81	4.06
Top of Lead to Seating Plane	A1	0.060	0.080	0.100	1.52	2.03	2.54
Base to Seating Plane	A2	0.005	0.020	0.035	0.13	0.51	0.89
Tip to Seating Plane	L	0.120	0.130	0.140	3.05	3.30	3.56
Package Length	D‡	0.355	0.370	0.385	9.02	9.40	9.78
Molded Package Width	E‡	0.245	0.250	0.260	6.22	6.35	6.60
Radius to Radius Width	E1	0.267	0.280	0.292	6.78	7.10	7.42
Overall Row Spacing	eB	0.310	0.342	0.380	7.87	8.67	9.65
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter.

- [†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

INDEX
Α
ALU
Applications. 4
Architectural Overview
Assembler
MPASM Assembler
B
B
Block Diagram
On-Chip Reset Circuit
1 imer0
IMR0/WD1 Prescaler
Watchdog Timer
Brown-Out Protection Circuit
C
CAL0 bit
CAL1 bit
CAL2 bit
CAL3 bit
CALFST bit
CALSLW bit
Carry
Clocking Scheme
Code Protection
Configuration Bits
Configuration Word
D
DC and AC Characteristics
Development Support
Development Tools 59
Device Varieties7
Digit Carry9
E
EEPROM Peripheral Operation
Errata
F
Family of Devices
Family of Devices
Features
FSR
Fuzzy Logic Dev. System (<i>tuzzy</i> I ECH®-MP)61
1
I/O Interfacing
I/O Ports
I/O Programming Considerations
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator
ID Locations
INDF
Indirect Data Addressing
Instruction Cycle
Instruction Flow/Pipelining
Instruction Set Summary
V
KeeLoq® Evaluation and Programming Tools62
L
Loading of PC
IVI

IVI
Memory Organization 13
Data Memory14
Program Memory 13
MPLAB Integrated Development Environment Software 61

0
OPTION Register
OSC selection
OSCCAL Register 18
Oscillator Configurations
Oscillator Types
HS
BC 36
XT 36
D
F Declare Marking Information 00
Package Marking Information
PICDEM-1 Low-Cost PICmicro Demo Board 60
PICDEM-2 Low-Cost PIC16CXX Demo Board 60
PICDEM-3 Low-Cost PIC16CXXX Demo Board
PICSTART® Plus Entry Level Development System
POR
Device Reset Timer (DRT) 35, 42
PD 44
Power-On Reset (POR)
TO 44
PORTA
Power-Down Mode 45
Prescaler
PRO MATE® II Universal Programmer
Program Counter
Q
Q cycles12
R
RC Oscillator
Read Modify Write
Register File Map14
Registers
Special Function 15
Reset
Reset on Brown-Out 44
S
SEEVAL® Evaluation and Programming System
SLEEP
Software Simulator (MPLAB-SIM) 61
Special Features of the CPU 35
Special Function Registers 15
Stack
STATUS
STATUS Register
Ť
Timer0
Switching Prescaler Assignment 28
Timer0
Timer0 (TMR0) Module
TMR0 with External Clock
Timing Diagrams and Specifications
TRIS Registers 21
1110 100301010
VV
Wake-up from SLEEP
vvatchdog Timer (VVDT)
Pregramming Considerations
Filing Considerations
7
∠ero bit9