

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	116
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 5x12b, 6x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA, WLCSP
Supplier Device Package	169-WLCSP (5.5x5.63)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk26fn2m0cac18r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information 1

Part Number	Mer	Maximum number of I\O's	
	Flash	SRAM	
MK26FN2M0VMD18	2 MB	256 KB	100
MK26FN2M0VLQ18	2 MB	256 KB	100
MK26FN2M0CAC18R	2 MB	256 KB	116
MK26FN2M0VMI18	2 MB	256 KB	116

1. To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K26P169M180SF5RM
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	Kinetis_K_0N65N ¹
Package drawing	Package dimensions are provided in package drawings.	MAPBGA 144-pin : 98ASA00222D ¹
		QFP 144-pin: 98ASS23177W ¹
		MAPBGA 169-pin : 98ASA00628D ¹
		WLCSP 169-pin: 98ASA00222D ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

Kinetis K26 Sub-Family ARM[®] Cortex[®]-M4 Memories and Memory Interfaces System Clocks Core Internal Program Phaseand external RAM locked loop flash watchdogs Debug Memory Frequency-FlexMemory DSP Cache locked loop protection interfaces Serial programming Low/high Interrupt Floating-External frequency DMA controller point unit bus interface Internal Low-leakage SDRAM reference wakeup controller clocks Security **Communication Interfaces** Human-Machine Analog Timers Interface (HMI) and Integrity I²C I²S 16-bit ADC Timers CRC GPIO x2 x4 (20ch) x4 х1 Analog comparator Random Carrier **Xtrinsic** UART Secure touch-sensing number modulator Digital x5 generator 'х4 transmitter interface SPI USB LS/FS Hardware Programmable 6-bit DAC encryption delay block хЗ OTG x4 controller with Periodic CAN 12-bit DAC transceiver interrupt x2 timers х2 USB LS/FS/HS Voltage Low power LPUART reference OTG timer controller with Independent transceiver real-time clock USB DCD/ Low power USBHSDCD TPM x 2 (4ch)

USB voltage regulator

1 Ratings

1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		 For C- temp varian For V- temp varian t:3 	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Symbol	Description		Temperature (°C)					
		-40	25	50	70	85	105 ¹	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KH} z	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MH} z	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32K} Hz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							nA
	VLLS1	440	490	540	560	570	580	
	VLLS3	440	490	540	560	570	580	
	LLS2	490	490	540	560	570	680	
	LLS3	490	490	540	560	570	680	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48MHz IRC	511	520	545	556	563	576	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
IUART	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							μΑ
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	
	OSCERCLK (4 MHz external crystal)	214	234	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing	366	366	366	366	366	366	μA

 Table 6.
 Low power mode peripheral adders — typical value

Symbol	Description		Temperature (°C)					Unit
		-40	25	50	70	85	105 ¹	
	the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.							

Table 6. Low power mode peripheral adders — typical value

1. Applicable to LQFP and BGA packages only

2.2.5 Power consumption operating behaviors

NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	—	32.3	71.03	mA	
	• @ 3.0V	_	32.4	71.81	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8V	_	50.5	89.58	mA	
	• @ 3.0V				_	
	• @ 25°C	_	50.6	55.95	mA	
	• @ 85°C	—	60.5	79.20	mA	
	• @ 105°C	—	69.7	99.85	mA	
I _{DD_RUNC} O	Run mode current in compute operation - 120 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash	_	28.5	67.74	mA	5
	• at 3.0 V					
I _{DD_HSRUN}	Run mode current — all peripheral clocks disabled, code executing from flash					6
	• @ 1.8V	_	47.2	91.25	mA	
	• @ 3.0V	_	47.3	91.62	mA	
I _{DD_HSRUN}	Run mode current — all peripheral clocks enabled, code executing from flash					7, 4
	-	_	71.4	103.58	mA	

Table 7. Power consumption operating behaviors

Table continues on the next page...

