
Motorola - MC68030RC16C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor 68030

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 166MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 128-BPGA

Supplier Device Package 128-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68030rc16c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68030rc16c-4468006
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

!

1.6 VIRTUAL M E M O R Y AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes)
in each of eight address spaces. Even though most systems implement a
smaller physical memory, the system can be made to appear to have a full
4 Gbytes of memory available to each user program by using virtual memory
techniques.

In a virtual memory system, a user program can be written as if it has a large
amount of memory available, when the physical memory actually present is
much smaller. Similarly, a system can be designed to allow user programs
to access devices that are not physically present in the system, such as tape
drives, disk drives, printers, terminals, and so forth. With proper software
emulation, a physical system can appear to be any other M68000 computer
system to a user program, and the program can be given full access to all
of the resources of that emulated system. Such an emulated system is called
a virtual machine.

1.6.1 Virtual M e m o r y

A system that supports virtual memory has a limited amount of high-speed
physical memory that can be accessed directly by the processor and main-
tains an image of a much larger virtual memory on a secondary storage
device such as a large-capacity disk drive. When the processor attempts to
access a location in the virtual memory map that is not resident in physical
memory, a page fault occurs. The access to that location is temporarily sus-
pended while the necessary data is fetched from secondary storage and
placed in physical memory. The suspended access is then either restarted
or continued.

The MC68030 uses instruction continuation to support virtual memory. When
a bus cycle is terminated with a bus error, the microprocessor suspends the
current instruction and executes the virtual memory bus error handler. When
the bus error handler has completed execution, it returns control to the
program that was executing when the error was detected, reruns the faulted
bus cycle (when required), and continues the suspended instruction.

1-12 MC68030 USER'S MANUAL MOTOROLA

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The processor accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION: EA = (bd + An + Xn.SIZE*SCALE) + od
ASSEMBLER SYNTAX: ([bd,An.Xn.SIZE*SCALE],od) 3~
MODE: 110
ADDRESS REGISTER: An ~ I

m

q

31

BASE DISPLACEMENT: I SIGN EXTENDED VALUE

31

INDEX REGISTER:] SIGN EXTENDED VALUE
I

SCALE: [SCALE VALUE

31

OUTER DISPLACEMENT: [

EFFECThfE ADDRESS:
NUMBER OF EXTENSION WORDS:

31

1
31

I
SFGN EXTENDED VALUE

1,2,3,4,0R5

31

I

MEMORY ADDRESS

0

I <
0

INDIRECT MEMORY ADDRESS

POINTSTO

VALUE AT INDIRECT MEMORY ADDRESS

o

OPERAND

D

I

MOTOROLA MC68030 USER'S MANUAL 2-15

2

2

For both the MC68020 and the MC68030, the register indirect modes can be
extended further. Since displacements can be 32 bits wide, they c a n represent
absolute addresses or the results of expressions that contain absolute ad-
dresses. This allows the general register indirect form to be (bd,Rn) or
(bd,An,Rn) when the base register is not suppressed. Thus, an absolute ad-
dress can be directly indexed by one or two registers (refer to Figure 2-6).

SYNTAX: (bd,An.Rn)

bd

An

I
Rn

Figure 2-6. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith-
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc-
tures can be addressed absolutely and then subscripted, (bd,Rn*scale), for
example. Optionally, an address register that contains a dynamic displace-
ment can be included in the address calculation (bd,An,Rn*scale). Another
variation that can be derived is (An,Rn*scale). In the first case, the array
address is the sum of the contents of a register and a displacement, as shown
in Figure 2-7. In the second example, An contains the address of an array
and Rn contains a subscript.

