
Freescale Semiconductor - MC68030FE25C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68030

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 25MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 132-BCQFP

Supplier Device Package 132-CQFP (24x24)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68030fe25c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68030fe25c-4470165
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8
11.6.9
11.6.10
11.6.11
11.6.12
11.6.13
11.6.14
11.6.15
11.6.16
11.6.17
11.6.18
11.7
11.7.1
11.7.2
11.8
11.9

12.1
12.1.1
12.1.2
12.1.3
12.2
12.3
12.4
12.4.1
12.4.2
12.5
12.5.1

Instruct ion T iming Tables .
Fetch Effective Address (fea) .
Fetch Immediate Effective Address (flea) .
Calculate Effective Address (cea) .
Calculate Immediate Effective Address Mode (cieal
Jump Effective Address .

11-24
11-26
11-28
11-30
11-32
11-35

MOVE
Special-Purpose MOVE Instruct ion .
Ar i thmet ica l /Logica l Instruct ions .
Immediate Ar i thmet ica l /Logica l Instruct ions .
Binary-Coded Decimal and Extended Instruct ions
Single Operand Instruct ions .
Shif t /Rotate Instruct ions .
Bit Man ipu la t ion nstruct ions .

n struct io n . 11-37
11-39
11-40
11-42
11-43
11-44
11-45
11-46

Bit Field Man ipu la t ion Instruct ions . 11-47
Condi t ional Branch Instruct ions . 11-48
Control Instruct ions . 11-49
Except ion-Related Instruct ions and Operat ions 11-50
Save and Restore Operat ions . 11-51

Address Translat ion Tree Search T im ing . 11-51
M M U Effective Address Calculat ion . 11-58
M M U Instruct ion T im ing . 11-60

In terrupt Latency . 11~61
Bus Arb i t ra t ion Latency . 11-62

Section 12
Applications Information

Adapt ing the MC68030 to MC68020 Designs . 12-1
Signal Rout ing . 12-2
Hardware Differences . 12-3
Sof tware Differences . 12-4

Float ing-Point Units . 12-5
Byte Select Logic for the MC68030 . 12-9
Memory Interface . 12-11

Access Time Calculat ions . 12-14
Burst Mode Cycles . 12-17

Static RAM Memory Banks . . 12-18
A Two Clock Synchronous Memory Bank Using SRAMs 12-18

xiv MC68030 USER'S MANUAL MOTOROLA

PREFACE

The MC68030 User's Manual describes the capabilities, operation, and pro-
gramming of the MC68030 32-bit second-generation enhanced microproces-
sor. The manual consists of the following sections and appendix, For detailed
information on the MC68030 instruction set refer to M68000PM/AD, M68000
Family Programmer's Reference Manual.

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

1. Introduction
2. Data Organization and Addressing Capabilities
3. Instruction Set Summary
4. Processing States
5. Signal Description
6. On-Chip Cache Memories
7. Bus Operation
8. Exception Processing
9. Memory Management Unit
10. Coprocessor Interface Description
11. Instruction Execution Timing
12. Applications Information
13. Electrical Characteristics

Section 14. Ordering Information and Mechanical Data
Appendix A. M68000 Family Summary
Index

NOTE

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
signal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

The audience of this manual includes systems designers, systems program-
mers, and applications programmers. Systems designers need some knowl-
edge of all sections, with particular emphasis on Sections 1, 5, 6, 7, 13, 14,
and Appendix A. Designers who implement a coprocessor for their system
also need a thorough knowledge of Section 10. Systems programmers should

MOTOROLA MC68030 USER'S MANUAL xxvii

GENERATION: EA = (An)
An = An + SIZE

ASSEMBLER SYNTAX: (An) +
MODE: 911 31 0
REGISTER: n
ADDRESS REGISTER: An ~I, MEMORY ADDRESS I

OPERAND LENGTH (1, 2, OR 4):

3" 0

MEMORY ADDRESS: l OPERAND J
NUMBER OF EXTENSION WORDS: 0

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION: An = An - SIZE
EA = (An}

ASSEMBLER SYNTAX: - (An)
MODE: 100 31 O
REGISTER: n
ADDRESS REGISTER: An •1 MEMORY ADDRESS I

&

GPERAND LENGTH (l, 2, OR 4~: = ' ~ /
/

3] O

I OPE.AND t MEMORY ADORESS:
NUMBER OF EXTENSION WORDS: 0

MOTOROLA MC68030 USER'S MANUAL 2-11

2

3

X = extend (X) bit in CCR
N =negat ive {N) bit in CCR
Z=Zero (Z) bit in CCR
V=over f low (V) bit in CCR
C=carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
-=ar i thmet ic subtraction or predecrement indicator
x = arithmetic mult ipl ication
+ = arithmetic division or conjunction symbol

