

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IrDA, SCI, SmartCard, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	92
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61663mn50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.5.2 Area Division

The bus controller divides the 16-Mbyte address space into eight areas, and performs bus control for the external address space in area units. Chip select signals ($\overline{CS0}$ to $\overline{CS7}$) can be output for each area.

Figure 9.8 shows an area division of the 16-Mbyte address space. For details on address map, see section 3, MCU Operating Modes.

Figure 9.8 Address Space Area Division

(4) Number of Access Cycles

(a) Basic Bus Interface

The number of access cycles in the basic bus interface can be specified as two or three cycles by the ASTCR. An area specified as 2-state access is specified as 2-state access space; an area specified as 3-state access is specified as 3-state access space.

For the 2-state access space, a wait cycle insertion is disabled. For the 3-state access space, a program wait (0 to 7 cycles) specified by WTCRA and WTCRB or an external wait by \overline{WAIT} can be inserted.

Assertion period of the chip select signal can be extended by CSACR.

Number of access cycles in the basic bus interface = number of basic cycles (2, 3) + number of program wait cycles (0 to 7) + number of $\overline{\text{CS}}$ extension cycles (0, 1, 2) [+ number of external wait cycles by the $\overline{\text{WAIT}}$ pin]

(b) Byte Control SRAM Interface

The number of access cycles in the byte control SRAM interface is the same as that in the basic bus interface.

Number of access cycles in byte control SRAM interface

- = number of basic cycles (2, 3) + number of program wait cycles (0 to 7)
 - + number of \overline{CS} extension cycles (0, 1, 2)
 - [+ number of external wait cycles by the $\overline{\text{WAIT}}$ pin]

(c) Burst ROM Interface

The number of access cycles at full access in the burst ROM interface is the same as that in the basic bus interface. The number of access cycles in the burst access can be specified as one to eight cycles by the BSTS bit in BROMCR.

Number of access cycles in the burst ROM interface

= number of basic cycles (2, 3) + number of program wait cycles (0 to 7)

+ number of $\overline{\text{CS}}$ extension cycles (0, 1)

[+number of external wait cycles by the $\overline{\text{WAIT}}$ pin]

+ number of burst access cycles (1 to 8) \times number of burst accesses (0 to 63)

Figure 9.19 16-Bit 3-State Access Space Bus Timing (Word Access for Odd Address)

Figure 9.46 Timing Example of Word Control with Use of Two CAS Signals (Read Access with Lowest Bit of Address = B'0, RAST = 0, CAST = 0)

9.12.2 Pin States in Idle Cycle

Table 9.31 shows the pin states in an idle cycle.

Table 9.31 Pin States in Idle Cycle

Pins	Pin State
A23 to A0	Contents of following bus cycle
D15 to D0	High impedance
$\overline{\text{CSn}}$ (n = 7 to 0)	High* ¹
LUCAS, LLCAS	High
DQMLU, DQMLL	High* ²
ĀS	High
RD	High
BS	High
RD/WR	High* ³
ĀH	low
LHWR, LLWR	High
LUB, LLB	High
CKE	High
ŌĒ	High
RAS	High/Low* ⁴
CAS	High
WE	High
$\overline{\text{DACKn}}$ (n = 3 to 0)	High
$\overline{\text{EDACKn}}$ (n = 3 to 0)	High

Notes: 1. Low when accessing the SDRAM in full access cycle

2. Low when reading the SDRAM in full access cycle

- 3. Low when accessing or writing to the DRAM/SDRAM in full access cycle
- The pin state varies depending on the DRAM space access/ area access other than the DRAM space, or RAS up mode/RAS down mode. For details, see figures 9.98 and 9.100.

Mode	Data Access Size	BKSZH Valid Bits	BKSZ Valid Bits	Settable Size (Byte)
Repeat transfer	Byte	31 to 16	15 to 0	1 to 65,536
and block transfer	Word	-		2 to 131,072
	Longword	-		4 to 262,144

Table 10.2 Data Access Size, Valid Bits, and Settable Size

10.3.6 DMA Mode Control Register (DMDR)

DMDR controls the DMAC operation.