2,26 MC68030 USER'S MANUAL MOTOROLA

3

X = extend (X) bit in CCR
N =negat ive {N) bit in CCR
Z=Zero (Z) bit in CCR
V=over f low (V) bit in CCR
C=carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
-=ar i thmet ic subtraction or predecrement indicator
x = arithmetic mult ipl ication
+ = arithmetic division or conjunction symbol

= invert; operand is logically complemented
A = logical AND
V = logical OR
0 = logical exclusive OR

Dc=data register, D7-D0 used during compare
Du = data register, D7-D0 used during update

Dr, Dq=data registers, remainder or quot ient of divide
Dh, DI =data registers, high- or low-order 32 bits of product
MSW= most significant word
LSW = least significant word
MSB = most signif icant bit

FC = function code
{R/W} = read or write indicator

[An] = address extensions

3.2.1 Data M o v e m e n t Instruct ions

The MOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions
transfer byte, word, and long-word operands from memory to memory, mem-
ory to register, register to memory, and register to register. Address move-
ment instructions (MOVE or MOVEA) transfer word and long-word operands
and ensure that only valid address manipulat ions are executed. In addition
to the general MOVE instructions, there are several special data movement
ins t ruc t ions: move mul t ip le registers (MOVEM), move per iphera l data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective
address (LEA), push effective address (PEA), link stack (LINK), and unlink
stack (UNLK).

3-4 MC68030 USER'S MANUAL MOTOROLA

3.3.1 Condi t ion Code C o m p u t a t i o n

Most operations take a source operand and a destination operand, compute,
and store the result in the destination location. Single-operand operations
take a destination operand, compute, and store the result in the destination
location. Table 3-12 lists each instruction and how it affects the condition
code bits.

Operat ions

ABCD

ADD, ADDI, ADDQ

ADDX

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI,
CLR, EXT, NOT, TAS, TST

CHK - - * U U U

CHK2, CMP2 - - U ? U ?

SUB, SUBI, SUBQ * * * ? ?

SUBX * * ? ? ?

CAS, CAS2, CMP, CMPI, - - * * ? ?
CMPM

DIVS, DUVI - - * * ? 0

MULS, MULU - - * * ? 0

SBCD, NBCD * U ? U ?

NEG * * * ? ?

NEGX * * ? ? ?

Table 3-12. Condition Code Computations (Sheet 1 of 2)

X N Z V C Special Definit ion

* U ? U ? C = Decimal Carry
Z = Z .\ Rm A ,k

* * * ? ? V = S m . ~ D m A R m V S m A D m A R m
C = S m A D m V R m , . \ D m V S m A R m

* * ? ? ? V = Sm A Dm A R m V S m A Dm A R m
C = Sm A D m V R m , , \ D m V S m A R m
Z = Z A R m A ,\ R0

- - * * 0 0

Z = (R = LB) V (R = UB)
C = (LB < = UB) ,.~. (IR < LB) V (R > UB))

V (U B < L B) A (R > U B) A (B < L B)

V = S m A D m A R m V S m A D m A R m
C = S m A D m V R m . \ D m V S m A Rm

V = S m ? , D m A R m V S m . \ D m A R m
C = Sm A D m V R m , ' , D m V S m A R m
Z = Z A R m A . . . A R 0

V = Sm A I 3 m A R m V S m A D m A R m
C = S m A D m V R m A D m V S m A R m

V = Division Over f low

V = Mult ipl icat ion Over f low

C = Decimal Borrow
Z = Z A R m A . . . A Ro

V = Dm A R m
C = D m V R m

V = Dm A Rm
C = D m V R m
Z = Z A R m A . . . A R 0

M O T O R O L A M C 6 8 0 3 0 U S E R ' S M A N U A L 3 - 1 5

3

5

5.2 FUNCTION CODE SIGNALS (FC0-FC2)

These three-state outputs identify the address space of the current bus cycle.
Table 4-1 shows the relationship of the function code signals to the privilege
levels and the address spaces. Refer to 4.2 ADDRESS SPACE TYPES for more
information.

5.3 ADDRESS BUS (A0-A31)

These three-state outputs provide the address for the current bus cycle, ex-
cept in the CPU address space. Refer to 4.2 ADDRESS SPACE TYPES for more
information on the CPU address space. A31 is the most significant address
signal, Refer to 7.1.2 Address Bus for information on the address bus and
its relationship to bus operation.