= invert; operand is logically complemented
A = logical AND
V = logical OR
0 = logical exclusive OR

Dc=data register, D7-D0 used during compare
Du = data register, D7-D0 used during update

Dr, Dq=data registers, remainder or quot ient of divide
Dh, DI =data registers, high- or low-order 32 bits of product
MSW= most significant word
LSW = least significant word
MSB = most signif icant bit

FC = function code
{R/W} = read or write indicator

[An] = address extensions

3.2.1 Data M o v e m e n t Instruct ions

The MOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions
transfer byte, word, and long-word operands from memory to memory, mem-
ory to register, register to memory, and register to register. Address move-
ment instructions (MOVE or MOVEA) transfer word and long-word operands
and ensure that only valid address manipulat ions are executed. In addition
to the general MOVE instructions, there are several special data movement
ins t ruc t ions: move mul t ip le registers (MOVEM), move per iphera l data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective
address (LEA), push effective address (PEA), link stack (LINK), and unlink
stack (UNLK).

3-4 MC68030 USER'S MANUAL MOTOROLA

3.3 .2 C o n d i t i o n a l Tests

Table 3-13 lists the condition names, encodings, and tests for the conditional
branch and set instructions. The test associated with each condition is a
logical formula using the current states of the condition codes. If this formula
evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

Table 3-13. Conditional Tests

Mnemonic Condition Encoding Test

T* 0000 1 True

False F* 0001 0

HI High 0010 C.Z

LS Low or Same 0011 C+Z

CC(HS) Carry Clear 0100

CS(LO) , Carry Set 0101 C

NE Not Equal 0110

EQ Equal 0111 Z

VC Overflow Clear 1000

V£ Overflow Set 1001 V

PL Plus 1010 "N

MI M inus 1011 N

GE Greater or Equal 1100 N°V+ NoV

LT

GT
LE

• = Boolean AND
+ = Boolean OR

= Boolean NOT N

Less Than

Greater Than

Less or Equal

1101

1110

1111

N.V + N.V

Z+N.V+N.V

*Not available for the Bcc instruction.

M O T O R O L A M C 6 8 0 3 0 USER'S M A N U A L 3-17

3

6

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache
for either of two types of allocation for data cache entries that miss on write
cycles. The state of the write allocation (WA) bit in the cache control register
specifies either no write allocation or write allocation with partial validation
of the data entries in the cache on writes.

When no write allocation is selected (WA=0), write cycles that miss do not
alter the data cache contents. In this mode, the processor does not replace
entries in the cache during write operations. The cache is updated only during
a write hit.

When write allocation is selected (WA = 1), the processor always updates the
data cache on cachable write cycles, but only validates an updated entry that
hits or an entry that is updated with long-word data that is long-word aligned.
When a tag miss occurs on a write of long-word data that is long-word
aligned, the corresponding tag is replaced, and only the long word being
written is marked as valid. The other three entries in the cache line are
invalidated when a tag miss occurs on a misaligned long-word write or on
a byte or word write, the data is not writ ten in the cache, the tag is unaltered,
and the valid bit(s) are cleared. Thus, an aligned long-word data write may
replace a previously valid entry; whereas, a misaligned data write or a wri te
o f data that is not long word may invalidate a previously valid entry or entries.

Write allocation eliminates stale data that may reside in the cache because
of either of two unique situations: mult iple mapping of two or more logical
addresses to one physical address within the same task or al lowing the same
physical location to be accessed by both supervisor and user mode cycles.
Stale data condit ions can arise when operating in the no-write-allocation
mode and all the fol lowing condit ions are satisfied:

• Mult iple mapping (object aliasing) is allowed by the operating system.

• A read cycle loads a value for an "al iased" physical address into the
data cache.

• A write cycle occurs, referencing the same aliased physical object as
above but using a different logical address, causing a cache miss and
no update to the cache (has the same page offset).

• The physical object is then read using the first alias, which provides stale
data from the cache.

6-8 MC68030 USER'S MANUAL MOTOROLA

CYCLE

$oo $O4 $08 $OC

SIZE ADDRESS COMMENT

LONG WORD $06 b, I - FIRST WORD OF OPERANO PLUS
REST OF ENTRY AT $04

LONG WORD $08 l I IbA b O - SECOND WORB OF OPERAND PLUS
b8 b9 REST OF ENTRY AT$08

Figure 6-10. Single Entry Mode Operation
Misaligned Long Word and 32-Bit DSACKx Port

If all bytes of a long word are cachable, CIIN must be negated for all bus
cycles required to fill the entry. If any byte is not cachable, CIIN must be
asserted for all corresponding bus cycles. The assertion of the CIIN signal
prevents the ~ caches from being updated during read cycles. Write cycles
(including the write portion of a read-modify-write cycle) ignore the assertion
of the CIIN signal and may cause the data cache to be altered, depending on
the state of the cache (whether or not the write cycle hits), the state of the
WA bit in the CACR, and the condit ions indicated by the MMU.

