

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA, WLCSP
Supplier Device Package	100-WLCSP (4.62x4.14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l496vgy6ptr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package mechanical data	254
Table 129.	Package thermal characteristics	257
Table 130.	STM32L496xx ordering information scheme	260
Table 131.	Document revision history	261

3.4 Embedded Flash memory

STM32L496xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read-while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Area	Protection	U	ser executio	on	Debug, boot from RAM or boot from system memory (loader)				
	level	Read	Write	Erase	Read	Write	Erase		
Main	1	Yes	Yes	Yes	No	No	No		
System memory Option	2	Yes	Yes	Yes	N/A	N/A	N/A		
System memory	1	Yes	No	No	Yes	No	No		
	2	Yes	No	No	N/A	N/A	N/A		
Option	1	Yes	Yes	Yes	Yes	Yes	Yes		
bytes	2	Yes	No	No	N/A	Write EraseWriteEraseNoNoN/AN/ANoNoN/AN/AYesYesN/AN/ANoN/AN/AN/ANoN/A(1)N/AN/ANoNo(1)N/AN/ANoNo(1)N/AN/A			
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾		
registers	2	Yes	Yes	N/A	N/A	N/A	N/A		
SDVM3	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾		
SNAWZ	2	Yes	Yes	Yes	N/A	N/A	N/A		

Table 3. Access status versus readout protection level and execution modes

1. Erased when RDP change from Level 1 to Level 0.

- Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity.
- Proprietary code readout protection (PCROP): a part of the flash memory can be
 protected against read and write from third parties. The protected area is execute-only:
 it can only be reached by the STM32 CPU, as an instruction code, while all other
 accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
 One area per bank can be selected, with 64-bit granularity. An additional option bit
 (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP
 protection is changed from Level 1 to Level 0.

Figure 3. Power supply overview

3.10.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} , V_{DDIO2} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

3.10.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 64 Kbyte SRAM2 in Standby with RAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L496xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

When the MR is in use, the STM32L496xx with the external SMPS option allows to force an external VCORE supply on the VDD12 supply pins.

When VDD12 is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.10.4 Low-power modes

The ultra-low-power STM32L496xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources:

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.14 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

SAI features ⁽¹⁾	SAI1	SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х	X
Mute mode	Х	Х
Stereo/Mono audio frame capability.	Х	Х
16 slots	Х	X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х	X
FIFO Size	X (8 Word)	X (8 Word)
SPDIF	х	X

Table 13. SAI implementation

1. X: supported

3.34 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.35 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bit rate up to 1Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

The synchronization for this oscillator can also be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

The major features are:

- Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- Software configurable to OTG 1.3 and OTG 2.0 modes of operation
- OTG 2.0 Supports ADP (Attach detection Protocol)
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

3.38 Clock recovery system (CRS)

The STM32L496xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.39 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
- 8-,16- bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.

	1	2	3	4	5	6	7	8	9	10	11	12
A	PE3	PE1	PB8	PH3-BOOT0	PD7	PD5	PB4	PB3	PA15	PA14	PA13	PA12
в	PE4	PE2	PB9	PB7	PB6	PD6	PD4	PD3	PD1	PC12	PC10	PA11
с	PC13	PE5	PE0	VDD	PB5	PG14	PG13	PD2	PD0	PC11	VDDUSB	PA10
D	PC14- OSC32_IN	PE6	VSS	PF2	PF1	PF0	PG12	PG10	PG9	PA9	PA8	PC9
E	PC15- OSC32_OUT	VBAT	VSS	PF3				_	PG5	PC8	PC7	PC6
F	PH0-OSC_IN	VSS	PF4	PF5		vss	VSS		PG3	PG4	vss	vss
G	PH1- OSC_OUT	VDD	PG11	PG6		VDD	VDDIO2		PG1	PG2	VDD	VDD
н	PC0	NRST	VDD	PG7				-	PG0	PD15	PD14	PD13
J	VSSA/VREF-	PC1	PC2	PA4	PA7	PG8	PF12	PF14	PF15	PD12	PD11	PD10
к	PG15	PC3	PA2	PA5	PC4	PF11	PF13	PD9	PD8	PB15	PB14	PB13
L	VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	PB11	PB12
м	VDDA	PA1	OPAMP1_ VINM	OPAMP2_ VINM	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15
												MSv3