5.4 DATA BUS (D0-D31)

These three-state bidirectional signals provide the general-purpose data path
between the MC68030 and all other devices. The data bus can transfer 8, 16,
24, or 32 bits of data per bus cycle. D31 is the most significant bit of the data
bus. Refer to 7.1.4 Data Bus for more information on the data bus and its
relationship to bus operation.

5.5 TRANSFER SIZE SIGNALS (SIZ0, SIZ1)

These three-state outputs indicate the number of bytes remaining to be trans-
ferred for the current bus cycle. With A0, A1, DSACK0, DSACK1, and STERM,
SIZ0 and SIZ1 define the number of bits transferred on the data bus. Refer
to 7.2.1 Dynamic Bus Sizing for more information on the size signals and
their use in dynamic bus sizing.

5-4 MC68030 USER'S MANUAL MOTOROLA

5.7 CACHE CONTROL SIGNALS

The following signals relate to the on-chip caches.

5.7.1 Cache Inhibit Input (CIIN)

This input signal prevents data from being loaded into the MC68030 instruc-
tion and data caches. It is a synchronous input signal and is interpreted on
a bus-cycle-by-bus-cycle basis. CIIhi is ignored during all write cycles. Refer
to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for information
on the relationship of CIIN to the on-chip caches.

5.7.2 Cache Inhibit Output (CLOUT)

This three-state output signal reflects the state of the CI bit in the address
translation cache entry for the referenced logical address, indicating that an
external cache should ignore the bus transfer. When the referenced logical
address is within an area specified for transparent translation, the CI bit of
the appropriate transparent translation register controls the state of CLOUT.
Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more information
about the address translation cache and transparent translation. Also, refer
to SECTION 6 ON-CHIP CACHE MEMORIES for the effect of CLOUT on the
internal caches.

5.7.3 Cache Burst Request (CBREQ)

This three-state output signal requests a burst mode operation to fill a line
in the instruction or data cache. Refer to 6.1.3 Cache Filling for fill ing infor-
mation and 7.3.7 Burst Operation Cycles for bus cycle information pertaining
to burst mode operations.

5.7.4 Cache Burst Acknowledge (CBACK)

This input signal indicates that the accessed device can operate in the burst
mode and can supply at least one more long word for the instruction or data
cache. Refer to 7.3.7 Burst Operation Cycles for information about burst mode
operation.

