

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	190MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM, SRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD
Ethernet	-
SATA	-
USB	USB 2.0 (2)
Voltage - I/O	3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	217-LFBGA
Supplier Device Package	217-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam9261b-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Block Diagram

4 AT91SAM9261 Preliminary

3. Signal Description

 Table 3-1.
 Signal Description by Peripheral

Signal Name	Function	Туре	Active Level	Comments
	P	ower		•
VDDIOM	EBI I/O Lines Power Supply	Power		1.65 V to 1.95V and 3.0V to 3.6V
VDDIOP	Peripherals I/O Lines Power Supply	Power		2.7V to 3.6V
VDDBU	Backup I/O Lines Power Supply	Power		1.08V to 1.32V
VDDPLL	PLL Power Supply	Power		3.0V to 3.6V
VDDOSC	Oscillator Power Supply	Power		3.0V to 3.6V
VDDCORE	Core Chip Power Supply	Power		1.08V to 1.32V
GND	Ground	Ground		
GNDPLL	PLL Ground	Ground		
GNDOSC	Oscillator Ground	Ground		
GNDBU	Backup Ground	Ground		
	Clocks, Osci	lators and PLL	.S	
XIN	Main Oscillator Input	Input		
XOUT	Main Oscillator Output	Output		
XIN32	Slow Clock Oscillator Input	Input		
XOUT32	Slow Clock Oscillator Output	Output		
PLLRCA	PLL Filter	Input		
PLLRCB	PLL Filter	Input		
PCK0 - PCK3	Programmable Clock Output	Output		
	Shutdown,	Wakeup Logic		
SHDN	Shutdown Control	Output		Do not tie over VDDBU.
WKUP	Wake-Up Input	Input		Accepts between 0V and VDDBU.
	ICE a	nd JTAG		
ТСК	Test Clock	Input		No pull-up resistor.
RTCK	Returned Test Clock	Output		No pull-up resistor.
TDI	Test Data In	Input		No pull-up resistor.
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		No pull-up resistor.
NTRST	Test Reset Signal	Input	Low	Pull-up resistor.
JTAGSEL	JTAG Selection	Input		Pull-down resistor. Accepts between 0V and VDDBU.
	E	ТМ™		
TSYNC	Trace Synchronization Signal	Output		
TCLK	Trace Clock	Output		
TPS0 - TPS2	Trace ARM Pipeline Status	Output		
TPK0 - TPK15	Trace Packet Port	Output		

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name	Function	Туре	Active Level	Comments
	Res	et/Test		
NRST	Microcontroller Reset	I/O	Low	Pull-up resistor
TST	Test Mode Select	Input		Pull-down resistor.
BMS	Boot Mode Select	Input		
	Deb	ug Unit		
DRXD	Debug Receive Data	Input		
DTXD	Debug Transmit Data	Output		
		AIC		
IRQ0 - IRQ2	External Interrupt Inputs	Input		
FIQ	Fast Interrupt Input	Input		
		PIO		
PA0 - PA31	Parallel IO Controller A	I/O		Pulled-up input at reset
PB0 - PB31	Parallel IO Controller B	I/O		Pulled-up input at reset
PC0 - PC31	Parallel IO Controller C	I/O		Pulled-up input at reset
		EBI		L
D0 - D31	Data Bus	I/O		Pulled-up input at reset
A0 - A25	Address Bus	Output		0 at reset
NWAIT	External Wait Signal	Input	Low	
	Ś	мс		L
NCS0 - NCS7	Chip Select Lines	Output	Low	
NWR0 - NWR3	Write Signal	Output	Low	
NRD	Read Signal	Output	Low	
NWE	Write Enable	Output	Low	
NBS0 - NBS3	Byte Mask Signal	Output	Low	
	CompactF	lash Support		L
CFCE1 - CFCE2	CompactFlash Chip Enable	Output	Low	
CFOE	CompactFlash Output Enable	Output	Low	
CFWE	CompactFlash Write Enable	Output	Low	
CFIOR	CompactFlash IO Read	Output	Low	
CFIOW	CompactFlash IO Write	Output	Low	
CFRNW	CompactFlash Read Not Write	Output		
CFCS0 - CFCS1	CompactFlash Chip Select Lines	Output	Low	
	NAND FI	ash Support		·
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NANDCS	NAND Flash Chip Select	Output	Low	

