

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a4u-mh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.6 EEPROM

All devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address 0x1000.

7.7 I/O Memory

The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions, which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F, single-cycle instructions for manipulation and checking of individual bits are available.

The I/O memory address for all peripherals and modules in XMEGA A4U is shown in the "Peripheral Module Address Map" on page 61.

7.7.1 General Purpose I/O Registers

The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

9. Event System

9.1 Features

- System for direct peripheral-to-peripheral communication and signaling
- Peripherals can directly send, receive, and react to peripheral events
 - CPU and DMA controller independent operation
 - 100% predictable signal timing
 - Short and guaranteed response time
- Eight event channels for up to eight different and parallel signal routing configurations
- Events can be sent and/or used by most peripherals, clock system, and software
- Additional functions include
 - Quadrature decoders
 - Digital filtering of I/O pin state
- · Works in active mode and idle sleep mode

9.2 Overview

The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one peripheral's state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity, size and execution time of application code. It also allows for synchronized timing of actions in several peripheral modules.

A change in a peripheral's state is referred to as an event, and usually corresponds to the peripheral's interrupt conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing network. How events are routed and used by the peripherals is configured in software.

Figure 9-1 on page 20 shows a basic diagram of all connected peripherals. The event system can directly connect together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA controller). Events can also be generated from software and the peripheral clock.

Figure 9-1. Event system overview and connected peripherals.

The event routing network consists of eight software-configurable multiplexers that control how events are routed and used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.

15.4 Input sensing

Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is shown in Figure 15-7.

Figure 15-7. Input sensing system overview.

When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.

15.5 Alternate Port Functions

Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for that peripheral. "Pinout and Pin Functions" on page 55 shows which modules on peripherals that enable alternate functions on a pin, and which alternate functions that are available on a pin.

19. Hi-Res – High Resolution Extension

19.1 Features

- Increases waveform generator resolution up to 8x (three bits)
- Supports frequency, single-slope PWM, and dual-slope PWM generation
- Supports the AWeX when this is used for the same timer/counter

19.2 Overview

The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (Clk_{PER4}). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There are three hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD and PORTE. The notation of these are HIRESC, HIRESD and HIRESE, respectively.

36.3.10 Brownout Detection Characteristics

Table 36-81. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	BOD level 0 falling V _{CC}		1.50	1.62	1.72	
	BOD level 1 falling V _{CC}			1.8		
	BOD level 2 falling V _{CC}			2.0		
V	BOD level 3 falling V _{CC}			2.2		V
VBOT	BOD level 4 falling V_{CC}			2.4		
	BOD level 5 falling V _{CC}			2.6		
	BOD level 6 falling V _{CC}			2.8		
	BOD level 7 falling V _{CC}			3.0		
t _{BOD}	Detection time	Continuous mode		0.4		μs
		Sampled mode		1000		
V _{HYST}	Hysteresis			1.2		%

36.3.11 External Reset Characteristics

 Table 36-82.
 External reset characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{EXT}	Minimum reset pulse width		1000	95		ns
V _{RST}	Reset threshold voltage (V_{IH})	V _{CC} = 2.7 - 3.6V		$0.60 \times V_{CC}$		
		V _{CC} = 1.6 - 2.7V		$0.60 \times V_{CC}$		V
	Reset threshold voltage (V_{IL})	V _{CC} = 2.7 - 3.6V		$0.50 \times V_{CC}$		V
		V _{CC} = 1.6 - 2.7V		0.40×V _{CC}		
R _{RST}	Reset pin Pull-up Resistor			25		kΩ

36.3.12 Power-on Reset Characteristics

Table 36-83.	Power-on	reset	characteristics.
--------------	----------	-------	------------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{POT-} ⁽¹⁾	POR threshold voltage falling V_{CC}	V_{CC} falls faster than 1V/ms	0.4	1.0		V
		V _{CC} falls at 1V/ms or slower	0.8	1.0		
V _{POT+}	POR threshold voltage rising V_{CC}			1.3	1.59	

Note: 1. V_{POT-} values are only valid when BOD is disabled. When BOD is enabled $V_{POT-} = V_{POT+}$.

