

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/m0516zan

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1	GENER	AL DESCRIPTION	••6
2	FEATU	RES	··7
3	BLOCK	DIAGRAM	11
4	SELEC	TION TABLE	12
5	PIN CO	NFIGURATION	13
	5.1 QFN 3	3 pin	13
	5.2 LQFP	48 pin	14
	5.3 Pin De	escription	15
6	FUNCT	IONAL DESCRIPTION	18
	6.1 ARM®) Cortex™-M0 Core ······	18
	6.2 Syster	n Manager ·····	20
	6.2.1	Overview	20
	6.2.2	System Reset	20
	6.2.3	System Power Architecture	20
	6.2.4	Whole System Memory Map	22
	6.2.5	Whole System Memory Mapping Table	24
	6.2.6	System Timer (SysTick)	25
	6.2.7	Nested Vectored Interrupt Controller (NVIC)	26
	6.3 Clock	Controller	27
	6.3.1	Overview	27
	6.3.2	Clock Generator Block Diagram	27
	6.3.3	System Clock and SysTick Clock	30
	6.3.4	AHB Clock Source Select	31
	6.3.5	Peripherals Clock Source Select	32
	6.3.6	Power Down Mode Clock	33
	6.3.7	Frequency Divider Output	34
	6.4 Generation	al Purpose I/O	35
	6.4.1	Overview	35
	6.5 I ² C Se	rial Interface Controller (Master/Slave)	37
	6.5.1	Overview	37
	6.5.2	Features	37
	6 6 P\MM	Generator and Canture Timer	20
	661		20
	662	Features	40
	0.0.2		
	6.7 Serial	Peripheral Interface (SPI) Controller	41
	0.7.1 670		41 41
	0.1.2	Fealures	41
	6.8 Timer	Controller	42

Publication Release Date: May 30, 2011 Revision V2.00

2 FEATURES

- Core
 - ARM[®] Cortex[™]-M0 core runs up to 50 MHz.
 - One 24-bit system timer.
 - Supports low power sleep mode.
 - A single-cycle 32-bit hardware multiplier.
 - NVIC for the 32 interrupt inputs, each with 4-levels of priority.
 - Supports Serial Wire Debug (SWD) interface and 2 watchpoints/4 breakpoints.
- Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
- Memory
 - 32KB/64KB Flash memory for program memory (APROM)
 - 4KB Flash memory for data memory (DataFlash)
 - 4KB Flash memory for loader (LDROM)
 - 4KB SRAM for internal scratch-pad RAM (SRAM)
- Clock Control
 - Programmable system clock source
 - External 4~24 MHz high speed crystal input
 - Internal 22.1184 MHz high speed oscillator (trimmed to 1% accuracy)
 - Internal 10 kHz low speed oscillator for Watchdog Timer
 - PLL allows CPU operation up to the maximum 50MHz
- I/O Port
 - Up to 40 general-purpose I/O (GPIO) pins for LQFP-48 package
 - Four I/O modes:
 - Quasi bi-direction