The occurrence of a bus error whi le attempting to load a cache entry aborts
the entry fill operation but does not necessarily cause a bus error exception.
If the bus error occurs on a read cycle for a portion of the required operand
(not the remaining bytes of the cache entry) to be loaded into the data cache,
the processor immediately takes a bus error exception. If the read cycle in
error is made only to fill the data cache (the data is not part of the target
operand), no exception occurs, but the corresponding entry is marked invalid.
For the instruction cache, the processor marks the entry as invalid, but only
takes an exception if the execution unit attempts to use the instruction word(s).

6.1.3.2 BURST MODE:FILLING. Burst mode fi l l ing is enabled by bits in the cache
control register. The data burst enable bit must be set to enable burst fi l l ing
of the data cache. Similarly, the instruction burst enable bit must be set to
enable burst f i l l ing of the instruction cache. When burst f i l l ing is enabled and
the corresponding cache is enabled, the bus controller requests a burst mode
fill operation in either of these cases:

• A read cycle for either the instruction or data cache misses due to the
indexed tag not matching.

• A read cycle tag matches, but all long words in the line are invalid.

MOTOROLA MC68030 USER'S MANUAL 6-15

6

7

PROCESSOR

ADDRESS DEVICE

EXTERNAL DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/WTO READ
3) DRIVE ADDRESS ON AO-A31
4) DRIVE FUNCTION CODE ON FCO-FC2
5) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES)
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID
7) ASSERTADDRESS STROBE (~)
8) ASSERT CACHE BURST REQUEST (CBREQ)
9) ASSERT DATA STROBE (~)

10) ASSERT DATA BUFFER ENABLE (OBEN)

ACQUIRE DATA

1) SAMPLE CACHE INHIBIT IN (CIIN)
AND CACHE BURST ACKNOWLEDGE (CBACK)

2) lATCH DATA

]) NEGATE ASND DS END OF BURST i i ~

2) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2} PLACE DATA ON DO-D31
3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE DURST ACKNOWLEDGE (CBACK)

TERMINATE CYCLE

t) REMOVE DATA FROM 00-D31
2) NEGATE STERM (IF NECESSARY)
3) NEGATE CRACK (IF NECESSARY)

WHEN 4 LONG WORDS TRANSFERRED I UNTIL 4 LONG WOROS TRANSFERRED

Figure 7-37. Burst Operation Flowchart - - Four Long Words Transferred

r

State 2
The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CLOUT to place the
data on the data bus. (The first cycle must supply the long word at the
corresponding long-word boundary.) All of the byte sections (D24-D31,
D16-D23, D8-D15, and D0-D7) of the data bus must be driven since the
burst operation latches 32 bits on every cycle. During $2, the processor
drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its
use. At the beginning of $2, the processor tests the level of STERM. If
STERM is recognized, the processor latches the incoming data at the end
of $2. For the burst operation to proceed, CBACK must be asserted when
STERM is recognized. If the data for the current cycle is not to be cached,
CIIN must be asserted at the same time as STERM. The assertion of ClIN
also has the effect of aborting the burst operation.

7-62 MC68030 USER'S MANUAL MOTOROLA

m

SO $2 $4 S6

CLK

A4-A31

A3

A0-A2

FC0-FC2 ~ X

SIZ0-SIZ1

R/W . __ /

= - - k__ /

0~ - - - ' k_ / Q
I

STERM 7 ~ k _ _ / - - k _ _ / - - ~__/---

cll--~ . /

CLOUT J

C,R,0 ~ \ /--

I
L -1- - - 4 CONTROL NEXT CYCLE

DO-D31 ~
OREN

0 1 1 1 0 1 1 1

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

NOTES:
1. Assertion of CBACK causes data to be placed on DO-D31.
2. Continued assertion of CBACK causes data to be placed on D0-D31.
3. Negation of CBACK cause AS to be negated,

Figure 7-39. Long-Word Operand Request from $07 with
Burst Request - - CBACK Negated Early

7-64 MC68030 USER'S MANUAL MOTOROLA

9

• 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift)

• Portions of Tables Can Be Undefined (Using Limits)

• Write Protection and Supervisor Protection

• History Bits Automatically Maintained in Page Descriptors

• Cache Inhibit Output (CLOUT) Signal Asserted on Page Basis

• External Translation Disable Input Signal (MMUDIS)

• Subset of Instruction Set Defined by MC68851

The MMU completely overlaps address translation time with other processing
activity when the translation is resident in the ATC. ATC accesses operate in
parallel with the on-chip instruction and data caches.

