
Renesas Electronics America Inc - R5F61668MN50BGV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor H8SX

Core Size 32-Bit Single-Core

Speed 50MHz

Connectivity EBI/EMI, I²C, IrDA, SCI, SmartCard, USB

Peripherals DMA, LVD, POR, PWM, WDT

Number of I/O 92

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 56K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b; D/A 2x8b

Oscillator Type External

Operating Temperature -20°C ~ 75°C (TA)

Mounting Type Surface Mount

Package / Case 176-LFBGA

Supplier Device Package 176-LFBGA (13x13)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61668mn50bgv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/r5f61668mn50bgv-4437407
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section 9 Bus Controller (BSC)

 Rev. 2.00 Sep. 24, 2008 Page 301 of 1468

 REJ09B0412-0200

(2) Self-Refresh Mode

Some DRAMs have a self-refresh mode (battery backup mode). The self-refresh mode is a kind of
standby mode and refresh timing and refresh address are controlled internally.

The self-refresh mode is selected by setting the RFSHE and SLFRF bits in REFCR to 1. The CAS
and RAS signals are output as shown in figure 9.56 by executing the SLEEP instruction. Then,
DRAM enters self-refresh mode.

When a CBR refresh is requested on a transition to the standby mode, the CBR refresh is first
performed and then the self-refresh mode is entered.

When the self-refresh mode is used, do not clear the OPE bit in SBYCR to 0.

For details, see section 28.2.1, Standby Control Register (SBYCR).

TRp TRr TRc3

B�

RAS

LUCAS

LLCAS

WE

BS

RD/WR

High

Software
standby TRc4

High

High

Figure 9.56 Self-Refresh Timing

Section 11 EXDMA Controller (EXDMAC)

Rev. 2.00 Sep. 24, 2008 Page 512 of 1468

REJ09B0412-0200

(5) EDREQ Pin Low Level Activation Timing

Figure 11.31 shows an example of normal transfer mode transfer activated by the EDREQ pin low
level.

EDREQ pin sampling is performed in each cycle starting at the next rise of Bφ after the end of the
DTE bit write cycle.

When a low level is sampled at the EDREQ pin while acceptance of a transfer request via the
EDREQ pin is possible, the request is held within the EXDMAC. Then when activation is initiated
within the EXDMAC, the request is cleared. After the end of the write cycle, acceptance resumes
and EDREQ pin low level sampling is performed again. This sequence of operations is repeated
until the end of the transfer.

Idle Idle Idle

Minimum 3 cycles Minimum 3 cycles

Transfer
source

Transfer
destination Transfer

destination
Transfer
source

Read Write Read Write

Bus release Bus releaseBus releaseEXDMA read EXDMA write EXDMA read EXDMA write

Bφ

EDREQ

Address
bus

EXDMA
control

Channel

[1] [2] [3] [4] [5] [6] [7]

Transfer request enable resumed Transfer request enable resumed

[1] Acceptance after transfer enabling; EDREQ pin low level is sampled at rise of Bφ, and request is held.
[2], [5] Request is cleared at end of next bus cycle, and activation is started in EXDMAC.
[3], [6] EXDMA cycle starts.
[4], [7] Acceptance is resumed after completion of write cycle.
(As in [1], EDREQ pin low level is sampled at rise of Bφ, and request is held.)

Request Request

Duration of transfer
request disabled

Duration of transfer
request disabled

Figure 11.31 Example of Normal Transfer Mode Transfer Activated
by EDREQ Pin Low Level

Section 12 Data Transfer Controller (DTC)

 Rev. 2.00 Sep. 24, 2008 Page 591 of 1468

 REJ09B0412-0200

1. For the first transfer, set the normal transfer mode for input data. Set the fixed transfer source
address, CRA = H'0000 (65,536 times), CHNE = 1, CHNS = 1, and DISEL = 0.

2. Prepare the upper 8-bit addresses of the start addresses for 65,536-transfer units for the first
data transfer in a separate area (in ROM, etc.). For example, if the input buffer is configured at
addresses H'200000 to H'21FFFF, prepare H'21 and H'20.

3. For the second transfer, set repeat transfer mode (with the source side as the repeat area) for re-
setting the transfer destination address for the first data transfer. Use the upper eight bits of
DAR in the first transfer information area as the transfer destination. Set CHNE = DISEL = 0.
If the above input buffer is specified as H'200000 to H'21FFFF, set the transfer counter to 2.

4. Execute the first data transfer 65536 times by means of interrupts. When the transfer counter
for the first data transfer reaches 0, the second data transfer is started. Set the upper eight bits
of the transfer source address for the first data transfer to H'21. The lower 16 bits of the
transfer destination address of the first data transfer and the transfer counter are H'0000.

5. Next, execute the first data transfer the 65536 times specified for the first data transfer by
means of interrupts. When the transfer counter for the first data transfer reaches 0, the second
data transfer is started. Set the upper eight bits of the transfer source address for the first data
transfer to H'20. The lower 16 bits of the transfer destination address of the first data transfer
and the transfer counter are H'0000.

6. Steps 4 and 5 are repeated endlessly. As repeat mode is specified for the second data transfer,
no interrupt request is sent to the CPU.