Publication Release Date: May 30, 2011 Revision V2.00

5 PIN CONFIGURATION

5.1 QFN 33 pin

nuvoTon

Figure 5-1 NuMicro™ M051 Series QFN33 Pin Diagram

NuMicro[™] M058/M0516 Data Sheet

nuvoTon

5.2 LQFP 48 pin

Figure 5-2 NuMicro™ M051 Series LQFP-48 Pin Diagram

NuMicro[™] M058/M0516 Data Sheet

nuvoTon

Pin number		Symbol	Alternate	ernate Function Type ^[1]		Description		
QFN33	LQFP48		1	2		Description		
23	34	P0.5	MOSI_1	AD5	D, I/O	RTS0/1: Request to Send output pin for UART0/1		
22	33	P0.6	MISO_1	AD6	D, I/O			
21	32	P0.7	SPICLK1	AD7	D, I/O			
29	43	P1.0	T2	AIN0	I/O			
NC	44	P1.1	Т3	AIN1	I/O	PORT1: Port 1 is an 8-bit four mode output pin and two mode input Its multifunction pins are for T2_T3_RXD1		
30	45	P1.2	RXD1	AIN2	I/O	TXD1, SPISS0, MOSI_0, MISO_0, and SPICLK0.		
31	46	P1.3	TXD1	AIN3	I/O	12: Timer2 external input T3: Timer3 external input		
32	47	P1.4	SPISS0	AIN4	I/O	These pins which are SPISS0, MOSI_0, MISO_0, and SPICLK0 for the SPI function used.		
1	1	P1.5	MOSI_0	AIN5	I/O	These pins which are AIN0~AIN7for the 12 bits ADC function used. The RXD1/TXD1 pins are for UART1 function used.		
NC	2	P1.6	MISO_0	AIN6	I/O			
NC	3	P1.7	SPICLK0	AIN7	I/O			
NC	19	P2.0	PWM0	AD8	D, I/O			
NC	20	P2.1	PWM1	AD9	D, I/O			
14	21	P2.2	PWM2	AD10	D, I/O	PORT2: Port 2 is an 8-bit four mode output pin and two mode input. It has an alternative function		
15	22	P2.3	PWM3	AD11	D, I/O	P2 has an alternative function as AD[15:8] while external		
16	23	P2.4	PWM4	AD12	D, I/O	These pins which are PWM0~PWM7 for the PWM function.		
17	25	P2.5	PWM5	AD13	D, I/O			
18	26	P2.6	PWM6	AD14	D, I/O			
NC	27	P2.7	PWM7	AD15	D, I/O			
3	5	P3.0	RXD		I/O	PORT3: Port 3 is an 8-bit four mode output pin and two		
5	7	P3.1	TXD		I/O	mode input. Its multifunction pins are for RXD, TXD, \overline{INTC}		

Pin number		Symbol	Alternate Function		Type ^[1]	Description	
QFN33	LQFP48	-	1	2			
6	8	P3.2	INT0	STADC	I/O	INT1, T0, T1, WR , and RD.	
NC	9	P3.3	INT1	MCLK	I/O	T1: Timer1 external input	
7	10	P3.4	Т0	SDA	I/O	The SDA/SCL pins are for I^2C function used.	
8	11	P3.5	T1	SCL	I/O	MCLK: EBI clock output pin. CKO: HCLK clock output	
9	13	P3.6	WR	СКО	I/O	The STADC pin is for ADC external trigger input.	
NC	14	P3.7	RD		I/O		
NC	24	P4.0	PWM0		I/O		
NC	36	P4.1	PWM1		I/O	PORT4: Port 4 is an 8-bit four mode output pin and two	
NC	48	P4.2	PWM2		I/O	mode input. Its multifunction pins are for /CS, ALE, ICE_CLK and ICE_DAT.	
NC	12	P4.3	PWM3		I/O	/CS for EBI (External Bus Interface) used.	
NC	28	P4.4	/CS		I/O	latch that separates the address from the data on Port (and Port 2.	
NC	29	P4.5	ALE		I/O	The ICE_CLK/ICE_DAT pins are for JTAG-ICE function used.	
19	30	P4.6	ICE_CLK		I/O	PWM0-3 can be used from P4.0-P4.3 when EBI is active.	
20	31	P4.7	ICE_DAT		I/O		

Table 5-1 NuMicro™ M051 Series Pin Description

[1] I/O type description. I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pins, ST: Schmitt trigger.

ηυνοτοη

6.2 System Manager

6.2.1 Overview

The following functions are included in system manager section

- System Resets
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip module reset , multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

6.2.2 System Reset

The system reset includes one of the list below event occurs. For these reset event flags can be read by RSTRC register.