Figure 9-1 is a block diagram of the MC68030 showing the relationship of
the MMU to the execution unit and the bus controller. For an instruction or
operand access, the MC68030 simultaneously searches the caches and
searches for a physical address in the ATC. If the translation is available, the
MMU provides the physical address to the bus controller and allows the bus
cycle to continue. When the instruction or operand is in either of the on-chip
caches on a read cycle, the bus controller aborts the bus cycle before address
strobe is asserted. Similarly, the MMU causes a bus cycle to abort before
the assertion of address strobe when a valid translation is not available in
the ATC or when an invalid access is attempted.

An MMU disable input signal ([VlMUDIS) is provided that dynamically disables
address translation for emulation, diagnostic, or other purposes.

The programming model of the MMU (see Figure 9-2) consists of two root
pointer registers, a control register, two transparent translation registers, and
a status register. These registers can only be accessed by supervisor pro-
grams. The CPU root pointer register points to an address translation tree
structure in memory that describes the logical-to-physical mapping for user
accesses or for both user and supervisor accesses. The supervisor root pointer
register optionally points to an address translation tree structure for super-
visor mappings. The translation control register is comprised of fields that
control the translation operation. Each transparent translation register can
define a block of logical addresses that are used as physical addresses (with-
out translation). The MMU status register contains accumulated status in-
formation from a translation performed as a part of a PTEST instruction.

9-2 MC68030 USER'S MANUAL MOTOROLA

9

63 48

9.7 .2

L/U LIMIT

o ororo lo lo loro lo loro l01o lo
TABLE ADDRESS (PA3I-PA16)

OT

TABLE ADDRESS (PA15-PA4) UNUSED

]5 4 0

L /U - - LOWER OR UPPER PAGE RANGE
DT - - DESCRIPTOR TYPE
LIMIT - - LIMIT ON TABLE INDEX FOB THIS TABLE ADDRESS
TABLE ADDRESS - - ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF DT = I

Figure 9-35. Root Pointer Register (CRP, SRP) Format

T r a n s l a t i o n C o n t r o l Reg is te r

The translation control register (TC) is a 32-bit register that contains the
control fields for address translation. All unimplemented fields of this register
are read as zeros and must always be written as zeros.

Writing to this register optionally causes a flush of the entire ATC. When
written with the E bit (bit 31) set (translation enabled), a consistency check
is performed on the values of PS, IS, and TIx as follows. The TIx fields are
added together until a zero field is reached, and this sum is added to PS and
IS. The total must be 32, or an M M U configuration exception (refer to 9.7.5.3
M M U CONFIGURATON EXCEPTION) is taken. If an M M U configuration ex-
ception occurs, the TC register is updated with the data, and the E bit is
cleared. The translation control register is shown in Figure 9-36.

31 25 24

TIA TIB

20 16

PS IS

TIC TID

15 12 8 4 0

E - - ENABLE
SRE - - SUPERVISOR ROOT POINTER ENABLE
FCL - - FUNCTION CODE LOOKUP ENABLE
PS - - PAGE SIZE
IS - - INITIAL SHIFT
TIA, TIB, TIC, TID - - TABLE INDICES

Figure 9-36. Translation Control Register (TC) Format

9-54 MC68030 USER'S MANUAL MOTOROLA

An operating system can use an early termination page descriptor to map a
contiguous block of memory for each task (both program and data). The tasks
can be relocated by changing the physical address portion of the descriptor.
This scheme is useful when the tasks in a system consist of one or a few
sequential blocks of memory that can be swapped as a group. The operating
system memory map can treat the entire address space within these blocks
as a uniform virtual space available for all tasks. The system only requires
one translation table; by the use of limit fields and early termination page
descriptors, it maps complete segments of memory.

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor re-
siding in a page table. It points to another page descriptor in the translation
tree. Using an indirect descriptor for a page makes the page common to
several tasks. History information for a c o m m o n page is maintained in only
one descriptor. Access to the page sets the used (U) bit, and a write operation
to the page sets the M (modified) bit for that page. When the operating system
is searching for an available page, it simply checks the page table containing
the descriptor for the common page to determine its status. With other meth-
ods of page sharing, the system would have to check page tables for all
sharing tasks to determine the status of the common page.

9,9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused
fields of many types of descriptors are available to the operating system for
its own purposes. The invalid descriptor, in particular, uses only two bits of
the 32 (short) or 64 (long) bits available with that format. An operating system
typically uses these fields for the software flags, indicating whether the virtual
address space is allocated and whether an image resides on the paging
device. Also, these fields often contain the physical address of the image.

The operating system often maintains information in an unused field about
a page resident in memory. This information may be an aging counter or
some other indication of the page's frequency of use. This information helps
the operating system to identify the pages that are least likely to impact
system performance if they are reallocated. The system should first use
physical page frames that are not allocated to a virtual page. Next it should
use pages with the longest time since the most recent access. Pages that do
not have the M (modified) bit set should be taken first, since they do not
need to be copied to the paging device (the existing image remains valid).