AT91SAM9261 Preliminary

Signal Name	Function	Туре	Active Level	Comments
	SDRAM (Controller		
SDCK	SDRAM Clock	Output		
SDCKE	SDRAM Clock Enable	Output	High	
SDCS	SDRAM Controller Chip Select	Output	Low	
BA0 - BA1	Bank Select	Output		
SDWE	SDRAM Write Enable	Output	Low	
RAS - CAS	Row and Column Signal	Output	Low	
SDA10	SDRAM Address 10 Line	Output		
	Multimedia C	ard Interface		
MCCK	Multimedia Card Clock	Output		
MCCDA	Multimedia Card A Command	I/O		
MCDA0 - MCDA3	Multimedia Card A Data	I/O		
	USA	ART		
SCK0 - SCK2	Serial Clock	I/O		
TXD0 - TXD2	Transmit Data	Output		
RXD0 - RXD2	Receive Data	Input		
RTS0 - RTS2	Request To Send	Output		
CTS0 - CTS2	CTS0 - CTS2 Clear To Send			
	Synchronous S	erial Controlle	er	
TD0 - TD2	Transmit Data	Output		
RD0 - RD2	Receive Data	Input		
TK0 - TK2	Transmit Clock	I/O		
RK0 - RK2	Receive Clock	I/O		
TF0 - TF2	Transmit Frame Sync	I/O		
RF0 - RF2	Receive Frame Sync	I/O		
	Timer/C	Counter	T	r
TCLK0 - TCLK2	External Clock Input	Input		
TIOA0 - TIOA2	I/O Line A	I/O		
TIOB0 - TIOB2	I/O Line B	I/O		
	S	PI		
SPI0_MISO - SPI1_MISO	Master In Slave Out	I/O		
SPI0_MOSI - SPI1_MOSI	Master Out Slave In	I/O		
SPI0_SPCK - SPI1_SPCK	SPI Serial Clock	I/O		
SPI0_NPCS0, SPI1_NPCS0	SPI Peripheral Chip Select 0	I/O	Low	
SPI0_NPCS1 - SPI0_NPCS3 SPI1_NPCS1 - SPI1_NPCS3	SPI Peripheral Chip Select	Output	Low	

Table 3-1. Signal Description by Peripheral (Continued)

4. Package and Pinout

The AT91SAM9261 is available in a 217-ball LFBGA RoHS-compliant package, 15 x 15 mm, 0.8 mm ball pitch

4.1 217-ball LFBGA Package Outline

Figure 4-1 shows the orientation of the 217-ball LFBGA Package.

A detailed mechanical description is given in the section "AT91SAM9261 Mechanical Characteristics" of the product datasheet.

47			-				~							~		-	~
17	C	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0 0	0	0										0	0	0	0
12	(0 0	0	0										0	0	0	0
11	0	0 0	0	0										0	0	0	0
10	0	0 0	0	0				0	0	0				0	0	0	0
9	0	0 0	0	0				0	0	0				0	0	0	0
8	0	0 0	0	0				0	0	0				0	0	0	0
7	0	0 0	0	0										0	0	0	0
6	0	0 0	0	0										0	0	0	0
5	0	0 0	0	0										0	0	0	0
4	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Ċ	0 0	0	ò	ò	ò	Ó	ò	ò	ò	ò	ò	0	0	0	0	0
1	c	0	Ó	ò	ò	ò	ò	ò	Ó	ò	ò	ò	ò	ò	ò	Ó	0
	0		Ť	-	-	-	-	-	-	-	-	-	Ť	Ť	Ť	Ť	•
1	1																
	A	В	С	D	E	F	G	Н	J	Κ	L	Μ	Ν	Ρ	R	Т	U
Dall AT -																	

Figure 4-1. 217-ball LFBGA Package Outline (Top View)