MOTOROLA MC68030 USER'S MANUAL 5-7

5

5

Table 5-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State

Function Codes FC0-FC2 Output High Yes

Address 8us A0-A31 Output High Yes

Data Bus D0-D31 Input/Output High Yes

Transfer Size SIZ0/SlZ1 Yes

Operand Cycle Start

External Cycle Start

Read/Write

Read-Modify-Write Cycle

Address Strobe

Data Strobe

Data Buffer Enable

Data Transfer and Size Acknowledge i

Synchronous Termination

Cache Inhibit In

Cache Inhibit Out

Cache Burst Request

Cache Burst Acknowledge

Interrupt Priority Level

Interrupt Pending

Autovector

OCS

Bus Grant Acknowledge

ECS
E

R/VV

Output

Output

Output

Output

High

Low

Low

High/Low

No

No

Yes

RMC Output Low Yes

AS Output Low Yes

DS Output Low Yes

DBEN Low Yes

DSACKO/
DSACK1

OutPut

Input

Input

Input

Output

Output

Input

Input

Output

STERM

CIIN

CLOUT

CBREQ

Low

Low

Low

Low

Low

Low

Low

Low

CBACK

IPLO-IPL2

Input

IPEND

Yes

Yes

No

AVEC Input Low - -

Bus Request BR Input Low - -

Bus Grant BG Output Low No

BGACK Low - -

Input/Output

Input

Reset

Halt

Bus Error

Cache Disable

MMU Disable

Pipeline Refill

Microsequencer Status

Clock

RESET

HALT

BERR

CDIS

MMUDIS

REFILL

Low

Low

Low

Low

Low

Low

Low STATUS

Input

Input

Input

Output

Output

No

No

No

CLK Input - - - -

Power Supply Vcc Input - - - -

Ground GND Input - - - -

5-12 MC68030 USER'S MANUAL MOTOROLA

7

address bus that specifies the address for the transfer and a data bus that
transfers the data. Control signals indicate the beginning of the cycle, the
address space and the size of the transfer, and the type of cycle. The selected
device then controls the length of the cycle with the signal(s) used to ter-
minate the cycle. Strobe signals, one for the address bus and another for the
data bus, indicate the validity of the address and provide timing information
for the data.

The bus can operate in an asynchronous mode identical to the MC68020 bus
for any port width. The bus and control input signals used far asynchronous
operation are internally synchronized to the MC68030 clock, introducing a
delay. This delay is the time period required for the MC68030 to sample an
asynchronous input signal, synchronize the input to the internal clocks of the
processor, and determine whether it is high or low. Figure 7-1 shows the
relationship between the clock signal and the associated internal signal of a
typical asynchronous input.

CLK

EXT

INT

-~ SYNC DELAY

Figure 7-1. Relationship between External and Internal Signals

Furthermore, for all asynchronous inputs, the processor latches the level of
the input during a sample window around the falling edge of the clock signal.
This window is illustrated in Figure 7-2. To ensure that an input signal is
recognized on a specific falling edge of the clock, that input must be stable
during the sample window. If an input makes a transition during the window
time period, the level recognized by the processor is not predictable; how-
ever, the processor always resolves the latched level to either a logic high
or low before using it. in addition to meeting input setup and hold times for
deterministic operation, all input signals must obey the protocols described
in this section.

7-2 MC68030 USER'S MANUAL MOTOROLA

terminates the bus cycle. It then starts a new bus cycle with
SIZ0_SIZI_A0_A1 =1010 to transfer the remaining 16 bits. SIZ0 and SIZ1
indicate that a word remains to be transferred; A0 and A1 indicate that the
word corresponds to an offset of two from the base address. The multiplexer
follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the
word portion of the bus (D16-D31). The bus cycle transfers the remaining
bytes to the word-size port. Figure 7-6 shows the timing of the bus transfer
signals for this operation.

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding
example, this example requires two bus cycles. Each bus cycle transfers a
single byte. The size signals for the first cycle specify two bytes; for the
second cycle, one byte. Figure 7-8 shows the associated bus transfer signal
timing.

15 WORD DPERAND 0

I DP2] DP3 1

031 DATA SUS D24

I I

BYTE MEMORY MC68030 MEMORYCONTROL

SIZ1 SIZO A1 AO OSACK1 OSACKO

I 0 0 0 H L

0 I O I H L

Figure 7-7. Example of Word Transfer to Byte Port

7.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned.
A byte operand is properly aligned at any address; a word operand is mis-
aligned at an odd address; a long word is misaligned at an address that is
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple-
mentations allow long-word transfers on odd-word boundaries but force
exceptions if word or long-word operand transfers are attempted at odd-byte
addresses. Although the MC68030 does not enforce any alignment restric-
tions for data operands (including PC relative data addresses), some per-
formance degradation occurs when additional bus cycles are required for

MOTOROLA MC68030 USER'S MANUAL 7-13

7

7

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/WTO READ
3) DRIVE ADDRESS ON AO-A31
4) DRIVE FUNCTION CODE ON FCO-FC2
5) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES)
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (~)
8) ASSERT DATA STROBE (O'S)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

1) SAMPLE CACHE INHIBIT IN (CIIN)
2) LATCH DATA
31 NEGATE AS AND DS
4) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON DO-D31
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM DO-D31
2) NEGATE DSACKx

