
NXP USA Inc. - MC68030RC20C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68030

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 20MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 128-BPGA

Supplier Device Package 128-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68030rc20c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68030rc20c-4473667
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Paragraph
Number

1.1
1.2
1.3
1.4
1.5
1.6
1.6.1
1.6.2
1.7
1.8
1.9

2.1
2.2
2.2.1
2.2,2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

2.4.8

2.4.9

TABLE OF CONTENTS

Page
Title Number

Section 1
Introduction

Features. 1-3
MC68030 Extensions to the M68000 Family . 1-4
Programming Model . 1-4
Data Types and Addressing Modes . 1-10
Instruction Set Overv iew 1-10
Virtual Memory and Virtual Machine Concepts . 1-12

Virtual Memory . 1-12
Virtual Machine . 1-14

The Memory Management Unit . 1-15
Pipelined Architecture . 1-16
The Cache Memories 1-16

Section 2
Data Organization and Addressing Capabilities

Instruction Operands . 2-1
Organization of Data in Registers . 2-2

Data Registers . 2-2
Address Registers . 2-4
Control Registers . 2-4

Organization of Data in Memory . 2-5
Addressing Modes 2-8

Data Register Direct Mode . 2-9
Address Register Direct Mode . 2-10
Address Register Indirect Mode.: . 2-10
Address Register Indirect with Postincrement Mode 2-10
Address Register Indirect with Predecrement Mode 2-11
Address Register Indirect with Displacement Mode 2-12
Address Register Indirect with Index (8-Bit Displacement)

Mode . 2-12
Address Register Indirect with Index (Base Displacement)

Mode . 2-13
Memory Indirect Postindexed Mode .. 2-14

MOTOROLA MC68030 USER'S MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.1.8
6.3.1.9
6.3.1.10
6.3.1.11
6.3.2

7.1 Bus
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4

Data Burst Enable . 6-21
Clear Data Cache . 6-21
Clear Entry in Data Cache . 6-21
Freeze Data Cache . 6-22
Enable Data Cache . 6-22
Instruct ion Burst Enable . 6-22
Clear Instruct ion Cache . 6-22
Clear Entry in Instruct ion Cache . 6-22
Freeze Instruct ion Cache . 6-23
Enable Instruct ion Cache . 6-23

Cache Address Register . 6-23

Section 7
Bus Operation

Transfer Signals . 7-1
Bus Control Signals . 7-3
Address Bus . 7-4
Address Strobe . 7-4
Data Bus . 7-5
Data Strobe . 7-5
Data Buffer Enable . 7-5
Bus Cycle Terminat ion Signals . 7-5

Data Transfer Mechan ism . 7-6
Dynamic Bus Sizing . 7-6
Misa l igned Operands . 7-13
Effects of Dynamic Bus Sizing and Operand Misa l ignment 7-19
Address, Size, and Data Bus Relat ionships . 7-22
MC68030 versus MC68020 Dynamic Bus Sizing 7-24
Cache Fi l l ing . 7-24
Cache Interact ions . 7-26
Asynchronous Operat ion .. 7-27
Synchronous Operat ion w i th DSACKx .. 7-28
Synchronous Operat ion w i th STERM .. 7-29

Data Transfer Cycles . 7-30
Asynchronous Read Cycle . 7-31
Asynch ronous Wri te Cycle . 7-37
Asynchronous Read-Modi fy-Wri te Cycle . 7-43
Synchronous Read Cycle . 7-48

MOTOROLA MC68030 USER'S MANUAL vii

1.7 T H E M E M O R Y M A N A G E M E N T U N I T

The MMU supports virtual memory systems by translating logical addresses
to physical addresses using translation tables stored in memory. The MMU
stores address mappings in an address translation cache (ATC) that contains
the most recently used translations. When the ATC contains the address for
a bus cycle requested bythe CPU, a translation table search is not performed.
Features of the MMU include:

• Multiple Level Translation Tables with Short- and Long-Format Descrip-
tors for Efficient Table Space Usage

• Table Searches Automatically Performed in Microcode

• 22-Entry Fully Associative ATC

• Address Translations and Internal Instruction and Data Cache Accesses
Performed in Parallel