MOTOROLA MC68030 USER'S MANUAL 9-71

9

the table size). By convention, the first entry maps the supervisor address
space and has supervisor protection. The routine never modifies this first
entry. The 31 entries after the first are available to be allocated as user address
space.

A routine similar to this that linearly extends (grows) a previously allocated
memory block could be written. A stack is a good example. The operating
system can allocate the top of the memory (the thirty-second upper level
table entry) as a stack that grows downward from the highest address. If a
task needs several large stacks, a 16-Mbyte block can be used for each stack,
with a software flag set to indicate growth in a downward direction.

The logic of Vallocate is:

1. Validate the request and calculate number of pages required.

2. Scan each upper table entry's lower page tables (where they exist)
looking for an adequate group of unallocated pages.

3. If no space is found, see if the lower table is less than its maximum size
and if the block can be allocated by expanding it at the end.

4. If still no space is found, use the next free upper table entry and initialize
its new lower level page table to allocate the block here.

5. Set allocated page entries to indicate virgin status (allocated, invalid,
and not swapped out).

6. Return status. If status is OK, also return virtual address.

The code for Vallocate is:

Vallocate (SlzelnBytes, VlrtualAddressReturned, Status);

/* The following are global to all routines

/* Symbolicly define the upper level pointer table

Declare Upper_Table[32] Record of
Status=(unallocated, allocated),
Limit_Field=(O to 4k),
Pointer;

*/

*/

/* Symbolicly define the lower level page table

/* lower table here or not */
/* limff for lower page table */
/*address of lower page table if allocated */

°/

Declare Lower_Table[O to Limit_Field] Based Record of
Status=(invalid_unallocated, /*not allocated to User */

invalid_paged ou t , /*allocated but paged out */
invalid_virgin, /*allocated but not yet used */
valid in memory), /*allocated and in memory °/

Pointer; /*physical address or disk address of page */

MOTOROLA MC68030 USER'S MANUAL 9-79

9

10

10.4.1 ScanPC

Several of the response primitives involve the scanPC, and many of them
require the main processor to use it while performing services requested.
These paragraphs describe the scanPC and tell how it operates.

During the execution of a coprocessor instruction, the program counter in
the MC68030 contains the address of the F-line operation word of that in-
struction. A second register, called the scanPC, sequentially addresses the
remaining words of the instruction.

If the main processor requires extension words to calculate an effective ad-
dress or destination address of a branch operation, it uses the scanPC to
address these extension words in the instruction stream. Also, if a copro-
cessor requests the transfer of extension words, the scanPC addresses the
extension words during the transfer. As the processor references each word,
it increments the scanPC to point to the next word in the instruction stream.
When an instruction is completed, the processor transfers the value in the
scanPC to the program counter to address the operation word of the next
instruction.

The value in the scanPC when the main processor reads the first response
primitive after beginning to execute an instruction depends on the instruction
being executed. For a cpGEN instruction, the scanPC points to the word
following the coprocessor command word. For the cpBcc instructions, the
scanPC points to the word following the instruction F-line operation word.
For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to the
word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words
with a general or conditional instruction, the coprocessor must use these
words consistently so that the scanPC is updated accordingly during the
instruction execution. Specifically, during the execution of general category
instructions, when the coprocessor terminates the instruction protocol, the
MC68030 assumes that the scanPC is pointing to the operation word of the
next instruction to be executed. During the execution of conditional category
instructions, when the coprocessor terminates the instruction protocol, the
MC68030 assumes that the scanPC is pointing to the word following the last
of any coprocessor-defined extension words in the instruction format.

10-34 MC68030 USER'S MANUAL MOTOROLA

tions. If the coprocessor issues this primitive during the execution of a
conditional category instruction, the main processor initiates protocol vio-
lation exception processing. Figure 10-37 shows the format of the transfer
multiple coprocessor registers primitive.

15 14 13 12 11 10 9 8 7 0

I cA I Pc I °" I o I 0 I 0 I 0 I t ,E 0T.

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bits [7-0] of the primitive format indicate the length in bytes of each operand
transferred. The operand length must be an even number of bytes; odd length
operands cause the MC68030 to initiate protocol violation exception pro-
cessing (refer to 10.5.2.1 PROTOCOL VIOLATIONS).

When the main processor reads this primitive, it calculates the effective ad-
dress specified in the coprocessor instruction. The scanPC should be pointing
to the first of any necessary effective address extension words when this
primitive is read from the response CIR; the scanPC is incremented by two
for each extension word referenced during the effective address calculation.
For transfers from the effective address to the coprocessor (DR=0), the con-
trol addressing modes and the postincrement addressing mode are valid.
For transfers from the coprocessor to the effective address (DR = 1), the con-
trol alterable and predecrement addressing modes are valid. Invalid address-
ing modes cause the MC68030 to abort the instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR and to initiate F-line
emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR EXCEP-
TIONS).

