
Freescale Semiconductor - MC68030RC40C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68030

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 40MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 128-BPGA

Supplier Device Package 128-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68030rc40c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68030rc40c-4468148
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.1.8
6.3.1.9
6.3.1.10
6.3.1.11
6.3.2

7.1 Bus
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4

Data Burst Enable . 6-21
Clear Data Cache . 6-21
Clear Entry in Data Cache . 6-21
Freeze Data Cache . 6-22
Enable Data Cache . 6-22
Instruct ion Burst Enable . 6-22
Clear Instruct ion Cache . 6-22
Clear Entry in Instruct ion Cache . 6-22
Freeze Instruct ion Cache . 6-23
Enable Instruct ion Cache . 6-23

Cache Address Register . 6-23

Section 7
Bus Operation

Transfer Signals . 7-1
Bus Control Signals . 7-3
Address Bus . 7-4
Address Strobe . 7-4
Data Bus . 7-5
Data Strobe . 7-5
Data Buffer Enable . 7-5
Bus Cycle Terminat ion Signals . 7-5

Data Transfer Mechan ism . 7-6
Dynamic Bus Sizing . 7-6
Misa l igned Operands . 7-13
Effects of Dynamic Bus Sizing and Operand Misa l ignment 7-19
Address, Size, and Data Bus Relat ionships . 7-22
MC68030 versus MC68020 Dynamic Bus Sizing 7-24
Cache Fi l l ing . 7-24
Cache Interact ions . 7-26
Asynchronous Operat ion .. 7-27
Synchronous Operat ion w i th DSACKx .. 7-28
Synchronous Operat ion w i th STERM .. 7-29

Data Transfer Cycles . 7-30
Asynchronous Read Cycle . 7-31
Asynch ronous Wri te Cycle . 7-37
Asynchronous Read-Modi fy-Wri te Cycle . 7-43
Synchronous Read Cycle . 7-48

MOTOROLA MC68030 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

7.3.5
7.3.6
7.3.7
7.4
7.4.1
7.4.1.1
714.1.2
7.4.1.3
7.4.2
7.4.3
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11

Synchronous Write C y c l e . 7-51
Synchronous Read-Modify-Write Cycle . 7-54
Burst Operation Cycles . 7-59

CPU Space Cycles . 7-68
Interrupt Acknowledge Bus Cycles . 7-69

Interrupt Acknowledge Cycle Terminated Normal ly 7-70
Autovector Interrupt Acknowledge Cycle . 7-71
Spurious Interrupt Cycle . 7-74

Breakpoint Acknowledge Cycle . 7-74
Coprocessor Communicat ion Cycles . 7-74

Bus Exception Control Cycles . 7-75
Bus Errors . 7-82
Retry Operation . 7-89
Halt Operation . 7-91
Double Bus Fault . 7-94

Bus Synchronization . 7-95
Bus Arbi t rat ion . 7-96

Bus Request . 7-98
Bus Grant . 7-99
Bus Grant Acknowledge . 7-100
Bus Arbi t rat ion Control . 7-100

Reset Operation . 7-103

Section 8
Exception Processing

Exception Processing Sequence . 8-1
Reset Exception . 8-5
Bus Error Exception . 8-7
Address Error Exception . 8-8
Instruction Trap Exception . 8-9
Illegal Instruction and Unimplemented Instruction

Exceptions . 8-9
Privi lege Violat ion Exception. 8-11
T r a c e E x c e p t i o n . 8-12
Format Error Exception . 8-14
Interrupt Exceptions . 8-14
MMU Configurat ion Exception . 8-21
Breakpoint Instruction Exception 8-22

Viii MC68030 USER'S MANUAL MOTOROLA

2

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERATION: EA = An
ASSEMBLER SYNTAX: An
MODE: 001 31 0
REGISTER: n
AOORESS REGISTER: An ~-I OPERANO J
NUMBER OF EXTENSION WORDS: 0

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the
address of the operand is in the address register specified by the register
field.