• DMDR_0

Bit	31	30	29	28	27	26	25	24
Bit Name	DTE	DACKE	TENDE — DF		DREQS	NRD	_	_
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Bit	23	22	21	20	19	18	17	16
Bit Name	ACT	_	_	_	ERRF	_	ESIF	DTIF
Initial Value	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/(W)*	R	R/(W)*	R/(W)*
Bit	15	14	13	12	11	10	9	8
Bit Name	DTSZ1	DTSZ0	MDS1	MDS0	TSEIE	_	ESIE	DTIE
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name	DTF1	DTF0	DTA	_	_	DMAP2	DMAP1	DMAP0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W

Note: * Only 0 can be written to this bit after having been read as 1, to clear the flag.

(4) Activation Timing by DREQ Falling Edge

Figure 10.29 shows an example of normal transfer mode activated by the $\overline{\text{DREQ}}$ signal falling edge.

The $\overline{\text{DREQ}}$ signal is sampled every cycle from the next rising edge of the B ϕ signal immediately after the DTE bit write cycle.

When a low level of the \overline{DREQ} signal is detected while a transfer request by the \overline{DREQ} signal is enabled, a transfer request is held in the DMAC. When the DMAC is activated, the transfer request is cleared and starts detecting a high level of the \overline{DREQ} signal for falling edge detection. If a high level of the \overline{DREQ} signal has been detected until completion of the DMA write cycle, receiving the next transfer request resumes and then a low level of the \overline{DREQ} signal is detected. This operation is repeated until the transfer is completed.

Figure 10.29 Example of Transfer in Normal Transfer Mode Activated by DREQ Falling Edge

(6) ACT bit in EDMDR

The ACT bit in EDMDR indicates whether the EXDMAC is in standby or active state. When DTE = 0 and DTE = 1 (transfer request wait status) are specified, the ACT bit is set to 0. In another case (EXDMAC in the active state), the ACT bit is set to 1. The ACT bit is held to 1 during EXDMA transfer even if 0 is written to the DTE bit to halt transfer.

In block transfer mode, a block-size transfer is not halted even if 0 is written to the DTE bit to halt transfer. The ACT bit is held to 1 until a block-size transfer completes after 0 is written to the DTE bit.

In burst mode, transfer is halted after up to three times of EXDMA transfers are performed since the bus cycle in which 0 is written to the DTE bit has been processed. The ACT bit is held to 1 between termination of the last EXDMA cycle and 0-write in the DTE bit.

(7) ERRF bit in EDMDR

This bit specifies termination of transfer by EXDMAC clearing the DTE bit to 0 for all channels if an address error or NMI interrupt is generated. The EXDMAC also sets 1 to the ERRF bit of EDMDR_0 regardless of the EXDMAC operation to indicate that an address error or NMI interrupt is generated. However, when an address error or an NMI interrupt has been generated in EXDMAC module stop mode, the ERRF bit is not set to 1.

(8) ESIF bit in EDMDR

The ESIF bit in EDMDR is set to 1 when a transfer size interrupt, repeat size end interrupt, or an extended repeat area overflow interrupt is requested. When the ESIF bit is set to 1 and the ESIE bit in EDMDR is set to 1, a transfer escape interrupt is requested to the CPU or DTC.

The timing that the ESIF bit is set to 1 is when the EXDMA transfer bus cycle (the source of an interrupt request) terminates, the ACT bit in EDMDR is set to 0, and transfer is terminated.

When the DTE bit is set to 1 to resume transfer during interrupt processing, the ESIF bit is automatically cleared to 0 to cancel the interrupt request.

For details on interrupts, see section 11.9, Interrupt Sources.

(3) **EDREQ** Pin Falling Edge Activation Timing

Figure 11.36 shows an example of single address mode transfer activated by the $\overline{\text{EDREQ}}$ pin falling edge.

 $\overline{\text{EDREQ}}$ pin sampling is performed in each cycle starting at the next rise of B ϕ after the end of the DTE bit write cycle.

When a low level is sampled at the $\overline{\text{EDREQ}}$ pin while acceptance of a transfer request via the $\overline{\text{EDREQ}}$ pin is possible, the request is held within the EXDMAC. Then when activation is initiated within the EXDMAC, the request is cleared, and $\overline{\text{EDREQ}}$ pin high level sampling for edge sensing is started. If $\overline{\text{EDREQ}}$ pin high level sampling is completed by the end of the EXDMA single cycle, acceptance resumes after the end of the single cycle, and $\overline{\text{EDREQ}}$ pin low level sampling is performed again. This sequence of operations is repeated until the end of the transfer.