• Eight Page Sizes Available Ranging from 256 to 32K Bytes

• Two Optional Transparent Blocks

• User and Supervisor Root Pointer Registers

• Write Protection and Supervisor Protection Attributes

• Translations Enabled/Disabled by Software

• Translations Can Be Disabled with External MMUDIS Signal

• Used and Modified Bits Automatically Maintained in Tables and ATC

• Cache Inhibit Output (CLOUT) Signal Can Be Asserted on a Page-by-Page
Basis

• 32-Bit Internal Logical Address with Capability To Ignore as many as 15
Upper Address Bits

• 3-Bit Function Code Supports Separate Address Spaces

• 32-Bit Physical Address

The memory management function performed by the MMU is called demand
paged memory management. Since a task specifies the areas of memory it
requires as it executes, memory allocation is supported on a demand basis.
If a requested access to memory is not currently mapped by the system, then
the access causes a demand for the operating system to load or allocate the
required memory image. The technique used by the MC68030 is paged mem-
ory management because physical memory is managed in blocks of a spec-
ified number of bytes, called page frames. The logical address space is divided

MOTOROLA MC68030 USER'S MANUAL 1-15

i l

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode
This mode is similar to the address register indirect with index (base dis-
placement) mode described in 2.4.8 Address Register Indirect with Index
(Base Displacement) Mode, but the PC is used as the base register. It requires
an index register indicator and an optional 16- or 32-bit sign-extended base
displacement. The operand is in memory, The address of the operand is the
sum of the contents of the PC, the scaled contents of the sign-extended index
register, and the base displacement. The value of the PC is the address of
the first extension word. The reference is a program space reference and is
only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation "ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

31

BASE DISPLACEMENT: 1

31

INDEX REGISTER: L,

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (PC) + (Xn) + bd
(bd, PC, Xn,SIZE *SCALE)
111
011

31 O

.~ ADD RE SS OF EXTENSION WORD 'J',|

SIGN EXTENDED VALUE

SIGN EXTENDED VALUE

.1.2, 0B 3

I SCALE VALUE

31

I

D

OPERAND

MOTOROLA MC68030 USER'S MANUAL 2-17

3.3.1 Condi t ion Code C o m p u t a t i o n

Most operations take a source operand and a destination operand, compute,
and store the result in the destination location. Single-operand operations
take a destination operand, compute, and store the result in the destination
location. Table 3-12 lists each instruction and how it affects the condition
code bits.

Operat ions

ABCD

ADD, ADDI, ADDQ

ADDX

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI,
CLR, EXT, NOT, TAS, TST

CHK - - * U U U

CHK2, CMP2 - - U ? U ?

SUB, SUBI, SUBQ * * * ? ?

SUBX * * ? ? ?

CAS, CAS2, CMP, CMPI, - - * * ? ?
CMPM

DIVS, DUVI - - * * ? 0

MULS, MULU - - * * ? 0

SBCD, NBCD * U ? U ?

NEG * * * ? ?

NEGX * * ? ? ?

Table 3-12. Condition Code Computations (Sheet 1 of 2)

X N Z V C Special Definit ion

* U ? U ? C = Decimal Carry
Z = Z .\ Rm A ,k

* * * ? ? V = S m . ~ D m A R m V S m A D m A R m
C = S m A D m V R m , . \ D m V S m A R m

* * ? ? ? V = Sm A Dm A R m V S m A Dm A R m
C = Sm A D m V R m , , \ D m V S m A R m
Z = Z A R m A ,\ R0

- - * * 0 0

Z = (R = LB) V (R = UB)
C = (LB < = UB) ,.~. (IR < LB) V (R > UB))

V (U B < L B) A (R > U B) A (B < L B)

V = S m A D m A R m V S m A D m A R m
C = S m A D m V R m . \ D m V S m A Rm

V = S m ? , D m A R m V S m . \ D m A R m
C = Sm A D m V R m , ' , D m V S m A R m
Z = Z A R m A . . . A R 0

V = Sm A I 3 m A R m V S m A D m A R m
C = S m A D m V R m A D m V S m A R m

V = Division Over f low

V = Mult ipl icat ion Over f low

C = Decimal Borrow
Z = Z A R m A . . . A Ro

V = Dm A R m
C = D m V R m

V = Dm A Rm
C = D m V R m
Z = Z A R m A . . . A R 0

M O T O R O L A M C 6 8 0 3 0 U S E R ' S M A N U A L 3 - 1 5

3

3

Another widely used application for bit field instructions is bit-mapped graph-
ics. Because byte boundaries are ignored in these areas of memory, the field
definitions used with bit field instructions are very helpful.