GENERATION: EA = (An)
ASSEMBLER SYNTAX: (An)
MODE: 010 31 0
REGISTER: n
AOORESS REGISTE~ A,, = "I MEMORY AOORESS I

I I

31 ,~ 0

MEMORY ADDRESS: I OPERAND I
NUMBER OF EXTENSION WORDS: 0

2.4.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used,lit is incremented by
one, two, or four depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand up
to 255 bytes. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer a l i g n e d to a word boundary.

2-10 MC68030 USER'S MANUAL MOTOROLA

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the MC68030 instruction set. Refer to the
MC68000PM/AD, MC68000 Programmer's Reference Manual, for complete
details on the MC68030 instruction set.

The following paragraphs include descriptions of the instruction format and
the operands used by instructions, followed by a summary of the instruction
set. The integer condition codes and floating-point details are discussed.
Programming examples for selected instructions are also presented:

m

3,1 INSTRUCTION FORMAT

All MC68030 instructions consist of at least one word; some have as many
as 11 words (see Figure 3-1). The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be floating-point command
words, conditional predicates, immediate operands, extensions to the effec-
tive address mode specified in the operation word, branch displacements,
bit number or bit field specifications, special register specifications, trap op-
erands, pack/unpack constants, or argument counts.

15 0

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
{IF ANY, ONE TO SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WOROSi

Figure 3-1. Instruction Word General Format

MOTOROLA M068030 USER'S MANUAL 3-1

03
MICROSEOUENCER AND CONTROL

CONTROL
STORE

CONTROL
LOGIC

01

I ,NSTROCT, ON~,~E ~1 , I~
HE

HI liNG
RE ;TER l~-J
(~ R) I ~ - -

iNTERNAL
DATA
BUS

0)

0

0

m

08

2
C

o
--t
0

0

INSTRUCTION
AOORESS

BUS

PHYSICAL

BUS CONTROLLER

I
I_~ ~,~RO~O~ ~ I

CONTROLLER

BUS CONTROL
SIGNALS

EXECUTION UNIT

DATA
ADDRESS

BUS

I

Figure 6-1. Internal Caches and the MC68030

z'

1
~ OATA

BUS

ih

Ill 1

CACHE SIZE = 64 (LONG WORDS)
LINE SIZE = 4 (LONG WORDS)
SET SIZE = 1

LONG WORD
SELECT

TAG ,NOEX I~--]
I II 1.

A . . . A A

3 . . . 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1ooo3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 0

t TA6

1 OF 16 /
SELECT ~ ,~

TAG ~ ,
REPLACE

ACCESS ADDRESS

II I IIII

I COMPARATOR

V V V V

• • • •
!

t _ _ l t

VAUD

-3
ENTRY HIT

DATA FROM INSTRUCTON
CACHE DATA BUS

DATA TO INSTRUCTION
L . _ _ ~ CACHE HOLDING REGISTER

T ~ CACHE CONTROL LOGIC

Figure 6-2. On-Chip Instruction Cache Organization

When enabled, the instruction cache is used to store instruction prefetches
(instruction words and extension words) as they are requested by the CPU.
Instruction prefetches are normally requested from sequential memory ad-
dresses except when a change of program flow occurs (e.g., a branch taken)
or when an instruction is executed that can modify the status register, in
which cases the instruction pipe is automatically flushed and refilled. The
output signal REFILL indicates this condition. For more information on the
operation of this signal, refer to SECTION 12 APPLICATIONS INFORMATION.

In the instruction cache, each of the 16 lines has a tag consisting of the 24
most significant logical address bits, the FC2 function code bit (used to dis-
tinguish between user and supervisor accesses), and the four valid bits (one

MOTOROLA MC68030 USER'S MANUAL 6-5

SECTION 7
BUS OPERATION

This section provides a functional description of the bus, the signals that
control it, and the bus cycles provided for data transfer operations, It also
describes the error and halt conditions, bus arbitration, and the reset oper-
ation. Operation of the bus is the same whether the processor or an external
device is the bus master; the names and descriptions of bus cycles are from
the point of view of the bus master. For exact timing specifications, refer to
SECTION 13 ELECTRICAL CHARACTERISTICS.

The MC68030 architecture supports byte, word, and long-word operands,
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn-
chronous cycles controlled by the data transfer and size acknowledge inputs
(DSACK0 and DSACK1).