After performing the effective address calculation, the MC68030 reads a
16-bit register select mask from the register select CIR. The coprocessor uses
the register select mask to specify the number of operands to transfer; the
MC68030 counts the number of ones in the register select mask to determine
the number of operands. The order of the ones in the register select mask
is not relevant to the operation of the main processor. As many as 16 op-
erands can be transferred by the main processor in response to this primitive.
The total number of bytes transferred is the product of the number of op-
erands transferred and the length of each operand specified in bits [0-7] of
the primitive format.

MOTOROLA MC68030 USER'S MANUAL 10-53

1 0

Table 10-6. Exceptions Related to Primitive Processing (Sheet 2 of 2)

Primitive Protocol F-Line Other
, , I

Transfer Status and/or ScanPC X
Protocol: If Used with Conditional Instruction
Other: X

1, Trace - - Trace Made Pending if MC68020 in "Trace on Change
of Flow" Mode and DR = 1

2. Address Error - - If Odd value Written to ScanPC

Take Pre-lnstruction, Mid-Instruction, or Post-Instruction Exception X X X
Exception Depends on Vector Supplies in Primitive

*Use of this primitive with CA = 0 will cause protocol violat ion on conditional instructions.

Abbreviations:
EA= Effective Address
CP = Coprocessor

When the MC68030 detects a protocol violation, it does not automatically
notify the coprocessor of the resulting exception by writing to the control
CIR. The exception handling routine may, however, use the MOVES instruc-
tion to read the response CIR and thus determine the primitive that caused
the MC68030 to initiate protocol violation exception processing. The main
processor initiates exception processing using the mid-instruction stack frame
(refer to Figure 10-43) and the coprocessor protocol violation exception vector
number 13. If the exception handler does not modify the stack frame, the
main processor reads the response CIR again following the execution of an
RTE instruction to return from the exception handler. This protocol allows
extensions to the M68000 coprocessor interface to be emulated in software
by a main processor that does not provide hardware support for these ex-
tensions. Thus, the protocol violation is transparent to the coprocessor if the
primitive execution can be emulated in software by the main processor.

M O T O R O L A MC68030 USER'S M A N U A L 10-67

I1

11.6.1 Fetch Effective Address (fea)

The fetch effective address table indicates the number of clock periods needed
for the processor to calculate and fetch the specified effective address. The
effective addresses are divided by their formats (refer to 2.5 Effective Address
Encoding Summary). For instruction-cache case and for no-cache case, the
total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

I Ad,r.a ede I ,ead I Ta, I ,-Cac, eC.e I NoCao.eC.el

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn - - - -

% An - - - -

(An) 1 1

(An) ÷ 0 1

- (An) 2 2

(d16,An) or (d16,PC) 2 2

(xxx).W 2 2

(xxx).L 1 0

#(data).B 2 0

#(data).W 2 0

#(data).L 4 0

o(o/o/o) o(O/OlO)

o(o/o/o) 0(0/0/0)

3(1/0/0) 3(1/0/0)

3(1/0/0) 3(1/0/0)

4(1/0/0) 4(1/0/0)

4(1/0/0) 4(1/1/0)

4(1/0/0) 4(1/1/0)

4(1/0/0) 5(1/1/0)

2(0/0/0) 2(0/1/0)

2(0/0/0) 2(0/1/0)

4(0/0/0) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

I (dS'An'xn) °r (d8'PC'xn, I 4] 2 I 6(1/0/0)] 6(1/1/0) I

11-26 MC68030 USER'S MANUAL MOTOROLA

11.6.3

I
Calculate Effective Address (cea) (Continued)

Address Mode I Head I Tail I I-Cache Case INo-Cache Casel

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT
% Dn - - - -

% An - - --

(An) 2+op head 0

(An) + 0 0

-(An) 2+op head l 0

(d16,An) or (d16,PC) 2+op head 0

(xxx).W 2+op head 0

(xxx).L 4+op head 0

BRIEF FORMAT EXTENSION WORD
I (d8,An,Xn) or (d8,PC,Xn)

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC)

Id16,An,Xn) or Id16,PC,Xn)

([d16,An]) or ([d16,PC])

([d16,An],Xn) or ([d16,PC],Xn)

([d16,An],d16) or ([d16,PC],d16)

([d16,An],Xn,d16) or ([d16,PCJ,Xn,d16)

([d16,An],d32) or ([d16,PC],d32)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32)

(R)

(d16,B)

(d32,B)

([B])

([B],I)

([B],d16)

([m],l,dl 6)

(/HI,d32)

([B],l,d32)

([d16,B])