AT91SAM9261 Preliminary

7. Processor and Architecture

7.1 ARM926EJ-S Processor

- RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java acceleration
- Two Instruction Sets
 - ARM High-performance 32-bit Instruction Set
 - Thumb High Code Density 16-bit Instruction Set
- DSP Instruction Extensions
- 5-Stage Pipeline Architecture:
 - Instruction Fetch (F)
 - Instruction Decode (D)
 - Execute (E)
 - Data Memory (M)
 - Register Write (W)
- 16 Kbyte Data Cache, 16 Kbyte Instruction Cache
 - Virtually-addressed 4-way Associative Cache
 - Eight words per line
 - Write-through and Write-back Operation
 - Pseudo-random or Round-robin Replacement
- Write Buffer
 - Main Write Buffer with 16-word Data Buffer and 4-address Buffer
 - DCache Write-back Buffer with 8-word Entries and a Single Address Entry
 - Software Control Drain
- Standard ARM v4 and v5 Memory Management Unit (MMU)
 - Access Permission for Sections
 - Access Permission for large pages and small pages can be specified separately for each quarter of the page
 - 16 embedded domains
- Bus Interface Unit (BIU)
 - Arbitrates and Schedules AHB Requests
 - Separate Masters for both instruction and data access providing complete AHB system flexibility
 - Separate Address and Data Buses for both the 32-bit instruction interface and the 32-bit data interface
 - On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit (Words)

7.2 Debug and Test Features

- Integrated Embedded In-circuit Emulator Real-Time
 - Two real-time Watchpoint Units
 - Two Independent Registers: Debug Control Register and Debug Status Register
 - Test Access Port Accessible through JTAG Protocol
 - Debug Communications Channel
- Debug Unit
 - Two-pin UART
 - Debug Communication Channel Interrupt Handling
 - Chip ID Register
- Embedded Trace Macrocell: ETM9[™]
 - Medium+ Level Implementation
 - Half-rate Clock Mode
 - Four Pairs of Address Comparators
 - Two Data Comparators
 - Eight Memory Map Decoder Inputs
 - Two 16-bit Counters
 - One 3-stage Sequencer
 - One 45-byte FIFO
- IEEE1149.1 JTAG Boundary-scan on All Digital Pins

7.3 Bus Matrix

- Five Masters and Five Slaves handled
 - Handles Requests from the ARM926EJ-S, USB Host Port, LCD Controller and the Peripheral DMA Controller to internal ROM, internal SRAM, EBI, APB, LCD Controller and USB Host Port.
 - Round-Robin Arbitration (three modes supported: no default master, last accessed default master, fixed default master)
 - Burst Breaking with Slot Cycle Limit
- One Address Decoder Provided per Master
 - Three different slaves may be assigned to each decoded memory area: one for internal boot, one for external boot, one after remap.
- Boot Mode Select Option
 - Non-volatile Boot Memory can be Internal or External.
 - Selection is made by BMS pin sampled at reset.
- Remap Command
 - Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory
 - Allows Handling of Dynamic Exception Vectors

The memory blocks assigned to SRAM A, SRAM B and SRAM C areas are not contiguous and when the user dynamically changes the Internal SRAM configuration, the new 16 Kbyte block organization may affect the previous configuration from a software point of view.

Table 8-5 illustrates different configurations and the related 16 Kbyte blocks (RB0 to RB9) assignments.

		Configuration Example	es and Related 16 Kby	te Block Assignments	
Decoded Area	Address	ITCM = 0 Kbyte DTCM = 0 Kbyte AHB = 160 Kbytes ⁽¹⁾	ITCM = 64 Kbytes DTCM = 64 Kbytes AHB = 32 Kbytes	ITCM = 32 Kbytes DTCM = 64 Kbytes AHB = 64 Kbytes	ITCM = 32 Kbytes DTCM = 16 Kbytes AHB = 112 Kbytes
	0x0010 0000		RB3	RB3	RB3
Internal	0x0010 4000		RB2	RB2	RB2
(ITCM)	0x0010 8000		RB1		
	0x0010 C000		RB0		
	0x0020 0000		RB7	RB7	RB7
Internal	0x0020 4000		RB6	RB6	
(DTCM)	0x0020 8000		RB5	RB5	
	0x0020 C000		RB4	RB4	
	0x0030 0000	RB9	RB9	RB9	RB9
	0x0030 4000	RB8	RB8	RB8	RB8
	0x0030 8000	RB7		RB1	RB6
	0x0030 C000	RB6		RB0	RB5
Internal	0x0031 0000	RB5			RB4
(AHB)	0x0031 4000	RB4			RB1
	0x0031 8000	RB3			RB0
	0x0031 C000	RB2			
	0x0032 0000	RB1			
	0x0032 4000	RB0			