Synchronous bus cycles controlled by the synchronous termination signal
(STERM) can only be used to transfer data to and from 32-bit ports.

The MC68030 allows byte, word, and long-word operands to be located in
memory on any byte boundary. For a misaligned transfer, more than one
bus cycle may be required to complete the transfer, regardless of port size.
For a port less than 32 bits wide, multiple bus cycles may be required for an
operand transfer due to either misalignment or a port width smaller than the
operand size. Instruction words and their associated extension words must
be aligned on word boundaries. The user should be aware that misalignment
of word or long-word operands can cause the MC68030 to perform multiple
bus cycles for the operand transfer; therefore, processor performance is
optimized if word and long-word memory operands are aligned on word or
long:word boundaries, respectively.

J

7.1 B U S T R A N S F E R S I G N A L S

The bus transfers information between the MC68030 and an external mem-
ory, coprocessor, or peripheral device. External devices can accept or provide
8 bits, 16 bits, or 32 bits in parallel and must follow the handshake protocol
described in this section. The maximum number of bits accepted or provided
during a bus transfer is defined as the port width. The MC68030 contains an

MOTOROLA MC68030 USER'S MANUAL 7-1

7

State 6
The processor asserts ECS and OCS in $6 to indicate that another external
cycle is beginning. The processor drives R/W low for a write cycle. CLOUT
also becomes valid, indicating the state of the MMU CI bit in the address
translation descriptor or in a relevant TTx register. Depending on the write
operation to be performed, the address lines may change during $6.

State 7
In $7, the processor asserts AS, indicating that the address on the address
bus is valid. The processor also asserts DBEN, which can be used to enable
data buffers during $7. In addition, the ECS (and OCS, if asserted) signal
is negated during $7.

State 8
During $8, the processor places the data to be written onto D0-D31.

State 9
The processor asserts DS during $9 indicating that the data is stable on
the data bus. As long as at least one of the DSACKx signals is recognized
by the end of $8 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACKx is not recognized by the
start of $9, the processor inserts wait states instead of proceeding to $10
and $11. To ensure that wait states are inserted, both DSACK0 and DSACK1
must remain negated throughout the asynchronous input setup and hold
times around the end of $8. If wait states are added, the processor con-
tinues to sample DSACKx signals on the falling edges of the clock until
one is recognized.

The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1 to latch data from
the appropriate section(s) of the data bus (D24-D31, D16-D23, DS-D15,
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. If it has
not already done so, the device asserts DSACKx when it has successfully
stored the data.

State 10
The processor issues no new control signals during $10.

MOTOROLA MC68030 USER'S MANUAL 7-47

7

SO $1 $2 Sw Sw Sw Sw Sw S,', $3 S',',' Sw $4 $5 Sw Sw $6 $7 Sw Sw $8 $9

CLK

A4-A31

A3-- k

AO-A2 J

FCO-FC2

StZO-SIZ1

R/~ ____/

Ec7

s - - k _ /

STERM J

CLOUT J

CSREQ

CSACK

D0-D31

DBE7 J

m \

\

/
\ /

b4-b7 bS-b8 bC-bl: b0-b3

/-

01 ~0 11

VALUE OF ~ ~ :'~CREMENTEO BY THE SYSTEM HARDWARE

Figure 7-38. Long-Word Operand Request from $07 with
Burst Request and Wait Cycle

MOTOROLA MC68030 USER'S MANUAL 7-63

7

7.4.1.1 INTERRUPT ACKNOWLEDGE C Y C L E - - TERMINATED NORMALLY. When
the MC68030 processes an interrupt exception, it performs an interrupt ac-
knowledge cycle to obtain the number of the vector that contains the starting
location of the interrupt service routine.

Some interrupting devices have programmable vector registers that contain
the interrupt vectors for the routines they use. The fol lowing paragraphs
describe the interrupt acknowledge cycle for these devices. Other interrupting
condit ions or devices cannot supply a vector number and use the autovector
cycle described in 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE.