Figure 10. STM32L496Qx UFBGA132 ballout⁽¹⁾

1. The above figure shows the package top view.

DocID029173 Rev 1

5

			Pi	n Num	ber								Pin functions	
LQFP64	WLCSP100	WLCSP100_SMPS	LQFP100	UFBGA132	LQFP144	LQFP144_SMPS	UFBGA169	UFBGA169_SMPS	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	H5	H5	41	L8	63	63	H7	H7	PE10	I/O	FT	-	TIM1_CH2N, DFSDM1_DATIN4, TSC_G5_IO1, QUADSPI_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT	-
-	K4	K4	42	M9	64	64	N8	N8	PE11	I/O	FT	-	TIM1_CH2, DFSDM1_CKIN4, TSC_G5_IO2, QUADSPI_BK1_NCS, FMC_D8, EVENTOUT	-
-	G5	J4	43	L9	65	65	M8	M8	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, DFSDM1_DATIN5, TSC_G5_IO3, QUADSPI_BK1_IO0, FMC_D9, EVENTOUT	-
-	G4	G5	44	M10	66	66	L8	L8	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, DFSDM1_CKIN5, TSC_G5_IO4, QUADSPI_BK1_IO1, FMC_D10, EVENTOUT	-
-	J4	G4	45	M11	67	67	K8	K8	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, FMC_D11, EVENTOUT	-
-	H4	H4	46	M12	68	68	J8	J8	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, FMC_D12, EVENTOUT	-
29	K3	КЗ	47	L10	69	69	N9	N9	PB10	I/O	FT_fl	-	TIM2_CH3, I2C4_SCL, I2C2_SCL, SPI2_SCK, DFSDM1_DATIN7, USART3_TX, LPUART1_RX, TSC_SYNC, QUADSPI_CLK, LCD_SEG10, COMP1_OUT, SAI1_SCK_A, EVENTOUT	-
30	J3	J3	48	L11	70	-	H8	H8	PB11	I/O	FT_fl	-	TIM2_CH4, I2C4_SDA, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, LCD_SEG11, COMP2_OUT, EVENTOUT	-
-	-	K1	-	-	-	70	-	M10	VDD12	S	-	-	-	-

Table 15. STM32L496xx pin definitions (continued)

STM32L496xx

75/262

5

DocID029173 Rev 1

80/262

	Table 15. STM32L496xx pin definitions (continued)													
			Pi	n Num	ber								Pin functions	
LQFP64	WLCSP100	WLCSP100_SMPS	LQFP100	UFBGA132	LQFP144	LQFP144_SMPS	UFBGA169	UFBGA169_SMPS	Pin name (function after reset)	Pin type	Pin type I/O structure		Alternate functions	Additional functions
45	C1	C1	71	A12	104	104	D13	D13	PA12	I/O	FT_u	-	TIM1_ETR, SPI1_MOSI, USART1_RTS_DE, CAN1_TX, OTG_FS_DP, EVENTOUT	-
46	C2	C2	72	A11	105	105	A11	A11	PA13 (JTMS/SWDIO)	I/O	FT	-	JTMS/SWDIO, IR_OUT, OTG_FS_NOE, SWPMI1_TX, SAI1_SD_B, EVENTOUT	-
47	B1	B1	-	-	-	-	-	-	VSS	S	-	-	-	-
48	A1	A1	73	C11	106	106	E12	E12	VDDUSB	S	-	-	-	-
-	-	-	74	F11	107	107	C12	C12	VSS	S	-	-	-	-
-	-	-	75	G11	108	108	C13	C13	VDD	S	-	-	-	-
-	-	-	-	-	-	-	E11	E11	PH6	I/O	FT	-	I2C2_SMBA, DCMI_D8, EVENTOUT	-
-	-	-	-	-	-	-	D12	D12	PH7	I/O	FT_f	-	I2C3_SCL, DCMI_D9, EVENTOUT	-
-	-	-	-	-	-	-	D11	D11	PH9	I/O	FT	-	I2C3_SMBA, DCMI_D0, EVENTOUT	-
-	-	-	-	-	-	-	B13	B13	PH12	I/O	FT	-	TIM5_CH3, DCMI_D3, EVENTOUT	-
-	-	-	-	-	-	-	A13	A13	PH14	I/O	FT	-	TIM8_CH2N, DCMI_D4, EVENTOUT	-
-	-	-	-	-	-	-	B12	B12	PH15	I/O	FT	-	TIM8_CH3N, DCMI_D11, EVENTOUT	-
-	-	-	-	-	-	-	A12	A12	P10	I/O	FT	-	TIM5_CH4, SPI2_NSS, DCMI_D13, EVENTOUT	-