Table 8-5. 16 Kbyte Block Allocation

Note: 1. Configuration after reset.

8.1.1.2 Internal ROM

The AT91SAM9261 integrates a 32 Kbyte Internal ROM mapped at address 0x0040 0000. It is also accessible at address 0x0 after reset and before remap if the BMS is tied high during reset.

8.1.1.3 USB Host Port

The AT91SAM9261 integrates a USB Host Port Open Host Controller Interface (OHCI). The registers of this interface are directly accessible on the AHB Bus and are mapped like a standard internal memory at address 0x0050 0000.

8.1.1.4 LCD Controller

The AT91SAM9261 integrates an LCD Controller. The interface is directly accessible on the AHB Bus and is mapped like a standard internal memory at address 0x0060 0000.

8.1.2 Boot Strategies

The system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory layout can be configured with two parameters.

REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This is done by software once the system has booted for each Master of the Bus Matrix. Refer to the Bus Matrix Section for more details.

When REMAP = 0, BMS allows the user to lay out to 0x0, at his convenience, the ROM or an external memory. This is done via hardware at reset.

Note: Memory blocks not affected by these parameters can always be seen at their specified base addresses. See the complete memory map presented in Figure 8-1 on page 16.

The AT91SAM9261 Bus Matrix manages a boot memory that depends on the level on the BMS pin at reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is reserved for this purpose.

If BMS is detected at 1, the boot memory is the embedded ROM.

If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the External Bus Interface.

8.1.2.1 BMS = 1, Boot on Embedded ROM

The system boots using the Boot Program.

- Downloads and runs an application from external storage media into internal SRAM
- Downloaded code size depends on embedded SRAM size
- Automatic detection of valid application
- · Bootloader on a non-volatile memory
 - SDCard
 - NAND Flash
 - SPI DataFlash connected on NPCS0 of the SPI
- SAM-BA[®] boot in case no valid program is detected in external NVM, supporting:
 - Serial communication on a DBGU
 - USB Device HS Port

8.1.2.2 BMS = 0, Boot on External Memory

- Boot on slow clock (32,768 Hz)
- Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.

The customer-programmed software must perform a complete configuration.

To speed up the boot sequence when booting at 32 kHz EBI CS0 (BMS=0), the user must take the following steps:

- 1. Program the PMC (main oscillator enable or bypass mode).
- 2. Program and start the PLL.
- 3. Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them to the new clock
- 4. Switch the main clock to the new value.

9.1 Block Diagram

9.10 Advanced Interrupt Controller

- · Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor
- Thirty-two individually maskable and vectored interrupt sources
 - Source 0 is reserved for the Fast Interrupt Input (FIQ)
 - Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)
 - Source 2 to Source 31 control up to thirty embedded peripheral interrupts or external interrupts
 - Programmable edge-triggered or level-sensitive internal sources
 - Programmable positive/negative edge-triggered or high/low level-sensitive
- Four External Sources
- 8-level Priority Controller
 - Drives the normal interrupt of the processor
 - Handles priority of the interrupt sources 1 to 31
 - Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
 - Optimizes Interrupt Service Routine Branch and Execution
 - One 32-bit Vector Register per interrupt source
 - Interrupt Vector Register reads the corresponding current Interrupt Vector
- Protect Mode
 - Easy debugging by preventing automatic operations when protect mode is enabled
- Fast Forcing
 - Permits redirecting any normal interrupt source on the Fast Interrupt of the processor
- General Interrupt Mask
 - Provides processor synchronization on events without triggering an interrupt