3.5.4 Pipeline Synchronization with the NOP Instruction
Although the no operation (NOP) instruction performs no visible operation,
it serves an irhportant purpose. It forces synchronization of the integer unit
pipeline by waiting for all pending bus cycles to complete. All previous integer
instructions and floating-point external operand accesses complete execution
before the NOP begins. The NOP instruction does not synchronize the FPU
pipeline; floating-point instructions with floating-point register operand des-
tinations can be executing when the NOP begins.

3-32 MC68030 USER'S MANUAL MOTOROLA

Table 5-1. Signal Index (Sheet 2 of 2)

Signal Name

Data Transfer and
Size Acknowledge

Synchronous
Termination

Cache Inhibit In

Cache Inhibit Out

Cache Burst Request

Cache Burst
Acknowledge

Interrupt Priority Level

Interrupt Pending

Au tovec to r

Mnemonic

DSACK0
DSACK1

STERM

ClIN

CLOUT

CBREQ

CBACK

IPLO-IPL2

IPEND

AVEC

Function

Bus response signals that indicate the requested data trans-
fer oceration is completed. In addition, these two lines in-
dica:e :he size of the external bus port on a cycle-by-cycle
basis anc are used for asynchronous transfers.

Bus response signal that indicates a port size of 32 bits and
that data may be latched on the next falling clock edge.

Prevents data from being loaded into the MC68030 instruc-
tion and data caches.

Reflects the CI bit in ATC entries or TTx register; indicates
that external caches should ignore these accesses.

Indicates a burst request for the instruction or data cache.

Indicates that the accessed device can operate in burst mode.

Provides an encoded interrupt level to the processor.

Indicates that an interrupt is pending.

Requests an autovector during an interrupt acknowledge
cycle.

m

Bus Request BR Indicates that an external device requires bus mastership.

BUS Grant BG Indicates that an external device may assume bus master-
ship.

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus master-
ship.

Reset

Halt

Bus Error

Cache Disable

MMU Disable

Pipe Refill

RESET

HALT

BERR

CDIS

MMUDIS

REFILL

System reset.

Indicates that the processor should suspend bus activity.

Indicates that an erroneous bus operation is being at-
tempted.

Dynamically disables the on-chip cache to assist emulator
support.

Dynamically disables the translation mechanism of the MMU.

Indicates when the MC68030 is beginning to fill pipeline.

Microsequencer Status STATUS Indicates the state of the microsequencer.

Clock CLK Clock input to the processor.

Power Supply VCC Power supply.

Ground GND Ground connection.

MOTOROLA MC68030 USER'S MANUAL 5-3

: - 5

5

5.11 EMULATOR SUPPORT SIGNALS

The following signals support emulation by providing a means for an em-
ulator to disable the on-chip caches and memory management unit and by
supplying internal status information to an emulator. Refer to SECTION 12
APPLICATIONS INFORMATION for more detailed information on emulation
support.

5.11,1 Cache Disable (CDIS)

The cache disable signal dynamically disables the on-chip caches to assist
emulator support. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OP-
ERATION for information about the caches; refer to SECTION 12 APPLICA-
TIONS INFORMATION for a description of the use of this signalby an emulator.
CDIS does not flush the data and instruction caches; entries remain unaltered
and become available again when CDIS is negated.

5.11.2 M M U Disable (MMUDIS)

The MMU disable signal dynamically disables the translation of addresses
by the MMU. Refer to 9.4 ADDRESS TRANSLATION CACHE for a description
of address translation; refer to SECTION 12 APPLICATIONS INFORMATION
for a description of the use of this signal by an emulator. The assertion of
MMUDIS does not flush the address translation cache (ATC); ATC entries
become available again when MMUDIS is negated.

5.11,3 Pipeline Refill (REFILL)

The pipeline refill signal indicates that the MC68030 is beginning to refill the
internal instruction pipeline. Refer to SECTION 12 APPLICATIONS INFOR-
MATION for a description of the use of this signal by an emulator.