([d16,B],l)

([d16,B],d16)

([d16,B],l,d16)

0(0/0/0) 0(0/0/0)

0(0/0/0) 0(0/0/0)

2(0/0/0) 2(0/0/0)

2(0/0/0) 2(0/0/0)

2(0/0/0) 2(0/0/0)

2(0/0/0) 2(0/1/0)

2(0/0/0) i 2(0/1/0)

4(0/0/0) 4(0/1/0)

14+ op head I 0] 4(0/0/0) I 4(0/1/0) I

2 0

6+opheedJ 0

2 0

2 0

2 0

2 0

2 0

2 0

6+op head 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

4 0

6(0/0/0) 6(0/1/0)

6101010) 610/1/0)

10(1/0/0) 10(1/1/0)

10(1/0/0) 10(1/1/0)

12(1/0/0) 13(1/2/0)

12(1/0/0) 13(1/2/0)

12(1/0/0) 13(1/2/0)

12(1/0/0) 13(1/2/0)

6(0/0/0) 6(0/1/0)

8(01010) 9(0/1/0)

12(0J0/0) 12(0/2/0)

10(1/0/0) 10(1/1/0)

10(1/0/0) 10(1/1/0)

12(1/0/0) 13(1/1/0)

12(1/010) 13(1/1/0)

12(1/0/0) 13(1/z'0)

12(2/0/0) 13(1/zr0)

12(1/0/0) 13(1/1;0)

!2(1/0/0) 13(1/1~0)

14(1/0/0) 16(1/~0)

14(1/0/0) 16(1/2/0)

M O T O R O L A MC68030 USER'S M A N U A L 11-31

=I

INDEX

A

Abort Task Routine, 9-86
Absolute Long Address Mode, 2-20
Absolute Short Address Mode, 2-20
Access Time Calculations, Memory, 12-14-12-17
Accesses, Read-Modify-Write, 6-10
Acknowledge, Breakpoint, 8-10
Activity,

Data Bus, 12-11
Processor,

Even Alignment, 11-9
Odd Alignment, 11-10

Actual Instruction Cache Case, 11-11
Adapter Board,

MC68020, 12-1
Signal Routing, 12-1

Address Bus, 5-4, 7-4, 7-30ff, 12-4
Address Encoding, CPU Space, 7-68
Address Error Exception, 8-9, 10-72
Address Offset Encoding, 7-9
Address Register

Direct Mode, 2-10
Indirect Displacement Mode, 2-12
Indirect Index (Base Displacement) Mode, 2-13
Indirect Index (8-Bit Displacement) Mode, 2-12
Indirect Mode, 2-10
Indirect Postincrement Mode, 2-10
Indirect Predecrement Mode, 2-11

Address Registers, 1-6, 2-3
Address Space Types, 4-3
Address Strobe Signal, 5-5, 7-3, 7-4, 7-26ff
Address Translation, 9-13

Cache, 7-3, 9-4, 9-17
Cache Entry, 9-18
General Flowchart, 9-14

Addressing,
Capabilities, 2-25
Compatibility, M68000, 2-36
Indexed, 2-26
Indirect, 2-28
Indirect Absolute Memory, 2-28
Mode Summary, 2-31
Modes, 1-10, 2-8
Structure, 2-36

Aids, Debugging, 12-35
Arbitration, Bus, 7-96
Arithmetic/Logical Instruction,

Immediate, Timing Table, 11-42
T i m i n g Table, 11-40
AS Signal, 5-5, 7-3, 7-4, 7-26ff

Assignment, Pin, 14-2, 14-3
Assignments, Exception Vector, 8-2
Asynchronous

Bus Operation, 7-27
Byte

Read Cycle, 32-Bit Port, Timing, 7-33
Read Cycle Flowchart, 7-32
Read-Modify-Write Cycle, 32-Bit Port, Timing,

7-45
Write Cycle, 32-Bit Port, Timing, 7-38

Cycle Signal Assertion Results, 7-78, 7-79
Long-Word Read Cycle Flowchart, 7-32
Read Cycle, 7-31

32-Bit Port, Timing, 7-33
Read-Modify:Write Cycle, 7-45

Flowchart, 7-44
Sample Window, 7-3
Word

Read Cycle, 32-Bit Port, Timing, 7-33
Write Cycle, 32-Bit Port, Timing, 7-39

Write Cycle, 7-37
32-Bit Port, Timing, 7-38
Flowchart, 7-37

ATC, 7-3, 9-4, 9-17
Entry, 9-17

Creation Flowchart, 9-42
Autovector Interrupt Acknowledge Cycle, 7-71

Timing, 7-72
Autovector Signal, 5-8, 7-6, 7-29, 7-71ff, 8-20
AVEC Signal, 5-8, 7-6, 7-29, 7-71ff, 8-20
Average No Cache Case, 11-8
A0-A1 Signals, 7-8, 7-9, 7-22ff
A0-A31 Signals, 5-4, 7-4, 7-31ff
A0-A7, 1-6