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart

PROCESSOR

ADDRESS DEVICE

EXTERNAL DEVICE

II ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/WTO READ
3) DRIVE ADDRESS ON AO-A3"
4) DRIVE FUNCTION CODE ON FCO-FC2
5) DRIVE SIZE fSIZO-SlZll lONE BYTE)
6) CACHE INHIBIT OUT (CLOUT1 BECOMES VAUD
7) ASSERT ADDRESS STROBE IA'S~
81 ASSERT DATA STROBE (D'S)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQU RE DATA

1 SAMPLE CACHE INHIBIT IN (CIIN)
2t LATCH DATA
31 NEGATE AS AND OS
4~ NEGATE DBEN

START NEXT CYCLE

L 1

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D24 OR

D23-D16 OR
D15-D8 DR
D7-DO

(BASED ON AO, A].CACHE, AND BUS WIDTH)
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM DATA BUS
2) NEGATE DSACKx

Figure 7-20. Asynchronous Byte Read Cycle Flowchart

7-32 MC68030 USER'S MANUAL MOTOROLA

7.5.2 Retry Opera t ion

When the BERR and HAL-i" signals are both asserted by an external device
during a bus cycle, the processor enters the retry sequence. A delayed retry,
similar to the delayed bus error signal described previously, can also occur,
both for synchronous and asynchronous cycles.

The processor terminates the bus cycle, places the control signals in their
inactive state, and does not begin another bus cycle until the HALT signal is
negated by external logic. After a synchronization delay, the processor retries
the previous cycle using the same access information (address, function code,
size, etc.) The BERR signal should be negated before $2 of the read cycle to
ensure correct operation of the retried cycle. Figure 7-54 shows a retry op-
eration of an asynchronous cycle, and Figure 7-55 shows a retry operation
of a synchronous cycle.

The processor retries any read or write cycle of a read-modify-write operation
separately; RMC remains asserted during the entire retry sequence.

On the initial access of a burst operation, a retry (indicated by the assertion
of BERR and HALT) causes the processor to retry the bus cycle and assert
CBREQ again. Figure 7-56 shows a late retry operation that causes an initial
burst operation to be repeated. However, signaling a retry with simultaneous
BERR and HALT during the second, third, or fourth cycle of a burst operation
does not cause a retry operation, even if the requested operand is misaligned.
Assertion of BERR and HALT during a subsequent cycle of a burst operation
causes independent BERR and HALT operations. The external bus activity
remains halted until HALT is negated and the processor acts as previously
described for the bus error during a burst operation.

L

Asserting BR along with BERR and HALT provides a relinquish and retry
operation. The MC68030 does not relinquish the bus during a read-modify-
write operation, except during the first read cycle. Any device that requires
the processor to give up the bus and retry a bus cycle during a read-modify-
write cycle must either assert BERR and BR only (HALT must not be included)
or use the single wire arbitration method discussed in 7.7.4 Bus Arbitration
Control. The bus error handler software should examine the read-modify-
write bit in the special status word (refer to 8.2.1 Special Status Word) and
take the appropriate action to resolve this type of fault when it occurs.

MOTOROLA MC68030 USER'S MANUAL 7-89

7

Exception processing for illegal and unimplemented instructions is similar
to that for instruction traps. When the processor has identified an illegal or
unimplemented instruction, it initiates exception processing instead of at-
tempting to execute the instruction. The processor copies the status register,
enters the supervisor privilege level, and clears the trace bits, disabling fur-
ther tracing. The processor generates the vector number, either 4, 10, or 11,
according to the exception type. The illegal or unimplemented instruction
vector offset, current program counter, and copy of the status register are
saved on the supervisor stack, with the saved value of the program counter
being the address of the illegal or u nimplemented instruction, nstruction
execution resumes at the address contained in the exception vector. It is the
responsibi l i ty of the handling routine to adjust the stacked program counter
if the instruction is emulated in software or is to be skipped on return from
the handler.

8.1.6 Privi lege V io la t ion Except ion

To provide system security, the fol lowing
ANDI TO SR
EOR to SR
cpRESTORE
cpSAVE
MOVE from SR
MOVE to SR
MOVE USP
MOVEC
MOVES
ORI to SR
PFLUSH
PLOAD
PMOVE
PTEST
RESET
RTE
STOP

instructions are privileged:

An attempt to execute one of the privi leged instructions whi le at the user
privilege level causes a privilege violation exception. Also, a privilege vio-
lation exception occurs if a coprocessor requests a privilege check and the
processor is at the user level.