5.11.4 Internal Microsequencer Status (STATUS)

The microsequencer status signal indicates the state of the internal micro-
sequencer. The varying number of clocks for which this signal is asserted
indicates instruction boundaries, pending exceptions, and the halted con-
dition. Refer to SECTION 12 APPLICATIONS INFORMATION for a description
of the use of this signal by an emulator.

5-10 MC68030 USER'S MANUAL MOTOROLA

8.1.1 Reset Except ion

Assertion by external hardware of the RESE-I = signal causes a reset exception.
For details on the requirements for the assertion of RESET, refer to 7.8 RESET
OPERATION.

The reset exception has the highest priority of any exception; it provides for
system initialization and recovery from catastrophic failure. When reset is
recognized, it aborts any processing in progress, and that processing cannot
be recovered. Figure 8-1 is a f lowchart of the reset exception, which performs
the fol lowing operations:

1. Clears both trace bits in the status register to disable tracing.

2. Places the processor in the interrupt mode of the supervisor privilege
level by setting the supervisor bit and clearing the master bit in the
status register.

3. Sets the processor interrupt priority mask to the highest priority level
(level 7).

4. Initializes the vector base register to zero ($00000000).

5. Clears the enable, freeze, and burst enable bits for both on-chip caches
and the write-allocate bit for the data cache in the cache control register.

6. Invalidates all entries in the instruction and data caches.

7. Clears the enable bit in the translation control register and the enable
bits in both transparent translation registers of the MMU.

8. Generates a vector number to reference the reset exception vector (two
long words) at offset zero in the supervisor program address space.

9. Loads the first long word of the reset exception vector into the interrupt
stack pointer.

10. Loads the second long word of the reset exception vector into the
program counter.

After the initial instruction prefetches, program execution begins at the ad-
dress in the program counter. The reset exception does not flush the address
translation cache (ATC), nor does it save the value of either the program
counter or the status register.

MOTOROLA MC68030 USER'S MANUAL 8-5

T1

0

0

1

1

Table 8-3. Tracing Control

TO Tracing Function

0 No Tracing

1 Trace on Change of Row (BRA, JMP, etc,)

0 Trace on Instruction Execution (Any Instruction)

1 Undefined, Reserved

In general terms, a trace exception is an extension to the function of any
traced instruction - - that is, the execution of a traced instruction is not com-
plete until the trace exception processing is completed: If an instruction does
not complete due to a bus error or address error exception, trace exception
processing is deferred until after the execution of the suspended instruction
is resumed and the instruction execution completes normally. If an interrupt
is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces
an exception as part of its normal execution, the forced exception processing
occurs before the trace exception is processed. See 8.1.12 Multiple Excep-
tions for a more complete discussion of exception priorities.

When the processor is inthe trace mode and attempts to execute an illegal
or unimplemented instruction, that instruction does not cause a trace ex-
ception since it is not executed. This is of particular importance to an instruc-
tion emulation routine that performs the instruction function, adjusts the
stacked program counter to skip the unimplemented instruction, and returns.
Before returning, the trace bits of the status register on the stack should be
checked. If tracing is enabled, the trace exception processing should also be
emulated for the trace exception handler to account for the emulated instruc-
tion.

The exception processing for a trace starts at the end of normal processing
for the traced instruction and before the start of the next instruction. The
processor makes an internal copy of the status register and enters the su-
pervisor privilege level. It also clears the TO and T1 bits of the status register,
disabling further tracing. The processor supplies vector number 9 for the
trace exception and saves the trace exception vector offset, program counter
value, and the copy of the status register on the supervisor stack. The saved
value of the program counter is the logical address of the next instruction
to be executed. Instruction execution resumes after the required prefetches
from the address in the trace exception vector.

MOTOROLA MC68030 USER'S MANUAL 8-13

8

9

63 32

31
63

1
31

31

I
31

I
31

I

CPU ROOT I
POINTER

0
32

SUPERVISOR R00T I
POINTER

0
0

TRANSLATION CONTROL I

TRANSPARENT TRANSLATION 0

TRANSPARENT TRANSLATION 1

0

I
0

I

AODRESS
TRANSLATION
CONTROL
REGISTERS

15 0 ~__ STATUS
I MMU STATUS (MMUSR) I INFORMATION

REGISTER

Figure 9-2. MMU Programming Model

The ATC in the MMU is a ful ly associative cache that stores 22 logical-to-
physical address translations and associated page information. It compares
the logical address and function code internally supplied by the processor
with all tag entries in the ATC. When the access address and function code
matches a tag in the ATC (a hit occurs) and no access violation is detected,
the ATC outputs the corresponding physical address to the bus controller,
which continues the external bus cycle. Function codes are routed to the bus
control ler unmodif ied.

