E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l496vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.19	Voltage reference buffer characteristics	190
		6.3.20	Comparator characteristics	192
		6.3.21	Operational amplifiers characteristics	
		6.3.22	Temperature sensor characteristics	197
		6.3.23	V _{BAT} monitoring characteristics	197
		6.3.24	LCD controller characteristics	198
		6.3.25	DFSDM characteristics	199
		6.3.26	Timer characteristics	201
		6.3.27	Communication interfaces characteristics	203
		6.3.28	FSMC characteristics	215
		6.3.29	Camera interface (DCMI) timing specifications	232
		6.3.30	SWPMI characteristics	233
		6.3.31	SD/SDIO MMC card host interface (SDIO) characteristics .	233
7	Packa	age info	rmation	236
	7.1	UFBGA	169 package information	236
	7.2	LQFP14	14 package information	240
	7.3	UFBGA	132 package information	244
	7.4	LQFP10	00 package information	247
	7.5	WLCSF	2100 package information	250
	7.6	LQFP64	4 package information	254
	7.7	Therma	I characteristics	257
		7.7.1	Reference document	
		7.7.2	Selecting the product temperature range	257
8	Part r	numberi	ng	260
9	Revis	ion hist	tory	261

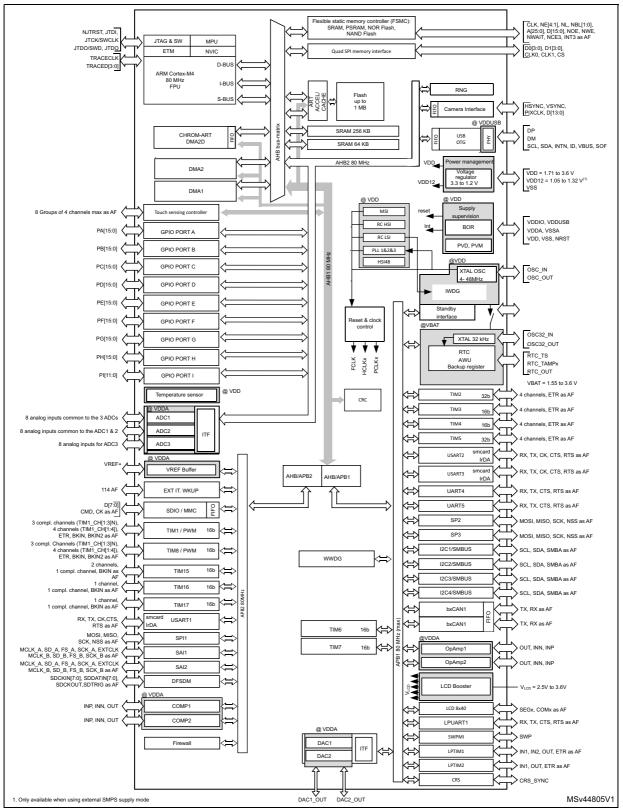


Figure 1. STM32L496xx block diagram

Note: AF: alternate function on I/O pins.

					Stop	o 0/1	Sto	op 2	Star	ndby	Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
SysTick timer	0	0	0	0	-	-	-	-	-	-	-	-	-
Touch sensing controller (TSC)	0	0	0	0	-	-	-	-	-	-	-	-	-
Random number generator (RNG)	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	-	-	-	-	-	-	-	-
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.

3. The SRAM clock can be gated on or off.

4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.

- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.10.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.10.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

DocID029173 Rev 1

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.19 Voltage reference buffer (VREFBUF)

The STM32L496xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

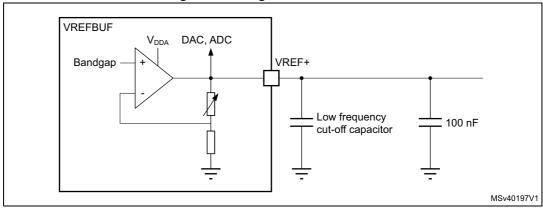


Figure 5. Voltage reference buffer

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 10. Timer feature comparison (continued)

3.27.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in *Section 3.27.2*) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

The synchronization for this oscillator can also be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

The major features are:

- Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- Software configurable to OTG 1.3 and OTG 2.0 modes of operation
- OTG 2.0 Supports ADP (Attach detection Protocol)
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

3.38 Clock recovery system (CRS)

The STM32L496xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.39 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
- 8-,16- bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.40 Dual-flash Quad SPI memory interface (QUADSPI)

The Dual-flash Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously.