The interrupt acknowledge cycle is a read cycle. It differs from the asyn-
chronous read cycle described in 7.3.1 Asynchronous Read Cycle or the syn-
chronous read cycle described in 7.3.4 Synchronous Read Cycle in that it
accesses the CPU address space. Specifically, the differences are:

1. FC0-FC2 are set to seven (FC0/FC1/FC2 = 111) for CPU address space.

2. A1, A2, and A3 are set to the interrupt request level (the inverted values
of IPL0, IPL1, and IPL2, respectively).

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowl-
edge code.

4. A20-A31, A4-A15, and A0 are set to one.

The responding device places the vector number on the data bus during the
interrupt acknowledge cycle. Beyond this, the cycle is terminated normal ly
with either STERM or DSACKx. Figure 7-43 is the f lowchart of the interrupt
acknowledge cycle.

7-70 MC68030 USER'S MANUAL MOTOROLA

signal. When the requesting device receives BG and more than one external
device can be bus master, the requesting device should begin whatever
arbitration is required. The external device asserts BGACK when it assumes
bus mastership and maintains BGACK during the entire bus cycle (or cycles)
for which it is bus master. The following conditions must be met for an
external device to assume mastership of the bus through the normal bus
arbitration procedure:

• It must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the
external device must ensure that all appropriate processor signals have
been placed in the high-impedance state (by observing specification #7
in MC68030EC/D, MC68030 Electrical Specifications).

• The termination signal (DSACKx or STERM) for the most recent cycle
must have become inactive, indicating that external devices are off the
bus (optional, refer to 7.7.3 Bus Grant Acknowledge).

• BGACK must be inactive, indicating that no other bus master has claimed
ownership of the bus,

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for
a single device. Figure 7-60 is a timing diagram for the same operation. This
technique allows processing of bus requests during data transfer cycles.

The timing diagram shows that BR is negated at the time that BGACK is
asserted. This type of operation applies to a system consisting of the pro-
cessor and one device capable of bus mastership. In a system having a
number of devices capable of bus mastership, the bus request line from each
device can be wire-ORed to the processor. In such a system, more than one
bus request can be asserted simultaneously.

The timing diagram in Figure 7-60 shows that BG is negated a few clock
cycles after the transition of the BGACK signal. However, if bus requests are
still pending after the negation of BG, the processor asserts another BG within
a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current
bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET
assertion, HALT assertion, and even when the processor has halted due to
a double bus fault.

MOTOROLA MC68030 USER'S MANUAL 7-97

N

9

9.7 REGISTERS

The registers of the MMU described here are part of the supervisor pro-
gramming model for the MC68030.

The six registers that control and provide status information for address
translation in the MC68030 are the CPU root pointer register (CRP), the su-
pervisor root pointer register (SRP), the translation control register (TC), two
independent transparent translation control registers (TT0 and TT1), and the
MMU status register (MMUSR). These registers can be accessed directly by
programs that execute only at the supervisor level.

9.7.1 Root Pointer Registers

The supervisor root pointer (SRP), used for supervisor accesses only, is en-
abled or disabled in software. The CPU root pointer (CRP) corresponds to
the current translation table for user space (when the SRP is enabled) or for
both user and supervisor space (when the SRP is disabled). The CRP is a
64-bit register that contains the address and related status information of the
root of the translation table tree for the current task. When a new task begins
execution, the operating system typically writes a new root pointer descriptor
to the CRP. A new translation table address implies that the contents of the
address translation cache (ATC) may no longer be valid. Therefore, the in-
struction that loads the CRP can optionally flush the ATC.

The SRP is a 64-bit register that optionally contains the address and related
status information of the root of the translation table for supervisor area
accesses. The SRP is used when operating at the supervisor privilege level
only when the supervisor root pointer enable bit (SRE) of the translation
control register (TC) is set. The instruction that loads the SRP can optionally
flush the ATC. The format of the CRP and SRP is shown in Figure 9-35 and
defines the following fields:

Lower/Upper (L/U)
Specifies that the value contained in the limit field is to be used as the
unsigned lower limit of indexes into the translation tables when this bit is
set. When this bit is cleared, the limit field is the unsigned upper limit of
the translation table indexes.

9-52 MC68030 USER'S MANUAL MOTOROLA

tection and maps the entire virtual operating system, physical I/0, and phys-
ical memory areas. This scheme avoids the requirement for extra lookup
levels or pointer manipulat ions during a task switch to furnish correct access
across the user/supervisor boundary. All the operating system has to do when
creating the address table for a new task is to set the first upper level table
entry to point to the common page table of the supervisor.