8

MOTOROLA M068030 USER'S MANUAL 8-11

9

if MMUDIS is asserted during this type of operation, the disabling of address
translation does not become effective until the entire transfer is complete.
Note that the assertion of MMUDIS does not affect the operation of the
transparent translation registers.

9.3 TRANSPARENT TRANSLATION

Two independent transparent translation registers (TTO and TT1) in the MMU
optionally define two blocks of the logical address space that are directly
translated to the physical address spaces. The MMU does not explicitly check
write protection for the addresses in these blocks, but a block can be specified
as transparent only for read cycles. The blocks of addresses defined by the
TTx registers include at least 16M bytes of logical address space; the two
blocks can overlap, or they can be separate.

The following description of the address comparison assumes that both TTO
and TT1 are enabled; however, each TTx register can be independently dis-
abled. A disabled TTx register is completely ignored.

When the MMU receives an address to be translated, the function code and
the eight high-order bits of the address are compared to the block of ad-
dresses defined by TTO and TT1. The address space block for each TTx
register is defined by the base function code, the function code mask, the
logical base address, and the logical address mask. When a bit in a mask
field is set, the corresponding bit of the base function code or logical base
address is ignored in the function code and address comparison. Setting
successively higher order bits in the address mask increases the size of the
transparently translated block.

The address for the current bus cycle and a TTx register address match when
the function code bits and address bits (not including masked bits) are equal.
Each TTx register can specify read accesses or write accesses as transparent.
In that case, the internal read/write signal must match the R/W bit in the TTx
register for the match to occur. The selection of the type of access (read or
write) can also be masked. The read/write mask bit (RWM) must be set for
transparent translation of addresses used by instructions that execute read-
modify-write operations. Otherwise, neither the read nor write portions of
read-modify-write operations are mapped transparently with the TTx regis-
ters, regardless of the function code and address bits for the individual cycles
within a read-modify-write operation.

9-16 MC68030 USER'S MANUAL MOTOROLA

a , •

The bits in the MMUSR have different meanings for the two kinds of PTEST
instructions, as shown in Table 9-3.

Table 9-3. MMUSR Bit Definitions

MMUSR Bit PTEST, Level 0

Bus Error (B) This bit is set if the bus error bit
is set in the ATC entry for the
specified logical address.

Limit (L) This bit is cleared.

Superv iso r V io la t ion This bit is cleared.
(s)

Write Protected (W)

Invalid (I)

Modif ied (M)

Transparent (T)

This bit is set if the WP bit ofl
the ATC entry is set. It is un-
defined if the I bit is set.

This bit ind icates an inva l id
translation. The I bit is set if the
t rans la t ion fo r the spec i f ied
logical address is not resident
in the ATC or if the B bit of the
corresponding ATC entry is set.

This bit is set if the ATC entry
corresponding to the specified
address has the modified bit set.
It is undefined if the I bit is set.

This bit is set if a match oc-
curred in either (or both) of the
transparent translat ion regis-
ters (TT0 or TT1). If the T bit is
set, all remaining MMUSR bits
are undefined.

Number of Levels (N) This 3-bit field is cleared to zero.

PTEST, Level 1-7

This bit is set if a bus error is encountered
during the table search for the PTEST instruc-
tion.

This bit is set if an index exceeds a limit during
the table search.

This bit is set if the S bit of a long (S) format
table descriptor or tong format page descrip-
tor encountered during the search is set, and
the FC2 bit of the function code Specified by
the PTEST instruction is not equal to one. The
S bit is undefined if the I bit is set.

This bit is set, if a descriptor or page descriptor
is encountered with the WP bit set during the
table search. The W bit is undefined if the
bit is set.