The Dual-flash Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

Pinouts and pin description

	Figure 8. STM32L496Zx LQFP144 pinout ⁽¹⁾	
	V VD V VD V VD V VS V VS V VD VS VS VD V VS VS VD V V V V V V V V V V V V V V V V	
PE2 1 PE3 2 PE4 3 PE5 4 PE6 5 VBAT 6 PC13 7 PC14-OSC32_IN 8 PC15-OSC32_OUT 9 PF0 10 PF1 11 PF2 12		108 VDD 107 VSS 106 VDDUSE 105 PA13 104 PA12 103 PA11 102 PA10 101 PA9 100 PA8 99 PC9 98 PC8 97 PC7
PF3 13 PF4 14 PF5 15 VSS 16 VDD 17 PF6 18 PF7 19 PF8 20 PF9 21 PF10 22 PH0-OSC_IN 23 PH1-OSC_OUT 24	LQFP144	96 PC6 95 VDDIO2 94 VSS 93 PG8 92 PG7 91 PG6 90 PG5 89 PG4 88 PG3 87 PG2 86 PD15 85 PD14
NRST 25 PC0 26 PC1 27 PC2 28 PC3 29 VSSA 30 VREF- 31 VREF+ 32 VDDA 33 PA0 34 PA1 35		84 VDD 83 VSS 82 PD13 81 PD12 80 PD11 79 PD10 78 PD9 77 PD8 76 PB15 75 PB14 74 PB13
PA2 36	Page Page	73 D PB12 MSv38033V4

.**₊**(1) 8 STM321 /067v | OED1// pir _..

1. The above figure shows the package top view.

81/262

2	

Table 15. STM32L496xx pin definitions (continued)

			Piı	n Num	ber								Pin functions	
LQFP64	WLCSP100	WLCSP100_SMPS	LQFP100	UFBGA132	LQFP144	LQFP144_SMPS	UFBGA169	UFBGA169_SMPS	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	C11	C11	PI8	I/O	FT	-	DCMI_D12, EVENTOUT	-
-	-	-	-	-	-	-	B11	B11	PI1	I/O	FT	-	SPI2_SCK, DCMI_D8, EVENTOUT	-
-	-	-	-	-	-	-	B10	B10	Pl2	I/O	FT	-	TIM8_CH4, SPI2_MISO, DCMI_D9, EVENTOUT	-
-	-	-	-	-	-	-	C10	C10	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI, DCMI_D10, EVENTOUT	-
-	-	-	-	-	-	-	D10	D10	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	-	-	-	-	E10	E10	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	-	-	-	C9	C9	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, EVENTOUT	-
-	-	-	-	-	-	-	В9	B9	PI6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
49	B2	B2	76	A10	109	109	A10	A10	PA14 (JTCK/SWCLK)	I/O	FT	-	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, OTG_FS_SOF, SWPMI1_RX, SAI1_FS_B, EVENTOUT	-
50	A2	A2	77	A9	110	110	A9	A9	PA15 (JTDI)	I/O	FT_I	-	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, TSC_G3_IO1, LCD_SEG17, SWPMI1_SUSPEND, SAI2_FS_B, EVENTOUT	-
51	D4	C3	78	B11	111	111	D9	D9	PC10	I/O	FT_I	-	TRACED1, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, DCMI_D8, LCD_COM4/LCD_SEG28/LCD_SEG40, SDMMC1_D2, SAI2_SCK_B, EVENTOUT	-