1st data transfer
information

2nd data transfer
information

Transfer information
located on the on-chip memory

Chain transfer
(counter = 0)

Input circuit

Input buffer

Section 13 I/O Ports

 Rev. 2.00 Sep. 24, 2008 Page 597 of 1468

 REJ09B0412-0200

Function

Port Description Bit I/O Input Output

Schmitt-
Trigger
Input *1

Input
Pull-up
MOS
Function

Open-
Drain
Output
Function

7 P37/
TIOCB2

TIOCA2/
TCLKD-A

PO15/
EDRAK3

All input
functions

6 P36/
TIOCA2

 PO14/
EDRAK2

All input
functions

5 P35/
TIOCB1

TIOCA1/
TCLKC-A

PO13/
DACK1-B/
EDACK3

All input
functions

4 P34/
TIOCA1

 PO12/
TEND1-B/
ETEND3

All input
functions

3 P33/
TIOCD0

TIOCC0/
TCLKB-A/
DREQ1-B/
EDREQ3

PO11 P33,
TIOCD0,
TIOCC0,
TCLKB-A

2 P32/
TIOCC0

TCLKA-A PO10/
DACK0-B/
EDACK2

All input
functions

1 P31/
TIOCB0

TIOCA0 PO9/
TEND0-B/
ETEND2

All input
functions

Port 3 General I/O port
also functioning
as PPG outputs,
DMAC I/Os,
EXDMAC I/O and
TPU I/Os

0 P30/
TIOCA0

DREQ0-B/
EDREQ2

PO8 P30,
TIOCA0

 

7  P57/AN7/
IRQ7-B

DA1 IRQ7-B

6  P56/AN6/
IRQ6-B

DA0 IRQ6-B

5  P55/AN5/
IRQ5-B

 IRQ5-B

4  P54/AN4/
IRQ4-B

 IRQ4-B

3  P53/AN3/
IRQ3-B

 IRQ3-B

2  P52/AN2/
IRQ2-B

 IRQ2-B

1  P51/AN1/
IRQ1-B

 IRQ1-B

Port 5 General input port
also functioning
as interrupt inputs,
A/D converter
inputs, and D/A
converter outputs

0  P50/AN0/
IRQ0-B

 IRQ0-B

 

Section 25 Flash Memory

 Rev. 2.00 Sep. 24, 2008 Page 1197 of 1468

 REJ09B0412-0200

(e) Block Erasure

The boot program will erase the contents of the specified block.

Command H'58 Size Block number SUM

• Command, H'58, (one byte): Erasure

• Size (one byte): The number of bytes that represents the erase block number
This is fixed to 1.

• Block number (one byte): Number of the block to be erased

• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to Erasure
After erasure has been completed, the boot program will return ACK.

Error Response H'D8 ERROR

• Error Response, H'D8, (one byte): Response to Erasure

• ERROR (one byte): Error code

 H'11: Sum check error
 H'29: Block number error
 Block number is incorrect.
 H'51: Erasure error
 An error has occurred during erasure.

On receiving block number H'FF, the boot program will stop erasure and wait for a selection
command.

Command H'58 Size Block number SUM

• Command, H'58, (one byte): Erasure

• Size, (one byte): The number of bytes that represents the block number
This is fixed to 1.

• Block number (one byte): H'FF
Stop code for erasure

• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to end of erasure (ACK)
When erasure is to be performed after the block number H'FF has been sent, the procedure
should be executed from the erasure selection command.

Section 28 Power-Down Modes

Rev. 2.00 Sep. 24, 2008 Page 1286 of 1468

REJ09B0412-0200

28.12.6 Control of Input Buffers by DIRQnE (n = 3 to 0)

When the input buffers for the P10/IRQ0-A to P13/IRQ3-A pins are enabled by setting the
DIRQnE bits (n = 3 to 0) in DSPIER to 1, the PnICR settings corresponding to these pins are
invalid. Therefore, note that external inputs to these pins, of which states are reflected on the
DIRQnF bits, are also input to the interrupt controller, peripheral modules and I/O ports, after the
DIRQnE bits (n = 3 to 0) are set to 1.

28.12.7 Conflict between a transition to deep standby mode and interrupts

If a conflict among the transition to deep software standby mode and generation of software
standby mode clearing source occurs, a transition to deep software standby mode is not made but
the software standby mode clearing sequence is executed. In this case, an interrupt exception
handling for the input interrupt starts after the oscillation settling time for software standby mode
(set by the STS4 to STS0 bits in SBYCR) has elapsed.

Note that if a conflict between a deep software standby mode transition and NMI interrupt occurs,
the NMI interrupt exception handling routine is required.

If a conflict among a deep software standby mode transition, the IRQ0 to IRQ11 interrupts, 32K
timer interrupt, and voltage-monitoring interrupt* occurs, a transition to deep software standby
mode can be made without executing the interrupt execution handling by clearing the SSIn bits in
SSIER to 0 beforehand.

Note: * Supported only by the H8SX/1668M Group

28.12.8 Bφ/SDRAMφ Output State

Bφ/SDRAMφ output is undefined for a maximum of one cycle immediately after deep software
standby mode is canceled with the IOKEEP bit cleared to 0 or immediately after the IOKEEP bit
is cleared after cancellation of deep software standby mode with the IOKEEP bit set to 1.

However, Bφ/SDRAMφ can be normally output by setting the IOKEEP, PSTOP1, and PSTP0 bits
to 1. For details, see section 28.8.4, Bφ/SDRAMφ Operation after Exit from Deep Software
Standby Mode.