To solve the problem of accounting for virtual memory areas assigned to a
user task, the operating system uses the existing translation tables to identify
these areas. When a valid descriptor points to a given virtual address page,
this 8K-byte page of memory has been allocated. This scheme provides areas
of memory that are mult iples of the 8K-byte page size. Due to the 8K gran-
ularity, this scheme would be inadequate for tasks that continual ly request
and return virtual memory space. As a result, some other technique would
be used (perhaps auxi l iary tables to show virtual space availability). The tasks
in this system seldom request additional memory space; any request made
is for a large area. This scheme suffices. The application programs and util it ies
that run in the UNIX (r) environment have similar requirements for memory.

The operating system primit ive GetVirtual allocates virtual memory space
for tasks. The input parameter is a block size, in bytes; GetVirtual returns the
virtual address for the new block. GetVirtual first checks that the requested
size is not too large. Then it scans the translation tables looking for an un-
allocated virtual memory area large enough to hold the requested block. If
it does not find enough space, GetVirtual attempts to increase the page table
size to its maximum. If this does not provide the space, GetVirtual returns
an error indication. When the routine f inds enough virtual space for the block,
it sets the page descriptors for the block to virgin status (invalid, but allo-
cated). When these pages are first used, a page fault is generated. The op-
erating system allocates a page frame for the page and replaces the descriptor
with a valid page descriptor. The status (indicated by a software flag in the
invalid descriptor) tells the operating system that the paging device does not
have a page image for this page; no read operation from the paging device
is required.

When the status of an invalid descriptor indicates that a page image must
be read in, primit ive SwaplnPage, reads in the image. The input parameter
for this routine is the invalid descriptor, which contains the disk address of
the page image. Before returning, SwaplnPage replaces the invalid descriptor
with a valid page descriptor that contains the page address. The page is now
ready for use.

MOTOROLA MC68030 USER'S MANUAL 9-77

9

IO

are dedicated coprocessor instructions that utilize the coprocessor capabil-
ities. The necessary interactions between the main processor and the copro-
cessor that provide a given service are transparent to the programmer. That
is, the programmer does not need to know the specific communication pro-
tocol between the main processor and the coprocessor because this protocol
is implemented in hardware. Thus, the coprocessor can provide capabilities
to the user without appearing separate from the main processor.

In contrast, standard peripheral hardware is generally accessed through in-
terface registers mapped into the memory space of the main processor. To
use the services provided by the peripheral, the programmer accesses the
peripheral registers with standard processor instructions. While a peripheral
could conceivably provide capabilities equivalent to a coprocessor for many
applications, the programmer must implement the communication protocol
between the main processor and the peripheral necessary to use the pe-
ripheral hardware.

The communication protocol defined for the M68000 coprocessor interface
is described in 10.2 COPROCESSOR INSTRUCTION TYPES. The algorithms
that implement the M68000 coprocessor interface are provided in the micro-
code of the MC68030 and are completely transparent to the MC68030 pro-
grammer's model. For example, floating-point operations are not implemented
in the MC68030 hardware. In a system utilizing both the MC68030 and the
MC68881 or MC68882 floating-point coprocessor, a programmer can use any
of the instructions defined for the coprocessor without knowing that the
actual computation is performed by the MC68881 or MC68882 hardware.

10.1.1 In ter face Fea tures

The M68000 coprocessor interface design incorporates a number of flexible
capabilities. The physical coprocessor interface uses the main processor ex-
ternal bus, which simplifies the interface since no special-purpose signals
are involved. With the MC68030, a coprocessor can use either the asynchron-
ous or synchronous bus transfer protocol. Since standard bus cycles transfer
information between the main processor and the coprocessor, the copro-
cessor can be implemented in whatever technology is available to the co-
processor designer. A coprocessor can be implemented as a VLSI device, as
a separate system board, or even as a separate computer system.