Pinouts and pin description

STM32L496xx

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	LCD	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PE0	-	-	DCMI_D2	LCD_SEG36	FMC_NBL0	-	TIM16_CH1	EVENTOUT
	PE1	-	-	DCMI_D3	LCD_SEG37	FMC_NBL1	-	TIM17_CH1	EVENTOU
	PE2	-	TSC_G7_IO1	-	LCD_SEG38	FMC_A23	SAI1_MCLK_A	-	EVENTOU
	PE3	-	TSC_G7_IO2	-	LCD_SEG39	FMC_A19	SAI1_SD_B	-	EVENTOU
	PE4	-	TSC_G7_IO3	DCMI_D4	-	FMC_A20	SAI1_FS_A	-	EVENTOU
-	PE5	-	TSC_G7_IO4	DCMI_D6	-	FMC_A21	SAI1_SCK_A	-	EVENTOU
	PE6			DCMI_D7	-	FMC_A22	SAI1_SD_A	-	EVENTOU
	PE7	-	-	-	-	FMC_D4	SAI1_SD_B	-	EVENTOU
Port E	PE8	-	-	-	-	FMC_D5	SAI1_SCK_B	-	EVENTOU
	PE9	-	-	-	-	FMC_D6	SAI1_FS_B	-	EVENTOU
	PE10	-	TSC_G5_IO1	QUADSPI_CLK	-	FMC_D7	SAI1_MCLK_B	-	EVENTOU
	PE11	-	TSC_G5_IO2	QUADSPI_BK1_NCS	-	FMC_D8	-	-	EVENTOU
	PE12	-	TSC_G5_IO3	QUADSPI_BK1_IO0	-	FMC_D9	-	-	EVENTOU
	PE13	-	TSC_G5_IO4	QUADSPI_BK1_IO1	-	FMC_D10	-	-	EVENTOU
	PE14	-	-	QUADSPI_BK1_IO2	-	FMC_D11	-	-	EVENTOU
	PE15	-	-	QUADSPI_BK1_IO3	-	FMC_D12	-	-	EVENTOU

5

STM32L496xx

Pinouts and pin description

				running	g from	Flash,	ART di	sable							
		Con	ditions				TYP					MAX ⁽¹⁾			
Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Uni
				26 MHz	3.1	3.14	3.28	3.51	3.98	3.5	3.6	3.8	4.3	5.3	
				16 MHz	2.19	2.23	2.36	2.59	3.05	2.5	2.6	2.8	3.3	4.3	
				8 MHz	1.22	1.26	1.39	1.61	2.07	1.4	1.5	1.7	2.2	3.2	
			Range 2	4 MHz	0.69	0.73	0.85	1.08	1.53	0.8	0.9	1.1	1.6	2.6	
		f _{HCLK} = f _{HSE} up to 48MHz		2 MHz	0.41	0.44	0.57	0.79	1.24	0.5	0.6	0.8	1.3	2.3	
	.	included, bypass		1 MHz	0.27	0.3	0.43	0.65	1.1	0.3	0.4	0.6	1.1	2.1	
I _{DD_ALL} (Run)	Supply current in	mode		100 kHz	0.14	0.18	0.3	0.52	0.97	0.2	0.3	0.5	1.0	2.0	mA
DD_ALL(I (all)	Run mode	PLL ON above		80 MHz	10	10.1	10.3	10.5	11.1	11.1	11.2	11.6	12.2	13.31	
		48 MHz all peripherals		72 MHz	9.02	9.1	9.29	9.59	10.1	10	10.1	10.5	11.0	12.2	
		disable		64 MHz	8.94	9.02	9.2	9.48	10	9.9	10.1	10.4	11.0	12.1	
			Range 1	48 MHz	7.51	7.59	7.77	8.05	8.59	8.4	8.6	8.9	9.5	10.6	
				32 MHz	5.38	5.45	5.62	5.88	6.41	6.0	6.2	6.5	7.0	8.2	
				24 MHz	4.07	4.12	4.28	4.54	5.06	4.5	4.7	5.0	5.5	6.6	
				16 MHz	2.86	2.92	3.07	3.33	3.84	3.2	3.3	3.6	4.2	5.3	
	Cumple			2 MHz	378	412	549	782	1260	436	538	761	1287	2317	
I _{DD_ALL}	Supply current in	f _{HCLK} = f _{MSI}		1 MHz	213	246	381	618	1100	255	367	609.	1105	2138	μA
(LPRun)	Low-power run	all peripherals dis	able	400 kHz	101	144	277	514	989	141	256	507	995	2033	μΛ
				100 kHz	62	95.8	228	463	939	85	201	454	947	1982	

Table 28. Current consumption in Run and Low-power run modes, code with data processing