Each ATC entry contains a logical address, a physical address, and status
bits. Among the status bits are the write protect and cache inhibit bits.

When the ATC does not contain the translation for a logical address (a miss
occurs) and an external bus cycle is required, the MMU aborts the access
and causes the processor to initiate bus cycles that search the translation
tables in memory for the correct translation. If the table search completes
wi thout any errors, the MMU stores the translation in the ATC and provides
the physical address for the access, al lowing the bus control ler to retry the
original bus cycle.

9-4 MC68030 USER'S MANUAL MOTOROLA

The page size (PS) field of the TC register specifies the page size for the
system. The number of pages in the system is equal to the logical address
space divided by the page size. The maximum number of pages that can be
defined by a translation tree is greater than 16 million (232/28). The minimum
number is 4 (217/215). The function code can also be used in the table lookup,
defining as many as seven regions of the above size (FC=0-6). The entire
range of the logical address space(s) can be defined by translation tables of
many sizes. The MC68030 provides flexibility that simplifies the implemen-
tation of large translation tables.

The use of a tree structure with as many as five levels of tables provides
granularity in translation table design. The LIMIT field of the root pointer can
limit the value of the first index and limits the actual number of descriptors
required. Optionally, the top level of the structure can be indexed by function
code bits. In this case, the pointer table at this level contains eight descriptors.
The next level of the structure (or the top level when the FCL bit of the TC
register is set to zero) is indexed by the most significant bits of the logical
address (disregarding the number of bits specified by the IS field). The num-
ber of logical address bits used for this index is specified by the TIA field of
the TC register. If, for example, the TIA field contains the value 5, the index
for this level contains five bits, and the pointer table at this level contains at
most 32 descriptors.

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes
for lower levels of the translation table tree. When one of these fields contains
zero, the remaining Tlx fields a r e ignored; the last nonzero Tlx field defines
the index into the lowest level of the tree structure. The tables selected by
the index at this level are page tables; every descriptor in these tables is (or
represents) a page descriptor. Figure 9-6 shows how the TIx fields of the TC
register apply to a function code and logical address.

F-q
2 0

LOGICAL ADDRESS

,s I +T,A +TIB +,,C I +T0 I

i

I A 8 O D

31

Figure 9-6. Derivation of Table Index Fields

PS

OFFSET J

MOTOROLA MC68030 USER'S MANUAL 9-9

¸¸¸9¸

9

CPU ROOT
POINTER

USER DATA SPACE BRANCH

USER PROGRAM SPACE BRANCH

SUPERVISOR DATA SPACE BRANCH

t

SUPERVISOR PROGRAM SPACE BRANCH

4 USER DATA SPACE
8 USER PROGRAM SPACE

$1o
$14 SUPERVISOR DATA SPACE

$18 SUPERVISOR PROGRAM SPACE
$1C

I I
ADDRESS OF FIRST TABLE POINTER =

CPlt ROOT POINTER + (FUNCTION CODE*SIZE]

I J
i

TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED

BY TIA FIELD OF TRANSLATION CONTROL
REGISTER

Figure 9-31. Example Translation Tree Using Function Code Lookup

9-46 MC68030 USER'S MANUAL MOTOROLA

9,6 M C 6 8 0 3 0 A N D MC68851 M M U DIFFERENCES

The MC68851 paged memory management unit provides memory manage-
ment for the MC68020 as a coprocessor. The on-chip MMU of the MC68030
provides many of the features of the MC68020/MC68851 combination. The
following functions of the MC68851 are not available in the MC68030 MMU:

• Access Levels

• Breakpoint Registers

• Root Pointer Table

• Aliases for Tasks

• Lockable Entries in the ATC

• ATC Entries Defined as Shared Globally

In addition, the following features of the MC68030 MMU differ from the
MC68020/MC68851 pair:

• 22-Entry ATC

• Reduced Instruction Set

• Only Control-Alterable Addressing Modes Supported for MMU Instruc-
tions

In general, the MC68030 is program compatible with the MC68020/MC68851
combination. However, in a program for the MC68030, the following instruc-
tions must be avoided or emulated in the exception routine for F-line un-
implemented instructions: PVALID, PFLUSHR, PFLUSHS, PBcc, PDBcc, PScc,
PTRAPcc, PSAVE, PRESTORE, and PMOVE for unsupported registers (CAL,
VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the effective addressing
modes supported on the MC68851 that are not emulated by the MC68030
must be simulated or avoided.