Figure 11.36 Example of Single Address Mode Transfer Activated by EDREQ Pin Falling Edge

(3) Transfer End by Repeat Size End Interrupt

In repeat transfer mode, when the RPTIE bit in EDACR is set to 1 and the next transfer request is generated on completion of a repeat-size transfer, a repeat size end interrupt request is generated. The interrupt request terminates EXDMA transfer, the DTE bit in EDMDR is cleared to 0, and the ESIF bit in EDMDR is set to 1 at the same time. If the DTE bit is set to 1 in this state, transfer resumes.

In block transfer or cluster transfer mode, a repeat size end interrupt request can be generated. In block transfer mode, if the next transfer request is generated at the end of a block-size transfer, a repeat size end interrupt request is generated. In cluster transfer mode, if the next transfer request is generated at the end of a cluster-size transfer, a repeat size end interrupt request is generated.

(4) Transfer End by Extended Repeat Area Overflow Interrupt

If an address overflows the extended repeat area when an extended repeat area specification has been made and the SARIE or DARIE bit in EDACR is set to 1, an extended repeat area overflow interrupt is requested. The interrupt request terminates EXDMA transfer, the DTE bit in EDMDR is cleared to 0, and the ESIF bit in EDMDR is set to 1 at the same time.

In dual address mode, if an extended repeat area overflow interrupt is requested during a read cycle, the following write cycle processing is still executed.

In block transfer mode, if an extended repeat area overflow interrupt is requested during transfer of a block, transfer continues to the end of the block. Transfer end by means of an extended repeat area overflow interrupt occurs between block-size transfers.

In cluster transfer mode, if an extended repeat area overflow interrupt is requested during transfer of a cluster, transfer continues to the end of the cluster. Transfer end by means of an extended repeat area overflow interrupt occurs between cluster-size transfers.

(5) Transfer End by 0-Write to DTE Bit in EDMDR

When 0 is written to the DTE bit in EDMDR by the CPU, etc., transfer ends after completion of the EXDMA cycle in which transfer is in progress or a transfer request was accepted.

In block transfer mode, EXDMA transfer ends after completion of one-block-size transfer in progress.

In cluster transfer mode, EXDMA transfer ends after completion of one-cluster-size transfer in progress.

(7) **PJ1/PO17/TIOCA6/TIOCB6**

The pin function is switched as shown below according to the combination of register setting of PPG and TPU, setting of the port function control register (PFCR), and the PJ1DDR bit settings.

		Setting					
		PPG	TPU	I/O Port			
Module Name	Pin Function	PO17_0E	TIOCB6_OE	PJ1DDR			
PPG	PO17 output*	1	—	—			
TPU	TIOCB6 output*	0	1	_			
I/O port	PJ1 output*	0	0	1			
	PJ1 input*	0	0	0			

Note: * Valid when PCJKE = 1.

(8) **PJ0/PO16/TIOCA6**

The pin function is switched as shown below according to the combination of register setting of PPG and TPU, setting of the port function control register (PFCR), and the PJ0DDR bit settings.

		Setting					
		PPG	TPU	I/O Port			
Module Name	Pin Function	PO16_OE	TIOCA6_OE	PJ0DDR			
PPG	PO16 output*	1	_	_			
TPU	TIOCA6 output*	0	1	—			
I/O port	PJ0 output*	0	0	1			
	PJ0 input*	0	0	0			
					-		

Note: * Valid when PCJKE = 1.

Table 14.22 TIORH_0

				Description					
Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	TGRA_0 Function	TIOCA0 Pin Function				
0	0	0	0	Output	Output disabled				
0	0	0	1	compare	Initial output is 0 output				
				register	0 output at compare match				
0	0	1	0		Initial output is 0 output				
					1 output at compare match				
0	0	1	1		Initial output is 0 output				
					Toggle output at compare match				
0	1	0	0	_	Output disabled				
0	1	0	1	_	Initial output is 1 output				
					0 output at compare match				
0	1	1	0	Initial output is 1 output					
				1 output at compare match					
0	1	1	1	_	Initial output is 1 output				
					Toggle output at compare match				
1	0	0	0	Input	Capture input source is TIOCA0 pin				
				capture	Input capture at rising edge				
1	0	0	1		Capture input source is TIOCA0 pin				
					Input capture at falling edge				
1	0	1	х		Capture input source is TIOCA0 pin				
					Input capture at both edges				
1	1	х	х	_	Capture input source is channel 1/count clock				
					Input capture at TCNT_1 count-up/count-down*				

[Legend]

x: Don't care

Note: * When the bits TPSC2 to TPSC0 in TCR_1 are set to B'000 and $P\phi/1$ is used as the count clock of TCNT_1, this setting is invalid and input capture is not generated.