Since the main processor and a M68000 coprocessor can communicate using
the asynchronous bus, they can operate at different clock frequencies. The
system designer can choose the speeds of a main processor and coprocessor

10-2 MC68030 USER'S MANUAL MOTOROLA

If the format word written to the restore CIR does not represent a valid
coprocessor state frame, the coprocessor places an invalid format word in
the restore CIR and terminates any current operations. The main processor
receives the invalid format code, writes an abort mask (refer to 10.2.3.2.3
Invalid Format Word) to the control CIR, and initiates format error exception
processing (refer to 10.5.1.5 FORMAT ERRORS).

The cpRESTORE instruction is a privileged instruction. When the main pro-
cessor accesses a cpRESTORE instruction, it checks the supervisor bit in the
status register. If the MC68030 attempts to execute a cpRESTORE instruction
while at the user privilege level (status register bit [13] = 0), it initiates privilege
violation exception processing without accessing any of the coprocessor
interface registers (refer to 10.5.2.3 PRIVILEGE VIOLATIONS).

10.3 COPROCESSOR INTERFACE REGISTER SET

The instructions of the M68000 coprocessor interface use registers of the CIR
set to communicate with the coprocessor. These CIRs are not directly related
to the coprocessor's programming model.

Figure 10-4 is a memory map ofthe CIR set. The registers denoted by asterisks
(*) must be included in a coprocessor interface that implements coprocessor
instructions in all four categories. The complete register model must be
implemented if the system uses all of the coprocessor response primitives
defined for the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

10.3.1 Response CIR

The coprocessor uses the 16-bit response CIR to communicate all service
requests (coprocessor response primitives) to the main processor. The main
processor reads the response CIR to receive the coprocessor response pri-
mitives during the execution of instructions in the general and conditional
instruction categories. The offset from the base address of the CIR set for
the response CIR is $00. Refer to 10.4 COPROCESSOR RESPONSE PRIMI-
TIVES.

MOTOROLA MC68030 USER'S MANUAL 10-29

10

The MC68030 discards any instruction words that have been prefetched be-
yond the current scanPC location when this primitive is issued with DR=I
(transfer to main processor). The MC68030 then refills the instruction pipe
from the scanPC address in the address space indicated bythe status register
S bit.

If the MC68030 is operating in the trace on change of flow mode (TI:T0 in
the status register contains 01) when the coprocessor instruction begins to
execute and if this primitive is issued with DR = 1 (from coprocessor to main
processor), the MC68030 prepares to take a trace exception. The trace ex-
ception occurs when the coprocessor signals that it has completed all pro-
cessing associated with the instruction. Changes in the trace modes due to
the transfer of the status register to main processor take effect on execution
of the next instruction.

10

10.4.18 Take Pre-lnstruction Exception Primitive
The take pre-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the pre-instruc-
tion exception stack frame format. This primitive applies to general and con-
ditional category instructions. Figure 10-40 shows the format of the take pre-
instruction exception primitive.

15 14 13 12 11 10 9 8 7 0

I ° I Pc I ° I 1 I 1 I 1 I ° I ° I VEOTORNUMBE, I

Figure 10-40. Take Pre-lnstruction Exception Primitive Format

The primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main processor to initiate exception
processing.

When the main processor receives this primitive, it acknowledges the co-
processor exception request by writing an exception acknowledge mask (re-
fer to 10.3.2 Control ClR) to the control CIR. The MC68030 then proceeds with
exception processing as described in 8.1 EXCEPTION PROCESSING SE-
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68030 uses the four-word stack frame format shown in
Figure 10-41.

10-56 MC68030 USER'S MANUAL MOTOROLA

Note that for the head of flea #<data>.L,D1, 4+op head, the resulting head
of 6 is larger than the instruction-cache-case time of the fetch. A negative
number for the execution t ime of that port ion could result (e.g.,
4 - min(6,6) = - 2). This result would produce the correct execution time since
the fetch was completely overlapped and the operation was partially over-
lapped by the same tail. No changes in the calculation for the operation
execution time are required.

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the
fetch immediate effective address (flea) time or the calculate immediate ef-
fective address (ciea) time in the execution time calculation. The timing for
immediate data of word length (#<data>.W) is used for these calculations.
If the instruction has a source and a destination, the source EA is used for
the table lookup. If the instruction is single operand, the effective address of
that operand is used.