MOTOROLA M068030 USER'S MANUAL 9-51

IO

10.4.5 Supervisor Check Primitive

The supervisor check primitive verifies that the main processor is operating
in the supervisor state while executing a coprocessor instruction. This pri-
mitive applies to instructions in the general and conditional coprocessor
instruction categories. Figure 10-25 shows the format of the supervisor check
primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I11Pcl010101 101010101010101010101

Figure 10-25. Supervisor Check Primitive Format

This primitive uses the PC bit as previously described. Bit [15] is shown as
one, but during execution of a general category instruction, this primitive
performs the same operations regardless of the value of bit [15]. If this pri-
mitive is issued with bit [15]=0 during a conditional category instruction,
however, the main processor initiates protocol violation exception process-
ing.

When the main processor reads the supervisor check primitive from the
response CIR, it checks the value of the S bit in the status register. If S=0
(main processor operating at user privilege level), the main processor aborts
the coprocessor instruction by writ ing an abort mask (refer to 10.3.2 Control
CIR) to the control CIR. The main processor then initiates privilege violation
exception processing (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). If the main
processor is at the supervisor privilege level when it receives this primitive,
it reads the response CIR again.

The supervisor check primitive allows privileged instructions to be defined
in the coprocessor general and conditional instruction categories. This pri-
mitive should be the first one issued by the coprocessor during the dialog
for an instruction that is implemented as privileged.

10,4.6 Transfer Operation Word Primitive

The transfer operation word primitive requests a copy of the coprocessor
instruction operation word for the coprocessor. This primitive applies to
general and conditional category instructions. Figure 10-26 shows the format
of the transfer operation word primitive.

10-40 MC68030 USER'S MANUAL MOTOROLA

10

10.4.20 Take Post-Instruction Exception Primitive

The take post-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the post-instruc-
tion exception stack frame format. This primitive applies to general and con-
ditional category instructions. Figure 10-44 shows the format of the take post-
instruction exception primitive.

15 14 13 12 11 10 9 8 7

I 0 IPcl 0 I 1 1 ' I ' I 101 VECTOR NUMBER

Figure 10-44. Take Post,Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main processor to initiate exception
processing.

When the main processor receives this primitive, it acknowledges the co-
processor exception request by writing an exception acknowledge mask (re-
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then performs
exception processing as described in 8.1 EXCEPTION PROCESSING SE-
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68030 uses the six-word stack frame format shown in
Figure 10-45.

The value in the main processor scanPC at the time this primitive is received
is saved in the scanPC field of the post-instruction exception stack frame.
The value of the program counter saved is the F-line operation word address
of the coprocessor instruction during which the primitive is received.

SP

+02

+06

+08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STATUS REGISTER

SCAN PC

0 0 1 0 J VECTOR NUMBER

PROGRAM COUNTER

Figure 10-45. MC68030 Post-Instruction Stack Frame

10-60 MC68030 USER'S MANUAL MOTOROLA

T h e M 6 8 0 0 0 c o p r o c e s s o r r e s p o n s e p r i m i t i v e f o r m a t s a re s h o w n in t h i s sec-

t i o n . A n y r e s p o n s e p r i m i t i v e w i t h b i ts [13 :8] = $ 0 0 o r $3F c a u s e s a p r o t o c o l

v i o l a t i o n e x c e p t i o n . R e s p o n s e p r i m i t i v e s w i t h b i t s [13 :8] =SOB, $ 1 8 - $ 1 B, $1F,

$ 2 8 - $ 2 B , a n d $ 3 8 - 3 B c u r r e n t l y cause p r o t o c o l v i o l a t i o n e x c e p t i o n s ; t h e y a re

u n d e f i n e d a n d r e s e r v e d f o r f u t u r e use by M o t o r o l a .