14.4 Operation

14.4.1 Basic Functions

Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, periodic counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

(1) Counter Operation

When one of bits CST0 to CST5 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

(a) Example of count operation setting procedure

Figure 14.3 shows an example of the count operation setting procedure.

Figure 14.3 Example of Counter Operation Setting Procedure

Figure 16.2 Block Diagram of 8-Bit Timer Module (Unit 1)

	TCR			TCCR		
Channel	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Bit 1 ICKS1	Bit 0 ICKS0	Description
TMR_4	0	0	0		_	Clock input prohibited
	0	0	1	0	0	Uses internal clock. Counts at rising edge of P
				0	1	Uses internal clock. Counts at rising edge of P
				1	0	Uses internal clock. Counts at falling edge of P
				1	1	Uses internal clock. Counts at falling edge of P
	0	1	0	0	0	Uses internal clock. Counts at rising edge of Pø/64.
				0	1	Uses internal clock. Counts at rising edge of Pø/32.
				1	0	Uses internal clock. Counts at falling edge of P
				1	1	Uses internal clock. Counts at falling edge of P
	0	1	1	0	0	Uses internal clock. Counts at rising edge of Pø/8192.
				0	1	Uses internal clock. Counts at rising edge of Pø/1024.
				1	0	Uses internal clock. Counts at rising edge of Pø.
				1	1	Uses internal clock. Counts at falling edge of P
	1	0	0		_	Counts at TCNT_5 overflow signal*.
TMR_5 0 0 0 —			_	_	Clock input prohibited	
	0	0	1	0	0	Uses internal clock. Counts at rising edge of $P\phi/8$.
				0	1	Uses internal clock. Counts at rising edge of P
				1	0	Uses internal clock. Counts at falling edge of $P\phi/8$.
				1	1	Uses internal clock. Counts at falling edge of $P\phi/2$.
	0	1	0	0	0	Uses internal clock. Counts at rising edge of Pø/64.
				0	1	Uses internal clock. Counts at rising edge of $P\phi/32$.
				1	0	Uses internal clock. Counts at falling edge of P
				1	1	Uses internal clock. Counts at falling edge of P
	0	1	1	0	0	Uses internal clock. Counts at rising edge of $P\phi/8192$.
				0	1	Uses internal clock. Counts at rising edge of $P\phi/1024$.
				1	0	Uses internal clock. Counts at rising edge of $P\phi$.
				1	1	Uses internal clock. Counts at falling edge of $P\phi/1024$.
	1	0	0	_	_	Counts at TCNT_4 compare match A*.
All	1	0	1	_	_	Setting prohibited
	1	1	0	_	_	Setting prohibited
	1	1	1	_	_	Setting prohibited
Noto: *	If the el	ook inn	ut of oh	annal 4	ic the	TCNT 5 overflow signal and that of channel 5 is the

Table 16.4 Clock Input to TCNT and Count Condition (Unit 2)

Note: * If the clock input of channel 4 is the TCNT_5 overflow signal and that of channel 5 is the TCNT_4 compare match signal, no incrementing clock is generated. Do not use this setting.

19.10.5 Relation between Writing to TDR and TDRE Flag

The TDRE flag in SSR is a status flag which indicates that transmit data has been transferred from TDR to TSR. When the SCI transfers data from TDR to TSR, the TDRE flag is set to 1.

Data can be written to TDR irrespective of the TDRE flag status. However, if new data is written to TDR when the TDRE flag is 0, that is, when the previous data has not been transferred to TSR yet, the previous data in TDR is lost. Be sure to write transmit data to TDR after verifying that the TDRE flag is set to 1.

19.10.6 Restrictions on Using DTC or DMAC

- When the external clock source is used as a synchronization clock, update TDR by the DMAC or DTC and wait for at least five Pφ clock cycles before allowing the transmit clock to be input. If the transmit clock is input within four clock cycles after TDR modification, the SCI may malfunction (see figure 19.38).
- When using the DMAC or DTC to read RDR, be sure to set the receive end interrupt (RXI) as the DTC or DMAC activation source.

Figure 19.38 Sample Transmission using DTC in Clocked Synchronous Mode

• The DTC is not activated by the RXI or TXI request by SCI_5 or SCI6.