STM32L496xx

Pinouts and pin description

		Ta	able 17. Altern	ate function AF8 to	AF15 (for AF	0 to AF7 see Tak	<mark>ole 16</mark>) (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
Port		UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	LCD	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT	
	PI0	-	-	DCMI_D13	-	-	-	-	EVENTOUT	
	PI1	-	-	DCMI_D8	-	-	-	-	EVENTOUT	
	Pl2	-	-	DCMI_D9	-	-	-	-	EVENTOUT	
	PI3	-	-	DCMI_D10	-	-	-	-	EVENTOUT	
	PI4	-	-	DCMI_D5	-		-	-	EVENTOUT	
Dentil	PI5	-	-	DCMI_VSYNC	-	-	-	-	EVENTOUT	
Porti	PI6	-	-	DCMI_D6	-	-	-	-	EVENTOUT	
	PI7	-	-	DCMI_D7	-	-	-	-	EVENTOUT	
	PI8	-	-	DCMI_D12	-	-	-	-	EVENTOUT	
	PI9	-	CAN1_RX	-	-	-	-	-	EVENTOUT	
	PI10	-	-	-	-	-	-	-	EVENTOUT	
	PI11	-	-	-	-	-	-	-	EVENTOUT	

103/262

DocID029173 Rev 1

STM32L496xx

Pinouts and pin description

5

STM32L496xx

- 3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the minimum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 21. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	80	
f _{PCLK1}	Internal APB1 clock frequency	-	0	80	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	80	
V _{DD}	Standard operating voltage	-	1.71 (1)	3.6	V
VDD12	Standard aparating valtage	full frequency range	1.08	1.22	
	Standard operating voltage	up to 26MHz	1.05	1.52	
.,		At least one I/O in PG[15:2] used	1.08	3.6	V
VDDIO2	PG[15.2] I/OS Supply Voltage	PG[15:2] not used	0	3.6	
		ADC or COMP used	1.62		
		DAC or OPAMP used	1.8		
V _{DDA}	Analog supply voltage	upply voltage VREFBUF used 2.4			
		ADC, DAC, OPAMP, COMP, VREFBUF not used	0		

Table 22. General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V	DVD threshold 2	Rising edge	2.41	2.46	2.51	V
VPVD2		Falling edge	2.31	2.36	2.41	v
V	DVD threshold 2	Rising edge	2.56	2.61	2.66	V
VPVD3		Falling edge	2.47	2.52	2.57	v
V	PVD threshold 4	Rising edge	2.69	2.74	2.79	V
♥PVD4		Falling edge	2.59	2.64	2.69	v
V	PVD threshold 5	Rising edge	2.85	2.91	2.96	V
VPVD5		Falling edge	2.75	2.81	2.86	v
V	DVD threshold 6	Rising edge	2.92	2.98	3.04	V
VPVD6		Falling edge	2.84	2.90	2.96	v
V _{hvst BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV
, <u> </u>		Hysteresis in other mode	-	30	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV
I _{DD} (BOR_PVD) ⁽²⁾	BOR ⁽³⁾ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μA
	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V
VPVM3	monitoring	Falling edge	1.6	1.64	1.68	v
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
VPVM4	monitoring	Falling edge	1.77	1.81	1.85	v
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1/PVM2) (2)	PVM1 and PVM2 consumption from V _{DD}	-	-	0.2	-	μA
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA

Table 24. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

Figure 20. V_{REFINT} versus temperature

Table 36. Typical current consumption in Run modes, with different codesrunning fromFlash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)

	Parameter	Conditions ⁽¹⁾					ТҮР	
Symbol		-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			P T	Reduced code ⁽²⁾	1.34		51	
		f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode	M (Coremark	1.23		47	μA/MHz
			f _{HCLK} = 26	Dhrystone 2.1	1.23		47	
				Fibonacci	1.13		44	
I _{DD ALL}	Supply current in			While(1)	1.04	m۵	40	
(Rūn)	Run mode	48 MHz	MHz	Reduced code ⁽¹⁾	3.59		45	
		all peripherals		Coremark	3.35		42	
		disable	= 8(Dhrystone 2.1	3.38		42	
			LK "	Fibonacci	3.11	1	39	
			fHc	While(1)	3.10	1	39	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V

2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.

Table 37. Typical current consumption in Run modes, with different codesrunning fromFlash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)

Symbol	Parameter	C	TYP		ТҮР			
		-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		$f_{HCLK} = f_{HSE}$ up to	Hz	Reduced code ⁽²⁾	1.22		47	
	Supply current in Run mode	48 MHz included, bypass mode PLL ON above 48 MHz	M (Coremark	1.12		43	µA/MHz
I _{DD_ALL} (Run)			f _{HCLK} = 26	Dhrystone 2.1	1.12	mA	43	
				Fibonacci	1.03		40	
		all peripherals		While(1)	0.95		37	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V

2. Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

DocID029173 Rev 1

<u></u>
ω
<u>→</u>
5
185

0
<u>0</u>
ŏ
Ñ
9
<u> </u>
2
ω
על
õ
<
<u> </u>

		Conditions		ТҮР				MAX ⁽¹⁾							
Symbol Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Uni	
				26 MHz	0.79	0.82	0.95	1.17	1.63	0.9	1.0	1.2	1.7	2.7	
				16 MHz	0.54	0.57	0.7	0.92	1.38	0.6	0.7	1.0	1.4	2.4	
Supply I _{DD ALL} current in			8 MHz	0.33	0.37	0.49	0.71	1.17	0.4	0.5	0.7	1.2	2.2		
		Range 2	4 MHz	0.23	0.26	0.39	0.61	1.06	0.3	0.4	0.6	1.1	2.1		
	f _{HCLK} = f _{HSE} up to 48 MHz included, bypass		2 MHz	0.18	0.21	0.34	0.56	1.01	0.2	0.3	0.5	1.0	1.0		
			1 MHz	0.16	0.19	0.31	0.53	0.99	0.2	0.3	0.5	1.0	1.0		
	current in	mode pll ON above 48 MHz all peripherals disable		100 kHz	0.13	0.17	0.29	0.51	0.96	0.1	0.3	0.5	1.0	1.9	mA
(Sleep)	sleep		Range 1	80 MHz	2.57	2.62	2.76	3.01	3.53	2.8	2.9	3.2	3.8	4.9	
	mode,			72 MHz	2.34	2.38	2.53	2.78	3.29	2.6	2.7	3.0	3.5	4.6	
				64 MHz	2.1	2.15	2.29	2.54	3.05	2.3	2.4	2.7	3.3	4.4	
				48 MHz	1.58	1.63	1.78	2.03	2.54	1.8	1.9	2.2	2.7	3.8	
				32 MHz	1.11	1.15	1.3	1.54	2.05	1.2	1.4	1.7	2.2	3.3	
				24 MHz	0.87	0.91	1.06	1.3	1.81	1.0	1.1	1.4	1.9	3.0	
			16 MHz	0.63	0.67	0.82	1.06	1.56	0.7	0.8	1.1	1.6	2.7		
	Supany		2 MHz	103	140	270	506	985	130	247	500	990	2025		
Current in	f _{HCLK} = f _{MSI}		1 MHz	74.2	111	245	476	955	100	215	467	963	1999		
LPSleep)	sleep	all peripherals disa	able	400 kHz	60	89.8	224	457	937	79	194	444	941	1975	μΑ
mode			100 kHz	53.7	84.1	216	448	928	70	185	434	933	1967		