B

BERR Signal, 5-9, 6-11, 7-6, 7-27ff, 8-7, 8-22, 8-26,
Best Case, 11-7 /
BG Signal, 5-9, 7-43, 7-96ff
BGACK Signal, 5-9, 7-97ff
Binary-Coded Decimal Instruction Timing Table,

11-43
Binary-Coded Decimal Instructions, 3-10
Bit,

CA, 10-35
CD, 6-21
CED, 6-21
CEI, 6-22
CI, 6-22
Clear Data Cache, 6-21

MOTOROLA MC68030 USER'S MANUAL INDEX-1

!

I

Timing (Continued)
Write Cycle, Wait States, CLOUT Asserted, 7-53

Table Search, 11-39
Write, Long-Word, 7-12
Write, Word, 7-14

Timing Table,
Arithmetic/Logical Instruction, 11-40

immediate, 11-42
Binary Coded Decimal Instruction, 11-43
Bit Field Instruction, 11-47
Bit Manipulation Instruction, 11-46
Calculate Effective Address, 11-30
Calculate Immediate Effective Address, 11-32
Conditional Branch Instruction, 11-48
Control Instruction, 11-49
Exception Related

Instruction, 11-50
Operation, 11-50

Extended Instruction, 11-43
Fetch Effective Address, 11-26
Fetch Immediate Effective Address, 11-28
Jump Effective Address, 11-35
MMU

Effective Address, 11-58
Instruction, 11-60

MOVE Instruction, 11-37
Special Purpose, 11-39

Restore Operation, 11-51
Save Operation, 11-51
Shift/Rotate Instruction, 11-45
Single Operand Instruction, 11-44
Table Search, 11-51

Trace Exception, 8-12, 10-70
Signals, 12-38

Tradeoffs, Performance,11-1
Transfer,

Long Word to Long Word, Misaligned Cachable,
7-20

Long Word to Word, 7-11
Misaligned

Cachable Word to Long Word, 7-17
Cachable Word to Word, 7-20
Long Word to Long Word, 7-20
Long Word to Word, 7-17
Word to Word, 7-17
Word to Word, Timing, 7-18

Word to Byte, 7-13
Transfer Main Processor Control Register Primitive,

10-50
Transfer Multiple Coprocessor Registers Primitive,

10-52
Transfer Multiple Main Processor Registers

Primitive, 10-52
Transfer Operation Word Primitive, 10-40
Transfer Single Main Processor Register Primitive,

10-50
Transfer Size Signals, 5-4, 7-4, 7-8, 7-9-7-14, 7-22ff
Transfer Status Register and ScanPC Primitive,

10-55

Transfer to/from Top of Stack Primitive, 10-49
Translation, Address, 9-13
Translation Control Register, 1-9, 2-5, "9-8, 9-54
Translation Table Descriptors, 9-10, 9-20
Translation Table Tree, 9-5, 9-7, 9-8, 9-12, 9-30,

9-47, 9-48, 9-65
Translation Tree, Supervisor, 9-48

Protection Example, 9-50
Transparent Translation Registers, 1-9, 2-5, 9-16,

9-55
Tree, Translation Table, 9-5, 9-7, 9-8, 9-12, 9-30,

9-47, 9-48, 9-65
TT0, 1-9, 2-5, 9-16, 9-57
TT1, 1-9, 2-5, 9q6, 9-57
Two Clock Synchronous Static RAM, 12-18-12-20
Types,

Address Space, 4-3
Data, 1-10

Unimplemented Instruction Exception, 8-9
Unit,

Execution, 6-16
Memory Management, 1-15, 7-3, 7-36, 7-43, 9-1,

11-5, 12-4
Units, Floating Point, 12-5
Unused Descriptor Bits, 9-71
User Privilege Level, 4-2, 4-4
User Program Stack, 2-38

V

Valid Format Word, 10-24
Vallocate Routine, 9-78
VBR, 1-8, 2-5
VCC Pin Assignments, 12-46
Vector

Base Register, 1-8, 2-5
Numbers, Exception, 8-1

Vectors, Exception, 4-6
Virtual Machine, 1-12
Virtual Memory, 1-12, 9-77

- - W - -

WA Bit, 6-21
Wait States, 11-18
Window,

Asynchronous Sample, 7-3
Word, Special Status, 8-28
Word Read Cycle, Asynchronous, 32-Bit Port,

Timing, 7-33
Word to Byte Transfer, 7-13
Word to Long-Word Transfer, Misaligned, 7-17
Word to Word Transfer, Misaligned Cachable, 7-20

INDEX-12 MC68030 USER'S MANUAL MOTOROLA