9.11 Debug Unit

- Composed of four functions
 - Two-pin UART
 - Debug Communication Channel (DCC) support
 - Chip ID Registers
 - ICE Access Prevention
- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter
- Debug Communication Channel Support

26 AT91SAM9261 Preliminary

- Offers visibility of COMMRX and COMMTX signals from the ARM Processor
- Chip ID Registers
 - Identification of the device revision, sizes of the embedded memories, set of peripherals
- ICE Access prevention
 - Enables software to prevent system access through the ARM Processor's ICE
 - Prevention is made by asserting the NTRST line of the ARM Processor's ICE

9.12 PIO Controllers

- Three PIO Controllers, each controlling up to 32 programmable I/O Lines
 - PIOA has 32 I/O Lines
 - PIOB has 32 I/O Lines
 - PIOC has 32 I/O Lines
- Fully programmable through Set/Clear Registers
- Multiplexing of two peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general-purpose I/O)
 - Input change interrupt
 - Glitch filter
 - Multi-drive option enables driving in open drain
 - Programmable pull up on each I/O line
 - Pin data status register, supplies visibility of the level on the pin at any time
- Synchronous output, provides Set and Clear of several I/O lines in a single write

- using the three Timer Counter channels' outputs and trigger inputs
- using the SSC2

10.3.1.5 NAND Flash Interface

Using the NAND Flash interface prevents:

• using NCS3, NCS6 and NCS7 to access other parallel devices

10.3.1.6 Compact Flash Interface

Using the CompactFlash interface prevents:

• using NCS4 and/or NCS5 to access other parallel devices

10.3.1.7 SPI0 and the MultiMedia Card Interface

As the DataFlash Card is compatible with the SDCard, it is useful to multiplex SPI and MCI. Here, the SPI0 signal is multiplexed with the MCI.

10.3.1.8 USARTs

- Using the USART1 and USART2 control signals prevents using the ETM.
- Alternatively, using USART0 with its control signals prevents using some clock outputs and interrupt lines.

10.3.1.9 Clock Outputs

- Using the clock outputs multiplexed with the PIO A prevents using the Debug Unit and/or the Two Wire Interface.
- Alternatively, using the second implementation of the clock outputs prevents using the LCD Controller Interface and/or USART0.

10.3.1.10 Interrupt Lines

- Using FIQ prevents using the USART0 control signals.
- Using IRQ0 prevents using the NWAIT EBI signal.
- Using the IRQ1 and/or IRQ2 prevents using the SPI1.

10.3.2 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A				Application Usage			
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments
PA0	SPI0_MISO	MCDA0		I/O	VDDIOP		
PA1	SPI0_MOSI	MCCDA		I/O	VDDIOP		
PA2	SPI0_SPCK	MCCK		I/O	VDDIOP		
PA3	SPI0_NPCS0			I/O	VDDIOP		
PA4	SPI0_NPCS1	MCDA1		I/O	VDDIOP		
PA5	SPI0_NPCS2	MCDA2		I/O	VDDIOP		
PA6	SPI0_NPCS3	MCDA3		I/O	VDDIOP		
PA7	TWD	PCK0		I/O	VDDIOP		
PA8	TWCK	PCK1		I/O	VDDIOP		
PA9	DRXD	PCK2		I/O	VDDIOP		
PA10	DTXD	PCK3		I/O	VDDIOP		
PA11	TSYNC	SCK1		I/O	VDDIOP		
PA12	TCLK	RTS1		I/O	VDDIOP		
PA13	TPS0	CTS1		I/O	VDDIOP		
PA14	TPS1	SCK2		I/O	VDDIOP		
PA15	TPS2	RTS2		I/O	VDDIOP		
PA16	TPK0	CTS2		I/O	VDDIOP		
PA17	TPK1	TF1		I/O	VDDIOP		
PA18	TPK2	TK1		I/O	VDDIOP		
PA19	TPK3	TD1		I/O	VDDIOP		
PA20	TPK4	RD1		I/O	VDDIOP		
PA21	TPK5	RK1		I/O	VDDIOP		
PA22	TPK6	RF1		I/O	VDDIOP		
PA23	TPK7	RTS0		I/O	VDDIOP		
PA24	TPK8	SPI1_NPCS1		I/O	VDDIOP		
PA25	TPK9	SPI1_NPCS2		I/O	VDDIOP		
PA26	TPK10	SPI1_NPCS3		I/O	VDDIOP		
PA27	TPK11	SPI0_NPCS1		I/O	VDDIOP		
PA28	TPK12	SPI0_NPCS2		I/O	VDDIOP		
PA29	TPK13	SPI0_NPCS3		I/O	VDDIOP		
PA30	TPK14	A23		A23	VDDIOP		
PA31	TPK15	A24		A24	VDDIOP		