This bit indicates an invalid translation. The
bit is set if the DT field of a table or a page
descriptor encountered during the serach is
set to invalid or if either the B or L bits of the
MMUSR are set during the table search.

This bit is set if the page descriptor for the
specified address has the modif ied bit set. It
is undefined if I is set.

This bit is set to zero.

This 3-bit field contains the actual number of
tables accessed during the search.

9-60 MC68030 USER'S MANUAL MOTOROLA

IO

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related ex-
ceptions detected by a DMA coprocessor include those associated with bus
activity and any other exceptions (interrupts, for example) occurring external
to the coprocessor. The actions taken by the coprocessor and the main pro-
cessor depend on the type of exception that occurs.

When an address or bus error is detected by a DMA coprocessor, the co-
processor should store any information necessary for the main processor
exception handling routines in system-accessible registers. The coprocessor
should place one of the three take exception primitives encoded with an
appropriate exception vector number in the response CIR. Which of the three
primitives is used depends upon the point in the coprocessor instruction at
which the exception was detected and the point in the instruction execution
at which the main processor should continue after exception processing.

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected ex-
ceptions that are not signaled to the main processor with a response pri-
mitive. When the main processor writes a format word to the restore CIR
during the execution of a cpRESTORE instruction, the coprocessor decodes
this word to determine if it is valid (refer to 10.2.3.3 COPROCESSOR CONTEXT
SAVE INSTRUCTION). If the format word is not valid, the coprocessor places
the invalid format code in the restore CIR. When the main processor reads
the invalid format code, it aborts the coprocessor instruction by writing an
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor
then performs exception processing using a four-word pre-instruction stack
frame and the format error exception vector number 14. Thus, if the exception
handler does not modify the stack frame, the MC68030 restarts the
cpRESTORE instruction when the RTE instruction in the handler is executed.
If the coprocessor returns the invalid format code when the main processor
reads the save CIR to initiate a cpSAVE instruction, the main processor per-
forms format error exception processing as outlined for the cpRESTORE
instruction.

10-64 MC68030 USER'S MANUAL MOTOROLA

0

11).5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction
tracing, discussed in 8.1.7 Trace Exception. In the trace on instruction exe-
cution mode, the MC68030 takes a trace exception after completing each
instruction. In the trace on change of flow mode, the MC68030 takes a trace
exception after each instruction that alters the status register or places an
address other than the address of the next instruction in program counter.

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or condi-
tional category instructions does not change when a trace exception is pend-
ing in the main processor. The main processor performs a pending trace on
instruction execution exception after completing the execution of that in-
struction. If the main processor is in the trace on change of flow mode and
an instruction places an address other than that of the next instruction in the
program counter, the processor takes a trace exception after it executes the
instruction.

If a trace exception is not pending during a general category instruction, the
main processor terminates communication with the coprocessor after read-
ing any primitive with CA=0. Thus, the coprocessor can complete a cpGEN
instruction concurrently with the execution of instructions by the main pro-
cessor. When a trace exception is pending, however, the main processor
must ensure that all processing associated with a cpGEN instruction has
been completed before it takes the trace exception. In this case, the main
processor continues to read the response CIR and to service the primitives
until it receives either a null, CA=0, PF= 1 primitive, or until exception pro-
cessing caused by a take post-instruction exception primitive has completed.
The coprocessor should return the null, CA=0 primitive with PF=0, while it
is completing the execution of the cpGEN instruction. The main processor
may service pending interrupts between reads of the response CIR if IA = 1
in these primitives (refer to Table 10-3). This protocol ensures that a trace
exception is not taken until all processing associated with a cpGEN instruction
has completed.

If T1 :T0=01 in the MC68030 status register (trace on change of flow) when
a general category instruction is initiated, a trace exception is taken for the
instruction only when the coprocessor issues a transfer status register and
scanPC primitive with DR = 1 during the execution of that instruction. In this
case, it is possible that the coprocessor is still executing the cpGEN instruction
concurrently when the main processor begins execution of the trace excep-
tion handler. A cpSAVE instruction executed during the trace on change of
flow exception handler could thus suspend the execution of a concurrently
operating cpGEN instruction.