Figure 3. Run mode supply current vs. core frequency

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
	ext clk freq: above	e (3/5)f _{int} never reset					
	ext clk freq: betwe reset (phase depe	een (2/5)fint and (3/5)f _{int} maybe endency)					
	ext clk freq: below	/ (2/5)f _{int} always reset					
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
	ext clk freq: above	e (16/5)f _{int} never reset					
	ext clk freq: betwe maybe reset (phas	een (15/5)f _{int} and (16/5)f _{int} se dependency)					
	ext clk freq: below	r (15/5)f _{int} always reset					
	1	FI	_L		1		
f _{fll_ref}	FLL reference free	quency range	31.25		39.0625	kHz	
f _{dco_ut}	DCO output	Low range	16.0	23.04	26.66	MHz	2
	— untrimmed	(DRS=00, DMX32=0)					
		$640 \times f_{ints_ut}$					
		Mid range	32.0	46.08	53.32		
		(DRS=01, DMX32=0)					
		1280 × f _{ints_ut}					
		Mid-high range	48.0	69.12	79.99		
		(DRS=10, DMX32=0)					
		1920 × f _{ints_ut}					
		High range	64.0	92.16	106.65		
		(DRS=11, DMX32=0)					
		$2560 \times f_{ints_ut}$					
		Low range	18.3	26.35	30.50		
		(DRS=00, DMX32=1)					
		$732 \times f_{ints_ut}$					
		Mid range	36.6	52.70	60.99		
		(DRS=01, DMX32=1)					
		$1464 \times f_{ints_ut}$					
		Mid-high range	54.93	79.09	91.53		
		(DRS=10, DMX32=1)					
		2197 × f _{ints_ut}					
		High range	73.23	105.44	122.02		
		(DRS=11, DMX32=1)					
		$2929 \times f_{ints_ut}$					

Table 16. MCG specifications (continued)

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]= 1) 					
∆f _{irc48m_cl}	Closed loop total deviation of IRC48M frequency over voltage and temperature	_	—	± 0.1	%f _{host}	2
J _{cyc_irc48m}	Period Jitter (RMS)	—	35	150	ps	
t _{irc48mst}	Startup time	_	2	3	μs	3

Table 17. IRC48M specifications (continued)

- 1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean ± 3 sigma)
- Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN]=1).
- 3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:
 - USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or
 - MCG_C7[OSCSEL]=10, or
 - SIM_SOPT2[PLLFLLSEL]=11

3.3.3 Oscillator electrical specifications

3.3.3.1 Oscillator DC electrical specifications Table 18. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	600	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	—	950	—	μA	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz		1.5		mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	7.5	_	μA	
	• 4 MHz	_	500	_	μA	
	• 8 MHz (RANGE=01)	—	650	—	μA	
	• 16 MHz	_	2.5	_	mA	
		_	3.25	_	mA	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz	_	4	—	mA	
	• 32 MHz					
C _x	EXTAL load capacitance		—			2, 3
Cy	XTAL load capacitance		—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)				MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10		MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	—	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—		—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)		0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}		V	

Table 18. Oscillator DC electrical specifications (continued)

1. V_{DD} =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf

2. See crystal or resonator manufacturer's recommendation

3. C_{x} , C_{y} can be provided by using either the integrated capacitors or by using external components.

4. When low power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Figure 14. FlexBus write timing diagram

3.4.4 SDRAM controller specifications

Following figure shows SDRAM read cycle.

Figure 16. SDRAM write timing diagram

3.5 Analog

3.5.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 31 and Table 32 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^5$
		 <12-bit modes 	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0	_	LSB ⁴	
		 ≤13-bit modes 	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	bits	
		• Avg = 4	11.4	13.1	_		
						bits	
SINAD	distortion	See ENOB	6.02 × ENOB + 1.76			dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32		-94	_	dB	
		16-bit single-ended mode		-85			
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode	00	05	_	dB	7
	dynamic range	• Avg = 32	02	95		dB	
		16-hit single-ended mode	78	90			
		• Avg = 32	70	30			
		,					
E _{IL}	Input leakage error		$I_{In} \times R_{AS}$			mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 32. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 22. Typical INL error vs. digital code

3.7.3 USB DCD electrical specifications Table 41. USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC} , V _{DM_SRC}	USB_DP and USB_DM source voltages (up to 250 $\mu\text{A})$	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK} , I _{DP_SINK}	USB_DM and USB_DP sink currents	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

3.7.4 CAN switching specifications

See General switching specifications.