The following example includes multi-word instructions that refer to the fetch
immediate effective address and calculate immediate effective address tables
in 11.6 INSTRUCTION T I M I N G TABLES,

Instruction
1. MULU.L (D7),DI:D2
2. BFCLR $6000{0:8}
3. DIVS.L #$10000,D3:D4

1. MULU.L (D7),DI:D2
flea #<data>.W,Dn

MUL.L EA, Dn

2. BFCLR $6000{0:8}
flea #<data>.W,$XXX.W

BFCLR Mem(<5 bytes)

3. DIVS.L #$10000,D3:D4
flea #<data>.W,#<data>.L

DIVS.L EA,Dn

Head

2 + op head
4

2(op head)

4

6

6 - op head
6

0(op head)

Tail

0
0

0

2

0

0
0

0

CC

2
2

44

6

14

6
6

90

MOTOROLA MC68030 USER'S MANUAL 11-15

11

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)
I Address Mode I Head I Tail I I-Cache Case INo-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT
~/o #<data>.W,Dn 2+op head 0

Yo #<data).L,Dn 14+op head 0

'/~ #(data).W,(An) 2+op head 0

~/o #(data).L,(An) .4+op head 0

#<data).W,(An) + 2 0

#(data).L,(An) + 4 0

Yo #<data).W, (An) 2+op head 0

~/o #<data>.L,-(An) 4+op head 0

.% #(data).W,(d16,An) 4+op head 0

Yo #<deta).L,(d16,An) 6+op head 0

Yo #(data).W,$XXX.W 4+op head 0

% #(data).L,$XXX.W 6+op head 0

Yo #<data>IW,$XXX.L 6+op head 0

~/o #<data).L,$XXX.L 8+op head 0

BRIEF FORMAT EXTENSION WORD
i~ #<data>.W,(d8,An,Xn) or (d8,PC,Xn)

#(data).L,(ds,An,Xn) or (d8,PC,Xn)

FULL FORMAT EXTENSION WORD(S)
#<data>.W,(d16,An) or (d16,PC)

#(data).L,(d16,An) or (d16,PC)

>/<~ #<data).W,(d16,An,Xn) or (d16,PC,Xn)

>/o #<data>.L,(d16,An,Xn) or (d16,PC,Xn)

#(deta>.W,([d16,An]) or ([d 16,PC])

#(data).L,([d16,An]) or ([d16,PC])

#<data>.W,([d16,An],Xn) or ([d16,PC],Xn)

#(data).L,/{d16,Ani,Xn) or ([d16,PCI,Xn)

#<data).W,([d16,An],d16) or ([d16,PC],d16)

#<data).L,([d16,An],d16) or ([d16,PC],d16)

#(data).W,(!d16,An],Xn,d16) or (Id16,PC],Xn,d16}

#(data).L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16)
#<data).W,([d16,An],d32) or ([d16,PC],d32)

#(data>.L,{[d16,An],d32) or ([d16,PC],d32)

#<data).W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32)

#(data).L,([d 16,An],Xn,d32) or ([d 16,PC],Xn,d32)

Yo #(data).W,(B)

~/o #(data>.L,(B)

6+op head 0

8+op head 0

4 0

6 0

8+op head 0

10+op head 0

4 0

6 0

4 0

6 0

4 0

6 0

4 0

6 0

4 0

6 0

4 0

6 0

8+op head 0

10+op head 0

2(0/0/0) 2(0/1/0)

4(0/0/0) 4(0/1/0)
2(0/0/0) 2(0/1/0)

4(0/0/0) 4(0/1/0)

4(0/0/0) 4(0/1/0)

6(0/0/0) 6(0/1/0)
2(0/0/0) 2(0/1/0)

4(0/0/0) 4(0/1/0)

4(0/0/0) 4(0/1/0)

6(0/0/0) 7(0/2/0)

4(0/0/0) 4(0/1/0)

6(0/0/0) 6(0/2/0)

6(0/0/0) 6(0/2/0)

8(0/0/0) 8(0/2/0)

6(0/0/0) 6(0/2/0)

8(0/0/0) 8(0/2/0)

8(0/0/0) 8(0/2/0)