10.3.3 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B

	PIO Controller B				Application Usage			
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments	
PB0	LCDVSYNC			I/O	VDDIOP			
PB1	LCDHSYNC			I/O	VDDIOP			
PB2	LCDDOTCK	PCK0		I/O	VDDIOP			
PB3 ⁽¹⁾	LCDDEN		See footnote ⁽¹⁾	I/O	VDDIOP			
PB4	LCDCC	LCDD2		I/O	VDDIOP			
PB5	LCDD0	LCDD3		I/O	VDDIOP			
PB6	LCDD1	LCDD4		I/O	VDDIOP			
PB7	LCDD2	LCDD5		I/O	VDDIOP			
PB8	LCDD3	LCDD6		I/O	VDDIOP			
PB9	LCDD4	LCDD7		I/O	VDDIOP			
PB10	LCDD5	LCDD10		I/O	VDDIOP			
PB11	LCDD6	LCDD11		I/O	VDDIOP			
PB12	LCDD7	LCDD12		I/O	VDDIOP			
PB13	LCDD8	LCDD13		I/O	VDDIOP			
PB14	LCDD9	LCDD14		I/O	VDDIOP			
PB15	LCDD10	LCDD15		I/O	VDDIOP			
PB16	LCDD11	LCDD19		I/O	VDDIOP			
PB17	LCDD12	LCDD20		I/O	VDDIOP			
PB18	LCDD13	LCDD21		I/O	VDDIOP			
PB19	LCDD14	LCDD22		I/O	VDDIOP			
PB20	LCDD15	LCDD23		I/O	VDDIOP			
PB21	TF0	LCDD16		I/O	VDDIOP			
PB22	TK0	LCDD17		I/O	VDDIOP			
PB23	TD0	LCDD18		I/O	VDDIOP			
PB24	RD0	LCDD19		I/O	VDDIOP			
PB25	RK0	LCDD20		I/O	VDDIOP			
PB26	RF0	LCDD21		I/O	VDDIOP			
PB27	SPI1_NPCS1	LCDD22		I/O	VDDIOP			
PB28	SPI1_NPCS0	LCDD23		I/O	VDDIOP			
PB29	SPI1_SPCK	IRQ2		I/O	VDDIOP			
PB30	SPI1_MISO	IRQ1		I/O	VDDIOP			
PB31	SPI1_MOSI	PCK2		I/O	VDDIOP			

Note: 1. PB3 is multiplexed with BMS signal. Care should be taken during reset time.