3.7.5 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{BUS} x 2) – 2	—	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	15.0	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	1.0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15.8	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 42. Master mode DSPI timing (limited voltage range)

- 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 24. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15 ¹	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	23.0	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.7	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7.0	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	13	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		13	ns

Table 43. Slave mode DSPI timing (limited voltage range)

1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz.

Figure 25. DSPI classic SPI timing — slave mode

3.7.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description		Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	15	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	1.0	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15.8	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 44. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 32. I2S/SAI timing — master modes

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	23.1	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

Table 53. I2S/SAI slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

169 CSP	169 BGA	144 LQFP	144 BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EZPORT
H4	G13	81	H10	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0		SDRAM_ CAS_b	FTM1_QD_ PHA/ TPM1_CH0		
J2	G12	82	H9	PTB1	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1		SDRAM_ RAS_b	FTM1_QD_ PHB/ TPM1_CH1		
J1	G11	83	G12	PTB2	ADC0_ SE12/ TSI0_CH7	ADC0_ SE12/ TSI0_CH7	PTB2	12C0_SCL	UARTO_ RTS_b		SDRAM_ WE	FTM0_ FLT3		
H3	G10	84	G11	PTB3	ADC0_ SE13/ TSI0_CH8	ADC0_ SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_ CTS_b/ UART0_ COL_b		SDRAM_ CS0_b	FTM0_ FLT0		
G7	_	_	_	VSS	VSS	VSS								
G6	-	_	-	VDD	VDD	VDD								
H2	H9	85	G10	PTB4	ADC1_ SE10	ADC1_ SE10	PTB4				SDRAM_ CS1_b	FTM1_ FLT0		
H1	F13	86	G9	PTB5	ADC1_ SE11	ADC1_ SE11	PTB5					FTM2_ FLT0		
G5	F12	87	F12	PTB6	ADC1_ SE12	ADC1_ SE12	PTB6				FB_AD23/ SDRAM_ D23			
G4	F11	88	F11	PTB7	ADC1_ SE13	ADC1_ SE13	PTB7				FB_AD22/ SDRAM_ D22			
G3	F10	89	F10	PTB8	DISABLED		PTB8		UART3_ RTS_b		FB_AD21/ SDRAM_ D21			
G2	F9	90	F9	PTB9	DISABLED		PTB9	SPI1_PCS1	UART3_ CTS_b		FB_AD20/ SDRAM_ D20			
G1	G9	91	E12	PTB10	ADC1_ SE14	ADC1_ SE14	PTB10	SPI1_PCS0	UART3_RX		FB_AD19/ SDRAM_ D19	FTM0_ FLT1		
F5	E13	92	E11	PTB11	ADC1_ SE15	ADC1_ SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18/ SDRAM_ D18	FTM0_ FLT2		
F4	E12	-	-	PTB12	DISABLED		PTB12	UART3_ RTS_b	FTM1_CH0	FTM0_CH4	FB_A9/ SDRAM_D9	FTM1_QD_ PHA/ TPM1_CH0		
F3	E11	-	-	PTB13	DISABLED		PTB13	UART3_ CTS_b	FTM1_CH1	FTM0_CH5	FB_A8/ SDRAM_D8	FTM1_QD_ PHB/ TPM1_CH1		
F2	E10	-	-	PTB14	DISABLED		PTB14	CAN1_TX			FB_A7/ SDRAM_D7			
F1	E9	-	-	PTB15	DISABLED		PTB15	CAN1_RX			FB_A6/ SDRAM_D6			
_	_	93	H7	VSS	VSS	VSS								

Terminology and guidelines

Field	Description	Values
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 16 = 168 MHz 18 = 180 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

7.4 Example

This is an example part number:

MK26FN2M0CAC18R

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition						
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:						
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 						
Table continues on the next page							

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a registered trademark of USB Implementers Forum, Inc. All rights reserved.

© 2013–2017 NXP B.V.

Document Number K26P169M180SF5 Revision 4, 04/2017