1. Guaranteed by characterization results, unless otherwise specified.

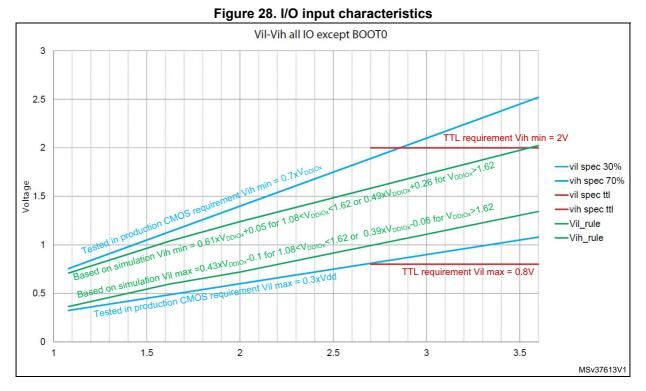

Symbol	Parameter		Conditions	Тур	Max	Unit
		Danga 1	Wakeup clock MSI = 48 MHz	8.4	9.4	
		Range 1	Wakeup clock HSI16 = 16 MHz	7.8	8.4	
	Wake up time from Stop 1 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	8.7	9.6	
		Range 2	Wakeup clock HSI16 = 16 MHz	7.8	8.3	
			Wakeup clock MSI = 4 MHz	8.4 9 8.4 9 $4z$ 7.8 8.7 8.7 9 $4z$ 7.8 8.7 8.7 9.7 $4z$ 7.8 8.7 8.0 12 5.5 5.7 $4z$ 6.6 7.7 6.6 7.7 8.5 12 13.8 20 13.8 20 13.8 20 13.8 20 13.8 20 13.8 20 13.8 20 13.8 20 13.8 20 11.8 22 8.9 9.1 $4z$ 8.2 9.3 10 $4z$ 8.2 9.3 10 $4z$ 7.2 8.4 16 15.3 23 21.3 30 15.3 23 2	12.9	
		Dongo 1	Wakeup clock MSI = 48 MHz	5.5	5.9	
	Wake up time from Stop 1	Range 1	Wakeup clock HSI16 = 16 MHz	6.6	7.0	
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	6.1	6.5	μs
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	6.6	7.0	
			Wakeup clock MSI = 4 MHz	8.5	12.8	
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power		13.8	20.0	
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	11.8	22.0	
		Danas 4	Wakeup clock MSI = 48 MHz	8.9	9.8	
		Range 1	Wakeup clock HSI16 = 16 MHz	8.3	9.2	
	Wake up time from Stop 2 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	9.3	10.2	
		Range 2	Wakeup clock HSI16 = 16 MHz	8.2	9.2	
			Wakeup clock MSI = 4 MHz	14.2	16.1	
twustop2		Danga 1	Wakeup clock MSI = 48 MHz	6.1	7.1	μs
	Wake up time from Stop 2	Range 1	Wakeup clock HSI16 = 16 MHz	7.2	8.1	
	mode to Run mode in		Wakeup clock MSI = 24 MHz	6.8	7.8	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	7.2	8.2	
			Wakeup clock MSI = 4 MHz	8.4	16.7	
+	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	15.3	23.2	110
t _{WUSTBY}	mode to Run mode	Trange T	Wakeup clock MSI = 4 MHz	21.3	30.5	μs
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	15.3	23.1	118
SRAM2	with SRAM2 to Run mode		Wakeup clock MSI = 4 MHz	21.3	30.6	μs
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	305.9	322.3	μs

 Table 51. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 28* for standard I/Os, and in *Figure 28* for 5 V tolerant I/Os.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 19: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 19: Voltage characteristics*).

	145	ne ou. Abo accuracy - m			nava	/		
Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69	
THD	Total harmonic	26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	ended	Slow channel (max speed)	-	-71	-69	dB
	distortion	3.6 V,	Differential	Fast channel (max speed)	-	-73	-72	uВ
		Voltage scaling Range 2	Differential	Slow channel (max speed)	-	-73	-72	

Table 80. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
			Static	-	400	600	
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA
			Static	-	5	7	
I _{DDA} (COMP)	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-	μA
			Static	-	70	100	μΛ
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	-	
I _{bias}	Comparator input bias current		-	-	-	_(4)	nA

Table 84. COMF	characteristics ⁽¹⁾	(continued)
----------------	--------------------------------	-------------

1. Guaranteed by design, unless otherwise specified.

2. Refer to Table 25: Embedded internal voltage reference.

3. Guaranteed by characterization results.

4. Mostly I/O leakage when used in analog mode. Refer to I_{lkg} parameter in Table 70: I/O static characteristics.

6.3.21 Operational amplifiers characteristics

Table 85.	OPAMP	characteristics ⁽¹⁾
	• • • • • • • • • • • • • • • • • • • •	

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
CMIR	Common mode input range	-	0	-	V _{DDA}	V
M	Input offset voltage	25 °C, No Load on output.	-	-	±1.5	mV
VI _{OFFSET}		All voltage/Temp.	-	-	±3	
ΔVI _{OFFSET}	Input offset voltage drift	Normal mode	-	±5	-	μV/°C
		Low-power mode	-	±10	-	
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 x V _{DDA})	-	-	0.8	1.1	mV
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-	-	1	1.35	ΠV