BUSY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0

T R A N S F E R M U L T I P L E C O P R O C E S S O R REGISTERS

15 14 13 12 11 10 9 8 7

CA PC DR 0 0 0 0 I LENGTH
0

I

T R A N S F E R S T A T U S REGISTER A N D S C A N P C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0

S U P E R V I S O R CHECK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0

T A K E A D D R E S S A N D T R A N S F E R D A T A

15 14 13 12 11 10 9 8 7
CA PC DR 0 0 1 0 1 LENGTH J

T R A N S F E R M U L T I P L E M A I N PROCESSOR REGISTERS

15 14 13 12 1i 10 9 8 7 6 5 4 3 2 1 0

I c A I P c l ° " l ° i ° I 1 I 1 I ° I ° I ° I 0 I 0 I 0 t 0 I 0 I 0 I

T R A N S F E R O P E R A T I O N W O R D

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I c A I P c l 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 o l 0 1 0 1 0 1 0 1 0 1

MOTOROLA MC68030 USER'S MANUAL 10,73

10

11.3.2 Overlap and Best Case

Overlap is the time, measured in clock periods, that an instruction executes
concurrently with the previous instruction. In Figure 11-2, a portion of in-
structions A and B execute simultaneously. The overlap time decreases the
overall execution time for the two instructions. Similarly, an overlap period
between instructions B and C reduces the overall execution time of these
two instructions.

F INSTRUCTION A I
F

]
OVERLAP

INSTRUCTION B I

t INSTRUCTION C I

l _ _ J
T

OVERLAP

Figure 11-2. Simultaneous Instruction Execution

Each instruction contributes to the total overlap time. As shown in Figure
11-2, a portion of time at the beginning of the execution of instruction B can
overlap the end of the execution time of instruction A. This time period is
called the head of instruction B. The portion of time at the end of instruction
A that can overlap the beginning of instruction B is called the tail of instruction
A. The total overlap time between instructions A and B consists of the lesser
of the tail of instruction A or the head of instruction B. Refer to the instruction
timing tables in 11.6 INSTRUCTION TIMING TABLES for head and tail times.

Figure 11-3 shows the timing relationship of the factors that comprise the
instruction-cache case time for either an effective address calculation (CCea)
or for an operation (CCop). In Figure 11-12, the best case execution time for
instruction B occurs when the instruction-cache-case times for instruction B
and instruction A overlap so that the head of instruction B is completely
overlapped with the tail of instruction A.

11

MOTOROLA MC68030 USER'S MANUAL 11-7

1

11.6.2 Fetch I m m e d i a t e Effective Address (flea)

The fetch immediate effective address table indicates the number of clock
periods needed for the processor to fetch the immediate source operand and

to calculate and fetch the specified destination operand. In the case of two-
word instructions, this table indicates the number of clock periods needed
for the processor to fetch the second word of the instruction and to calculate
and fetch the specified source operand or single operand. The effective ad-
dresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total num-
ber of clock cycles is outside the parentheses. The number of read, prefetch,
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch,
and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

I Addre,,Mode I .earl I Ta, I ,-Cao,eCa,e I No-Cao,eCa.I

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #(dataXW,Dn

% #(data~.L,Dn

#<data).W,(An)

#(data).L,(An)

#(data).W,(An) +

#(data>.L,(An) +

#<data>.W, - (An)

#(data).L,- (An)

#(data).W,(d16, An)

#(data).L,(d16,An)
#<data).W,$XXX.W

#(data).L,$XXX.W

#(data).W,$XXX.L

#(data>.L,$XXX.L

#(data~.W,#<data~.L

BRIEF FORMAT EXTENSION WORD

I #(data).W,(d8,An,Xn) or (ds,PC,Xn)

#(data).L,(d8,An,Xn) or (d8,PC,Xn)

2+op head

4+op head

1

1

2

4

2

2

2

4

4

6

3

5

6+op head

2(01010) 2(01110)

4(01010) 4(0/1/0)

3(11010) 4(11110)

4(11010) 5(11110)

5(1/0/0) 5(11110)

7(1/0/0) 7(1/1/0)

4(1/0/0) 4(111/0)

4(1/0/0) 6(11110)

4(1/0/0) 5(11110)

6(1/0/0) 8(1/2/0)

6(11010) 6(11110)

8(1/0/0) 8(112/0)

6(1/0/0) 7(11210)

8(1/0/0) 9(11210)