- The Power-On Reset (POR)
- The low level on the /RESET pin
- Watchdog Time Out Reset (WDT)
- Low Voltage Reset (LVR)
- Brown-Out-Detected Reset (BOD)
- CPU Reset
- System Reset

6.2.3 System Power Architecture

In this device, the power architecture is divided into three segments.

- Analog power from AVDD and AVSS provides the power for analog module operation.
- Digital power from VDD and VSS supplies the power to the internal regulator which provides a fixed 2.5V power for digital operation and I/O pins.

The outputs of internal voltage regulator, which is LDO, require an external capacitor which

should be located close to the corresponding pin. The Figure 6-2 shows the power architecture of this device.

Figure 6-2 NuMicro M051[™] Series Power Architecture Diagram

ηυνοτοη

6.2.6 System Timer (SysTick)

The Cortex-M0 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock edge, then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the documents "ARM® Cortex™-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

NUVOTON

6.2.7 Nested Vectored Interrupt Controller (NVIC)

Cortex-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)". It is closely coupled to the processor kernel and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Dynamic priority changing
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the documents "ARM[®] Cortex™-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

ηυνοΤοη

6.3 Clock Controller

6.3.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip will not enter power down mode until CPU sets the power down enable bit (PWR_DOWN_EN) and Cortex-M0 core executes the WFI instruction. After that, chip enters power down mode and wait for wake-up interrupt source triggered to leave power down mode. In the power down mode, the clock controller turns off the external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator to reduce the overall system power consumption.

6.3.2 Clock Generator Block Diagram

The clock generator consists of 4 sources which list below:

- One external 4~24 MHz high speed crystal
- One internal 22.1184 MHz high speed oscillator
- One programmable PLL FOUT(PLL source consists of external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator)
- One internal 10 kHz low speed oscillator

6.3.3 System Clock and SysTick Clock

nuvoton

The system clock has 4 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK_S(CLKSEL0[2:0]). The block diagram is shown in the Figure 6-5.

Figure 6-5 System Clock Block Diagram

The clock source of SysTick in Cortex-M0 core can use CPU clock or external clock (SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]. The block diagram is shown in the Figure 6-6.

Figure 6-6 SysTick clock Control Block Diagram

6.3.7 Frequency Divider Output

nuvoTon

This device is equipped a power-of-2 frequency divider which is composed by16 chained divideby-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to P3.6. Therefore there are 16 options of power-of-2 divided clocks with the frequency from $F_{in}/2^{1}$ to $F_{in}/2^{17}$ where Fin is input clock frequency to the clock divider.

The output formula is $F_{out} = F_{in}/2^{(N+1)}$, where F_{in} is the input clock frequency, F_{out} is the clock divider output frequency and N is the 4-bit value in FREQDIV.FSEL[3:0].

When write 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When write 0 to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state.

Figure 6-9 Clock Source of Frequency Divider

Figure 6-10 Block Diagram of Frequency Divider

Publication Release Date: May 30, 2011 Revision V2.00

6.6 PWM Generator and Capture Timer

6.6.1 Overview

nuvoton

NuMicro M051[™] series has 2 sets of PWM group supports 4 sets of PWM Generators which can be configured as 8 independent PWM outputs, PWM0~PWM7, or as 4 complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3), (PWM4, PWM5) and (PWM6, PWM7) with 4 programmable dead-zone generators.

Each PWM Generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM downcounters for PWM period control, two 16-bit comparators for PWM duty control and one deadzone generator. The 4 sets of PWM Generators provide eight independent PWM interrupt flags which are set by hardware when the corresponding PWM period down counter reaches zero. Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to output PWM waveform continuously.

When PCR.DZEN01 is set, PWM0 and PWM1 perform complementary PWM paired function; the paired PWM period, duty and dead-time are determined by PWM0 timer and Dead-zone generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3), (PWM4, PWM5) and (PWM6, PWM7) are controlled by PWM2, PWM4 and PWM6 timers and Dead-zone generator 2, 4 and 6, respectively. Refer to figures bellowed for the architecture of PWM Timers.