Symbol	Parameter	Con	Min	Тур	Max	Unit	
en Voltage noise density		Normal mode	at 1 kHz, Output loaded with 4 k Ω	-	500	-	nV/√Hz
	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	
	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	
		Low-power mode	at 10 kHz, Output loaded with 20 k Ω	-	290	-	
I _{DDA} (OPAMP) ⁽²⁾	OPAMP consumption from V _{DDA}	Normal mode	no Load, quiescent mode	-	120	260	μA
		Low-power mode		-	45	100	

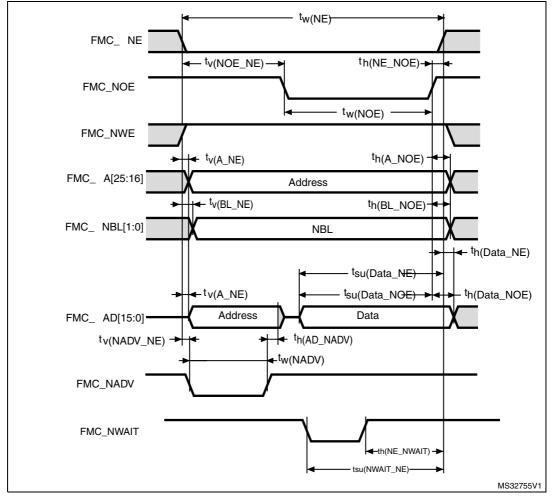
Table 85.	OPAMP	characteristics ⁽¹⁾	(continued)
-----------	-------	--------------------------------	-------------

1. Guaranteed by design, unless otherwise specified.

2. Guaranteed by characterization results.

3. Mostly I/O leakage, when used in analog mode. Refer to IIkg parameter in Table 70: I/O static characteristics.

4. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1



Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} -1	8T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -1.5	6T _{HCLK} +0.5	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} -1	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-	

Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 45. Asynchronous multiplexed PSRAM/NOR read waveforms

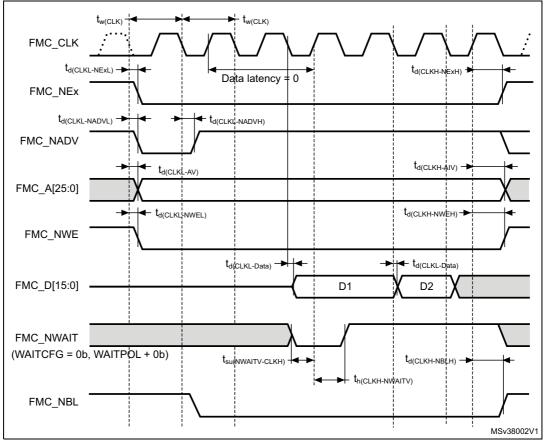


Table 112. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	113

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 50. Synchronous non-multiplexed PSRAM write timings

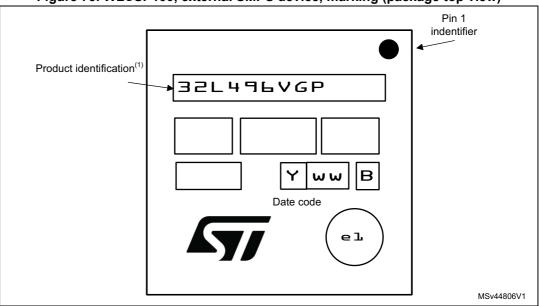


Figure 75. WLCSP100, external SMPS device, marking (package top view)

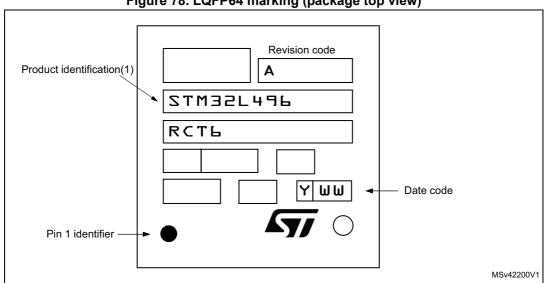


Figure 78. LQFP64 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 1.