6(0/0/0) 6(01210)

8(11010) I 8(1121o)
10(1/0/0) 10(1/2/0)

1 1-28 MC68030 USER'S M A N U A L MOTOROLA

Cycle,
Asynchronous Read, 7-31
Breakpoint Acknowledge, 7-74
Burst, 7-59, 12-17
Coprocessor Communication, 7-74
Interrupt Acknowledge, 7-69
Interrupt Acknowledge, Autovector, 7-71

Cycles, Data Transfer, 7-30

- - D i n

Data, Immediate, 2-21
Data Buffer Enable Signal, 5-6, 7-5, 7-31ff
Data Burst Enable Bit, 6-21
Data

Bus, 5-4, 7-5, 7-30ff, 12-9
Activity, 12-10
Requirements, Read Cycle, 7-10
Write Enable Signals, 7-23

Cache, 1-16, 6-1, 6-6, 11-4, 11-16
Movement Instructions, 3-4
Port Organization, 7-8
Register Direct Mode, 2-9
Registers, 1-6, 2-2
Select, Byte, 7-25
Transfer

Cycles, 7-30
Transfer Mechanism, 7-6

Types, 1-10
Data Strobe Signal, 5-6, 7-5, 7-27ff
Data Transfer and Size Acknowledge Signals, 5-6,

6-11, 6-14, 7-5, 7-6, 7-26ff
DBE Bit, 6-16
DBEN Signal, 5-6, 7-5, 7-31ff
Debugging Aids, 12-35
Decoding, MMU Status Register, 9-61-9-64
Definition, Task Memory Map, 9-66
Delay, Input, 7-2
Derivation, Table Index, 9-9
Description, General, 1-1
Descriptor,

Bits, Unused, 9-71
Fetch Operation Flowchart, 9-44
Indirect,

Long Format, 9-28
Short Format, 9-26

Invalid,
Long Format, 9-28
Short Format, 9-26

Page, Early Termination,
Long Format, 9-25
Short Format, 9-25

Page,
Long Format, 9-26
Short Format, 9-26

Root Pointer, 9-23
Table,

Long Format, 9-24
Short Format, 9-24

Descriptors, Translation Table, 9-10, 9-20
DFC, 1-8, 2-4
Differences,

MC68020 Hardware, 12-3
MC68020 Software, 12-4
MMU, 9-51

DMA Coprocessor, 10-5
Double Bus Fault, 7-94, 8-7
Doubly-Linked List

Deletion Example, 3-30
Insertion Example, 3-29

DR Bit, 10-36
DS Signal, 5-6, 7-5, 7-27ff
DSACK0 Signal, 5-6, 6-11, 6-14, 7-5, 7-6, 7-26ff,
DSACK1 Signal, 5-6, 6-11, 6-14, 7-5, 7-6, 7-26ff,
Dynamic Allocation, Table, 9-40
Dynamic Bus Sizing, 7-6, 7-19, 7-24
D0-D31 Signals, 5-4, 7-5, 7-30ff
D0-DT, 1-6

E

Early Termination, 9-23, 9-70
Early Termination Control, 12-34
ECS Signal, 5-5, 7-4, 7-26ff
ED Bit, 6-22
Effective Address Encoding Summary, 2-22
El Bit, 6-23
Empty/Reset Format Word, 10-22
Enable Data Cache Bit, 6-22
Enable Instruction Cache Bit, 6-23
Encoding,

Address Offset, 7-9
Size Signal, 7-9

Entry, Address Translation Cache, 9-17
Errors, Bus, 7-82
EU, 6-16
Example,

CAS Instruction, 3-25
CAS2 Instruction, 3-25
Contiguous Memory, 9-35
Doubly-Linked List

Deletion, 3-30
Insertion, 3-29

Function Code Lookup, 9-46
Indirection, 9-36
Linked List

Deletion, 3-27
Insertion, 3-26

Protection, Translation Tree, 9-50
System Paging Implementation, 9-72
Table Paging, 9-39
Table Sharing, 9-32
Two Task Translation Tree, 9-47

Exception,
Address Error, 8-8, 10-72
Breakpoint Instruction, 8-22
Bus Error, 8-7, 10-72
cpTRAPcc Instruction, 10-69

INDEX-4 MC68030 USER'S MANUAL MOTOROLA