1. Guaranteed by characterization results, unless otherwise specified.

	Т	able 43. Cur	rent con	sumptior	ו in Lo	v-powe	er sleep	modes	, Flash	in pow	er-dowi	n			
Symbol	Parameter	Conditions			ТҮР				MAX ⁽¹⁾						
		-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				2 MHz	92.7	124	258	487	968	105	224	474	969	2006	
I _{DD_ALL} (LPSIeep) Sleep mode	Supply current	f _{HCLK} = f _{MSI} all peripherals disable	1 MHz	63.5	97.5	223	460	951	75	193	446	942	1975		
	sleep mode		400 kHz	42.6	75.6	207	443	947	54	171	426	923	1955	μΛ	
				100 kHz	31.2	67.6	199	437	905	44	162	420	916	1947	

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	Conditions		ТҮР				MAX ⁽¹⁾				Unit		
Symbol		-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	2.57	6.86	25.2	60.1	135	5.3	16.4	64	154.6	353	
		LCD disabled	2.4 V	2.62	6.91	25.5	60.6	137	5.3	16.6	64.9	156.7	359	
			3 V	2.69	6.93	25.7	61.5	140	5.4	16.9	66.3	159.7	366	
I _{DD ALL}	Supply current in		3.6 V	2.7	7.08	26.3	62.9	143	5.4	17.4	67.8	163.8	375	
(Stop 2)	RTC disabled		1.8 V	2.92	7.19	25.3	59.5	135	5.3	16.6	64.8	155.6	355	μΑ
		LCD enabled ⁽²⁾	2.4 V	2.99	7.3	25.6	60.3	136	5.5	16.8	65.9	157.9	360	
		clocked by LSI	3 V	3.04	7.41	26.1	61.7	140	5.9	17.3	67.1	160.8	367	
			3.6 V	3.31	7.7	26.8	63.2	143	6.2	17.9	69.1	165.0	376	

Table 44. Current consumption in Stop 2 mode

133/262

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 28* for standard I/Os, and in *Figure 28* for 5 V tolerant I/Os.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 19: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 19: Voltage characteristics*).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Triagon conversion	CKMODE = 00	2.5	3	3.5	
+	latency Injected channels	CKMODE = 01	-	-	3.0	1 /F
LATRINJ	aborting a regular	CKMODE = 10	-	-	3.25	1/1ADC
	Conversion	CKMODE = 11	-	-	3.125	
+	Sampling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
۲ _S		-	2.5	-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
		f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
t _{CONV}	(including sampling time)	Resolution = 12 bits	ts + success	1/f _{ADC}		
		fs = 5 Msps	-	730	830	
I _{DDA} (ADC)	ADC consumption from	fs = 1 Msps	-	160	220	μA
		fs = 10 ksps	-	16	50	
	ADC consumption from	fs = 5 Msps	-	130	160	
I _{DDV_S} (ADC)	the V_{REF+} single ended	fs = 1 Msps	-	30	40	μA
	mode	fs = 10 ksps	-	0.6	2	
	ADC consumption from	fs = 5 Msps	-	260	310	
I _{DDV_D} (ADC)	the V_{REF+} differential	fs = 1 Msps	-	60	70	μA
	mode	fs = 10 ksps	-	1.3	3	

Table 75. ADC characteristics^{(1) (2)} (continued)

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Symbol	Parameter	Conditions	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 80 MHz	12.5	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz
Restim	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit
		TIM2 and TIM5	-	32	
t	16-bit counter clock	-	1	65536	t _{TIMxCLK}
COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
'MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	S

Table 91. TIMx⁽¹⁾ characteristics

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 92. IWDG min/max timeout	period at 32 kHz	(LSI) ⁽¹⁾
--------------------------------	------------------	----------------------

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

			, , ,	
Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0512	3.2768	
2	1	0.1024	6.5536	me
4	2	0.2048	13.1072	1115
8	3	0.4096	26.2144	

|--|