To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers the updated value will be load into the 16-bit down counter/ comparator at the time down counter reaching zero. The double buffering feature avoids glitch at PWM outputs.

When the 16-bit period down counter reaches zero, the interrupt request is generated. If PWMtimer is set as auto-reload mode, when the down counter reaches zero, it is reloaded with PWM Counter Register (CNRx) automatically then start decreasing, repeatedly. If the PWM-timer is set as one-shot mode, the down counter will stop and generate one interrupt request when it reaches zero.

The value of PWM counter comparator is used for pulse high width modulation. The counter control logic changes the output to high level when down-counter value matches the value of compare register.

The alternate feature of the PWM-timer is digital input Capture function. If Capture function is enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share one timer which is included in PWM 0; and the Capture1 and PWM1 share PWM1 timer, and etc. Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR) when input channel has a rising transition and latched PWM-counter to Capture Falling Latch Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CCR0.CRL_IE0[1] (Rising latch Interrupt enable) and

6.8 Timer Controller

6.8.1 Overview

nuvoTon

The timer controller includes four 32-bit timers, TIMER0~TIMER3, which allows user to easily implement a timer control for applications. The timer can perform functions like frequency measurement, interval measurement, clock generation, delay timing, and so on. The timer can generates an interrupt signal upon timeout, or provide the current value of count during operation.

6.8.2 Features

- 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
- Independent clock source for each timer.
- 24-bit timer value is readable through TDR (Timer Data Register)
- Provides one-shot, periodic, toggle and continuous counting operation modes.
- Time out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit TCMP)
- Maximum counting cycle time = (1 / T MHz) * (2^8) * (2^24), T is the period of timer clock

NuMicro[™] M058/M0516 Data Sheet

nuvoTon

101	2 ¹⁴ * T _{WDT}	1024 * T _{WDT}	1.6384 s ~ 1.7408 s
110	2 ¹⁶ * T _{WDT}	1024 * T _{WDT}	6.5536 s ~ 6.656 s
111	2 ¹⁸ * T _{WDT}	1024 * T _{WDT}	26.2144 s ~ 26.3168 s

Table 6-2 Watchdog Timeout Interval Selection

6.10.2 Features

- Full duplex, asynchronous communications
- Separate receive / transmit 15 bytes (UART0/UART1) entry FIFO for data payloads
- Support hardware auto flow control/flow control function (CTS, RTS) and programmable RTS flow control trigger level (UART0 and UART1 support)
- Programmable receiver buffer trigger level
- Support programmable baud-rate generator for each channel individually
- Support CTS wake up function (UART0 and UART1 support)
- Support 7 bit receiver buffer time out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting UA_TOR [DLY] register
- Support break error, frame error, and parity error detect function
- Fully programmable serial-interface characteristics
- Programmable number of data bit, 5, 6, 7, 8 bit character
- Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
- Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Support IrDA SIR function mode
- Support for 3/16 bit duration for normal mode
- Support RS-485 function mode.
- Support RS-485 9bit mode
- Support hardware or software direct enable control provided by RTS pin

8 ELECTRICAL CHARACTERISTICS

8.1 Absolute Maximum Ratings

nuvoton

SYMBOL	PARAMETER	MIN	МАХ	UNIT
DC Power Supply	VDD-VSS	-0.3	+7.0	V
Input Voltage	VIN	VSS-0.3	VDD+0.3	V
Oscillator Frequency	1/t _{CLCL}	0	40	MHz
Operating Temperature	ТА	-40	+85	°C
Storage Temperature	TST	-55	+150	°C
Maximum Current into V _{DD}		-	120	mA
Maximum Current out of V _{SS}			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

ηυνοτοη

8.2 DC Electrical Characteristics

(VDD-VSS=2.5~5.5V, TA = 25°C, F_{OSC} = 50 MHz unless otherwise specified.)