Figure 20.5 Resume Operation from Up-Stream

28.9.4 Timing Sequence at Power-On

Figure 28.9 shows the timing sequence at power-on.

At power-on, the $\overline{\text{RES}}$ pin must be driven low with the $\overline{\text{STBY}}$ pin driven high for a given time in order to clear the reset state.

To enter hardware standby mode immediately after power-on, drive the $\overline{\text{STBY}}$ pin low after exiting the reset state.

For details on clearing hardware standby mode, see section 28.9.3, Hardware Standby Mode Timing.

In a power-on reset*, power on while driving the $\overline{\text{STBY}}$ or $\overline{\text{RES}}$ pin to a high-level.

Figure 28.9 Timing Sequence at Power-On

30.3 DC Characteristics H8SX/1668M Group

Table 30.4 DC Characteristics (1)

Conditions: $V_{cc} = PLLV_{cc} = DrV_{cc} = 2.95 V$ to 3.6 V, $AV_{cc} = 3.0 V$ to 3.6 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = PLLV_{ss} = DrV_{ss} = AV_{ss} = 0 V^{*1}$, $T_a = -20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_a = -40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ input pin,	VT [−]	$V_{cc} imes 0.2$	_	_	V	
trigger input voltage	TPU input pin,	VT⁺	_		$V_{cc} imes 0.7$	V	-
	port 2, port 3, port J, port K	$VT^{+} - VT^{-}$	$V_{cc} imes 0.06$		—	V	-
	IRQ0-B to IRQ7-	VT⁻	$AV_{cc} imes 0.2$		_	V	-
	B input pins	VT⁺			$AV_{cc} imes 0.7$	V	-
		$VT^{+} - VT^{-}$	$AV_{cc} \times 0.06$	i —		V	-
Input high voltage	MD, <u>RES</u> , <u>STBY</u> , EMLE, NMI	V _{IH}	$V_{cc} imes 0.9$		V _{cc} + 0.3	V	
(except Schmitt	EXTAL	-	$V_{cc} \times 0.7$		V _{cc} + 0.3	-	
trigger input	Other input pins						
pin)	Port 5	-	$AV_{cc} \times 0.7$		$AV_{cc} + 0.3$	-	
Input low voltage	MD, <u>RES</u> , <u>STBY</u> , EMLE	V _{IL}	-0.3	_	$V_{cc} \times 0.1$	V	
(except Schmitt	EXTAL, NMI	-	-0.3		$V_{cc} imes 0.2$	-	
trigger input pin)	Other input pins	-	-0.3	_	$V_{cc} \times 0.2$	_	
Output high	All output pins	V _{oh}	$V_{cc} - 0.5$	_	—	V	$I_{_{OH}} = -200 \ \mu A$
voltage			V _{cc} - 1.0			-	I _{он} = -1 mА
Output low	All output pins	V _{ol}	_		0.4	V	I _{oL} = 1.6 mA
voltage	Port 3	='			1.0	-	I _{oL} = 10 mA
Input	RES	I _{in}		—	10.0	μA	$V_{in} = 0.5$ to
leakage current	MD, <u>STBY,</u> EMLE, NMI	-	_	_	1.0	-	$V_{cc} - 0.5 V$
	Port 5	-		_	1.0	_	$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V

Item	Page	Revision (See	e Manual f	or Deta	ils)			
28.8.2 Exit from Deep	1267	Replaced						
Software Standby Mode		Overview						
		1. Exit from so	ftware sta	ndby mo	ode by	interr	upt	
		Replaced due	to the add	ition of t	he LV	D.		
		Added						
		2. Exit from vo	ltage mon	itoring re	eset*2			
		3. Exit from po	wer-on res	set*2				
		Added due to the addition of the voltage monitoring reset and power-on reset.						
28.9.4 Timing Sequence at	1280	Replaced						
Power-On		Replaced due to the addition of the power-on reset.						et.
28.12.7 Conflict between a	1286	Replaced						
transition to deep software standby mode and interrupts		Replaced due to the addition of the voltage monitoring interrupt.						
Section 29 List of Registers	1300	Added						
29.1 Register Addresses (Address Order)				Number of			Data Widt	Access Cycles
		Register Name	Abbreviation	Bits	Address	Module	h 	(Read/Write)
		Low voltage detection control register* ²	LVDCR	8	H'FFE78	SYSTE M	8	2lø/3lø
		Added due to t	he additio	n of the	LVD.			