32 AT91SAM9261 Preliminary

10.3.4 PIO Controller C Multiplexing

Table 10-4. Multiplexing on PIO Controller C

PIO Controller C				Application Usage			
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments
PC0	NANDOE	NCS6		I/O	VDDIOP		
PC1	NANDWE	NCS7		I/O	VDDIOP		
PC2	NWAIT	IRQ0		I/O	VDDIOP		
PC3	A25/CFRNW			A25	VDDIOP		
PC4	NCS4/CFCS0			I/O	VDDIOP		
PC5	NCS5/CFCS1			I/O	VDDIOP		
PC6	CFCE1			I/O	VDDIOP		
PC7	CFCE2			I/O	VDDIOP		
PC8	TXD0	PCK2		I/O	VDDIOP		
PC9	RXD0	РСКЗ		I/O	VDDIOP		
PC10	RTS0	SCK0		I/O	VDDIOP		
PC11	CTS0	FIQ		I/O	VDDIOP		
PC12	TXD1	NCS6		I/O	VDDIOP		
PC13	RXD1	NCS7		I/O	VDDIOP		
PC14	TXD2	SPI1_NPCS2		I/O	VDDIOP		
PC15	RXD2	SPI1_NPCS3		I/O	VDDIOP		
PC16	D16	TCLK0		I/O	VDDIOM		
PC17	D17	TCLK1		I/O	VDDIOM		
PC18	D18	TCLK2		I/O	VDDIOM		
PC19	D19	TIOA0		I/O	VDDIOM		
PC20	D20	TIOB0		I/O	VDDIOM		
PC21	D21	TIOA1		I/O	VDDIOM		
PC22	D22	TIOB1		I/O	VDDIOM		
PC23	D23	TIOA2		I/O	VDDIOM		
PC24	D24	TIOB2		I/O	VDDIOM		
PC25	D25	TF2		I/O	VDDIOM		
PC26	D26	TK2		I/O	VDDIOM		
PC27	D27	TD2		I/O	VDDIOM		
PC28	D28	RD2		I/O	VDDIOM		
PC29	D29	RK2		I/O	VDDIOM		
PC30	D30	RF2		I/O	VDDIOM		
PC31	D31	PCK1		I/O	VDDIOM		

10.3.5 System Interrupt

The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:

- the SDRAM Controller
- the Debug Unit
- the Periodic Interval Timer
- the Real-Time Timer
- the Watchdog Timer
- the Reset Controller
- the Power Management Controller

The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used within the Advanced Interrupt Controller.

10.3.6 External Interrupts

All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these peripheral IDs.

10.4 External Bus Interface

- Integrates two External Memory Controllers:
 - Static Memory Controller
 - SDRAM Controller
- Additional logic for NAND Flash and CompactFlash support
 - NAND Flash support: 8-bit as well as 16-bit devices are supported
 - CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are supported but the signals -IOIS16 (I/O and True IDE modes) and -ATA SEL (True IDE mode) are not handled.
- Optimized External Bus
 - 16- or 32-bit Data Bus
 - Up to 26-bit Address Bus, up to 64 Mbytes addressable
 - Eight Chip Selects, each reserved to one of the eight Memory Areas
 - Optimized pin multiplexing to reduce latencies on External Memories
- Configurable Chip Select Assignment Managed by EBI_CSA Register located in the MATRIX user interface
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2
 - Static Memory Controller on NCS3, Optional NAND Flash Support
 - Static Memory Controller on NCS4 NCS5, Optional CompactFlash Support
 - Static Memory Controller on NCS6 NCS7

10.7 Serial Peripheral Interface

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to fifteen peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

10.8 Two-wire Interface

- · Compatibility with standard two-wire serial memory
- One, two or three bytes for slave address
- Sequential read/write operations

10.9 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection
 - By-8 or by-16 over-sampling receiver frequency
 - Hardware handshaking RTS-CTS
 - Receiver time-out and transmitter timeguard
 - Optional Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
 - NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
 - Communication at up to 115.2 Kbps

36 AT91SAM9261 Preliminary

12. Ordering Information

Table 12-1.	AT91SAM9261	Ordering Information
-------------	-------------	-----------------------------

Ordering Code	MRL	Package	Package Type	Temperature Operating Range
AT91SAM9261-CJ	A	BGA217	RoHS-compliant	Industrial -40°C to 85°C
AT91SAM9261B-CU	В	BGA217	Green	Industrial -40°C to 85°C

Doc. Rev.	Source	Comments
6062KS	5846 5932	In Features , on page 2 Debug Unit (DBGU) updated Section 10.9 "USART", manchester encoding option is not avaiilable.
6062L	5424/rfo	Section 8.1.2.1 "BMS = 1, Boot on Embedded ROM", updated. Section 12. "Ordering Information", updated with ordering information for chip revision B.

Table 13-1. Revision History (Continued)