10(0/0/0) 10(0/2/0)

8(0/0/0) 8(0/2/0)

10(0/0/0) 10(0/2;0)

12(1/0/0) 12(1/2.0)

14(1/0/0) 14(1/1:0)

12(1/0/0) 12(1/2/0)

14(1/0/0} 14(1/1~0)

14(1/0/0) 15(1/20)

16(1/0/0) 17(1/3 o)

14(1/0/0} 15(1/20}

16(1/0/0) 17(1/30)

14(1/0/0) 16(1/3 o)

16(1/0/0) 17(1/3 o)

14(1/0/0) 15(1/3 o}

16(1/0/0) 17(1/3 o!

8(0/0/0) 8(0~1 0

10(0/0/0) 10(0~20;

M O T O R O L A MC68030 USER'S M A N U A L 11-33

11

SECTION 12
APPLICATIONS INFORMATION

This section provides guidelines for Using the MC68030. First, it discusses
the requirements for adapting the MC68030 to MC68020 designs. Then, it
describes the use of the MC68881 and MC68882 coprocessors with the
MC68030. The byte select ogic is described next, followed by memory inter-
face information. A description of external caches, the use of the STATUS
and REFILL signals, and power and ground considerations complete the sec-
tion.

12.1 ADAPTING THE MC68030 TO MC68020 DESIGNS

Perhaps the easiest way to first utilize the MC68030 is in a system designed
for the MC68020. This is possible due to the complete compatibility of the
asynchronous buses of the MC68020 and MC68030. This section describes
how to configure an adapter for the MC68030 to allow insertion into an
existing MC68020-based system Software and architectural differences be-
tween the two processors are also discussed. The need for an adapter is
absolute because the MC68020 and MC68030 are NOT pin compatible. Use
of the adapter board provides the immediate capability for evaluating the
programmer's model and instruction set of the MC68030 and for developing
software to utilize the MC68030's additional enhanced features. This adapter
board also provides a relatively simple method for increasing the perform-
ance of an existing MC68020 or MC68020/MC68851 system by insertion of a
more advanced 32-bit MPU with an on-chip data cache and an on-chip MMU.
Since the adapter board does not support of the synchronous bus interface
of the MC68030, performance measurements for the MC68030 used in this
manner may be misleading when compared to a system designed specifically
for the MC68030.

The adapter board plugs into the CPU socket of an MC68020 target system,
drawing power, ground, and clock signals through the socket and running
bus cycles in a fashion compatible with the MC68030. The only support
hardware necessary is a single 1K-ohm pullup resistor and two capacitors
for decoupling power and ground on the adapter board.

MOTOROLA MC68030 USER'S MANUAL 12-1

1;

20 MHz 74F32
CLOCK

GENERATION ~ r . ~ C 74AS373 DLK] s/
MC68030 J ~

1 i ~ " 4 CL K [
CLK

00-031 3T /

- - I I BURST ADDRESS] ~ E : ~ J
CBDEQ GENERATION ~ ' ~3E2-~3~ A2BO

(SEE BELOW) ; ' S ' " "

AO-A31 I / 1

, - , _

OAS a ~ - -

AO
SIZO
SIZ1
R/W -

CRACK

A30
A20 UUCS
A19 ~ - -
A1S

S~ZO T ~
SIZ1
R/W

BYTE SELECT AND ADDRESS
DECODE PAL16LSD

SYSTEM STERM/CDACK
CONSOIIOATION C016UITRY

74F191

I A~

~K x
DAN

i
I A3B2

i i
r " t

74F32

OTHEO STERMOR
CRACK SIGNALS

74FI91 74~191 74F191

A2 PO
A3 P1

CLK CP

:;: ol -J 00 01

k-'~a2 kA2BS
BURST ADDRESS GENERATOR (ONE DDLN-~ = ;~= E:GHT MEMORY DEVICES).

I

A2B3

IGH
SK x
RAN

A3B3

7~

- - i

/

I
1
b C

~IGH1
4K x
RAM

~/ E

A3~ -" ,~ =,53

A2~ .~;~

Figure 12-14. Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes

M O T O R O L A MC68030 USER'S M A N U A L 12-25

1 :