10-70 MC68030 USER'S MANUAL MOTOROLA

1 1 ¸

11.6.9 Immediate Arithmetical/Logical Instructions
The immediate arithmeticaHogical operation timing table indicates the num-
ber of clock periods needed for the processor to fetch the source immediate
data value and to perform the specified arithmetic/logical operation using
the specified destination addressing mode. Footnotes indicate when to ac-
count for the appropriate fetch effective or fetch immediate effective address
times. For instruction-cache case and for no-cache case, the total number of
clock cycles is outside the parentheses. The number of read, prefetch, and
write cycles is given inside the parentheses as (r/p/w). The read, prefetch,
and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail

MOVEQ ' #(data),Dn 2 0

ADDQ #<data),Rn 2 0

ADDQ #(data),Mem 0 1

SUBQ #<data>,Rn 2 0

SUBQ #<data),Mem 0 1

~* ADDt #(data),Dn 2 0

** ADDI #(data),Mem 0 1

~'*' ANDI #(data),Dn 2 0

** ANDI #(data~,Mem 0 1

~*' EORI #(data),Dn 2 0

~* E O R I #<data),Mem 0 I

~* ORI #(data),Dn 2 0

~* ORI #(data),Mem 0 1

~*' SUBI #(data),Dn 2 0

~* SUBI #<data),Mem 0 1

~* CMPI #(data),On 2 0

** C M P I #<data),Mem 0 0

*Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time

I-Cache Case No-Cache Case

2(0/0/0) 2(0/1/0)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

31o/o/1) 4(o/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

2(0/0/0) 2(0/1/0)

11-42 MC68030 USER'S MANUAL MOTOROLA

o

m

~g

z

O

0 ~a
o

MC68030

SIZ0
SIZ1

A0
A1

FC0
FC1

A0,A1

A0-A31AS_ ~ ~
R/N -

00-D3t

A2-A31

PAL16L8

~-.-~ j_ UNMAPPEO BY'rE
SELECTS FOR OTHER

I ~ u M o A I 3281TPORTS

~ I ~ ° I ~ ° ° ~
Lto. / BuaST MOOE I

16-02 O0-D7 08 115 016 123 021 D31

,,, d I

Figure 12-6. Example MC68030 Byte Select PAL System Configuration

2

20 MH
CLOCK

GENERATION i
CLK I

MC6R03O

CLK

00-031 I

q

AO-A31

s~zo I
slz; I
R/wl

s+-r~ I

cB-~t

74F32

74AS374

JL2
/

!BO.A2B3
A380-A383 • A280 ~-

er
i, _..2.1

74F32

BURST ADDRESS I
GENERATION
(SEE BELOW) I

A4-A15 l~l

NC R-~
A30

A19 UMCS - - i ~ A18 LMCS
A1
AO
SIZO
SIZ1
R/W

BYTE SELECT AND ADDRESS I | DECODE PAL16LRD

\

A282

ilGH IGH
CKx ~Kx
RA~ RAt~

A3B2
r - -

r-2 ~
-2 -2

/

D
0 [

A2B3

A383

i
I

/

!IGHT
~K x
RAM!

E

< 3 - - OTHER STERM OR 1
0 ~ _ _ CBACK SIGNALS

SYSTEM STERM/CB-BACK
CONSOUOATION CIRCUITRY

I 74FI91 74F]91 74F19l 74F191

A2 PG - -e- PO
A3 P1 - -e- P1

CLK CP - -o- CP
"~/D

1 3 A380-A3R3
~ = A 2 B 2 83 A2BO-A2B3

8URST ADDRESS GENERATOR (ONE COUNTER PER EIGHT MEMORY DEVICES)

Figure 12-15. Example 3-1-1-1 Pipelined Burst Mode Memory Bank at
20 M H z , 2 5 6 K B y t e s

12-28 MC68030 USER'S MANUAL MOTOROLA