PARAMETER	SYM	SPECIFICATION				TEST CONDITIONS	
TARAMETER	01111	MIN.	TYP.	MAX.	UNIT		
Operation voltage	V _{DD}	2.5		5.5	V	V_{DD} =2.5V ~ 5.5V up to 50 MHz	
Power Ground	V _{SS} AV _{SS}	-0.3		V			
LDO Output Voltage	V _{LDO}	-10%	2.45	+10%	V	V _{DD} > 2.7V	
Band Gap Analog Input	V _{BG}	-5%	1.26	+5%	V	V _{DD} =2.5V ~ 5.5V	
Analog Operating Voltage	AV _{DD}	0		V_{DD}	V		
	I _{DD1}		32		mA	V _{DD} = 5.5V@50 MHz, enable all IP and PLL, XTAL=12 MHz	
Operating Current	I _{DD2}		24		mA	V _{DD} =5.5V@50 MHz, disable all IP and enable PLL, XTAL=12 MHz	
@ 50 MHz	I _{DD3}		31		mA	V_{DD} = 3V@50 MHz, enable all IP and PLL, XTAL=12 MHz	
	I _{DD4}		23		mA	V_{DD} = 3V@50 MHz, disable all IP and enable PLL, XTAL=12 MHz	
	I _{DD5}		17		mA	V _{DD} = 5.5V@ 12MHz, enable all IP and disable PLL, XTAL=12 MHz	
Operating Current	I _{DD6}		14		mA	V _{DD} = 5.5V@12 MHz, disable all IP and disable PLL, XTAL=12 MHz	
@ 12 MHz	I _{DD7}		16		mA	V_{DD} = 3V@12 MHz, enable all IP and disable PLL, XTAL=12 MHz	
	I _{DD8}		13		mA	V_{DD} = 3V@12 MHz, disable all IP and disable PLL, XTAL=12 MHz	
	I _{DD9}		12		mA	V_{DD} = 5.5V@4 MHz, enable all IP and disable PLL, XTAL=4MHz	
Operating Current Normal Run Mode	I _{DD10}		10		mA	V _{DD} = 5.5V@4 MHz, disable all IP and disable PLL, XTAL=4MHz	
@ 4 MHz	I _{DD11}		10		mA	V_{DD} = 3V@4 MHz, enable all IP and disable PLL, XTAL=4MHz	
	I _{DD12}		9		mA	V_{DD} = 3V@4 MHz, disable all IP and disable PLL, XTAL=4 MHz	
Operating Current	I _{IDLE1}		19		mA	V_{DD} = 5.5V@50 MHz, enable all IP and PLL, XTAL=12 MHz	

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation voltage	-	1.7	-	5.5	V
Quiescent current	VDD5V=5.5V	-	-	5	uA
	Temperature=25°	1.7	2.0	2.3	V
Threshold voltage	Temperature=-40°	-	2.4	-	V
	Temperature=85°	-	1.6	-	V
Hysteresis	-	0	0	0	V

8.4.3 Specification of Low Voltage Reset

8.4.4 Specification of Brownout Detector

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation voltage	-	2.5	-	5.5	V
Quiescent current	AVDD=5.5V	-	-	125	μΑ
Temperature	-	-40	25	85	°C
	BOV_VL[1:0]=11	4.4	4.5	4.6	V
Brown-out voltage	BOV_VL [1:0]=10	3.7	3.8	3.9	V
	BOV_VL [1:0]=01	2.6	2.7	2.8	V
	BOV_VL [1:0]=00	2.1	2.2	2.3	V
Hysteresis	-	30m	-	150m	V

8.4.5 Specification of Power-On Reset (5V)

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Reset voltage	V+	-	2	-	V
Quiescent current	Vin>reset voltage	-	1	-	nA