36.3.14 Clock and Oscillator Characteristics

36.3.14.1 Calibrated 32.768kHz Internal Oscillator characteristics

Table 36-86. 32.768kHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Frequency			32.768		kHz
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-0.5		0.5	%
	User calibration accuracy		-0.5		0.5	%

36.3.14.2 Calibrated 2MHz RC Internal Oscillator characteristics

eristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Frequency range	DFLL can tune to this frequency over voltage and temperature	1.8		2.2	MHz
	Factory calibrated frequency			2.0		MHz
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	%
	User calibration accuracy		-0.2		0.2	%
	DFLL calibration stepsize			0.21		%

36.3.14.3 Calibrated and tunable 32MHz internal oscillator characteristics

Table 36-88. 32MHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Frequency range	DFLL can tune to this frequency over voltage and temperature	30		55	MHz
	Factory calibrated frequency			32		MHz
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	%
	User calibration accuracy		-0.2		0.2	%
	DFLL calibration step size			0.22		%

36.3.16 Two-Wire Interface Characteristics

Table 36-96 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 36-21.

Figure 36-21.Two-wire interface bus timing.

Table 36-96. Two-wire interface characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
V _{IH}	Input high voltage		0.7*V _{CC}		V _{CC} +0.5	V	
V _{IL}	Input low voltage		-0.5		0.3*V _{CC}	V	
V _{hys}	Hysteresis of Schmitt trigger inputs		0.05*V _{CC} ⁽¹⁾		0	V	
V _{OL}	Output low voltage	3mA, sink current	0		0.4	V	
t _r	Rise time for both SDA and SCL		20+0.1C _b ⁽¹⁾⁽²⁾		0	ns	
t _{of}	Output fall time from V_{IHmin} to V_{ILmax}	$10pF < C_b < 400pF^{(2)}$	20+0.1C _b ⁽¹⁾⁽²⁾		300	ns	
t _{SP}	Spikes suppressed by input filter		0		50	ns	
I _I	Input current for each I/O pin	$0.1V_{CC} < V_{I} < 0.9V_{CC}$	-10		10	μA	
CI	Capacitance for each I/O pin		0		10	pF	
f _{SCL}	SCL clock frequency	f _{PER} ⁽³⁾ >max(10f _{SCL} , 250kHz)	0		400	kHz	
R _P	Value of pull-up resistor	$f_{SCL} \le 100 \text{kHz}$ $f_{SCL} > 100 \text{kHz}$	$\frac{V_{CC} - 0.4V}{3mA}$		$\frac{\frac{100ns}{C_b}}{\frac{300ns}{C_b}}$	Ω	
	Held time (repeated) START condition	$f_{SCL} \leq 100 kHz$	4.0				
^L HD;STA	noid time (repeated) START condition	f _{SCL} > 100kHz	0.6			μs	
+	Low pariad of SCL clock	$f_{SCL} \leq 100 kHz$	4.7				
LOW		f _{SCL} > 100kHz	1.3			μο	
+	High paried of SCL clock	$f_{SCL} \leq 100 kHz$	4.0				
⁴ HIGH	Flight period of SCE Clock	f _{SCL} > 100kHz	0.6			μs	
+	Set-up time for a repeated START	$f_{SCL} \leq 100 kHz$	4.7				
t _{SU;STA}	condition	f _{SCL} > 100kHz	0.6			μs	

36.4.3 Current consumption

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			V _{CC} = 1.8V		55		
		32KHZ, EXI. CIK	V _{CC} = 3.0V		135		-
			V _{CC} = 1.8V		255		μA
	Active power consumption ⁽¹⁾	IMHZ, EXI. UK	V _{CC} = 3.0V		535		
			V _{CC} = 1.8V		460	600	
		ZIVITIZ, EXI. UIK	$\gamma = 2.0 \gamma$		1.0	1.4	
		32MHz, Ext. Clk	$v_{\rm CC} = 3.0v$		9.5	12	mA
			V _{CC} = 1.8V		2.9		
		JZKIIZ, EXI. UK	V _{CC} = 3.0V		3.9		-
			V _{CC} = 1.8V		62		
	Idle power consumption ⁽¹⁾		V _{CC} = 3.0V		118		μΑ
		2MHz, Ext. Clk	V _{CC} = 1.8V		125	225	
			V_{-30V}		240	350	
		32MHz, Ext. Clk	V _{CC} – 3.0V		3.8	5.5	mA
I _{CC}	Power-down power consumption	T = 25°C	N/ 0.01/		0.1	1.0	
		T = 85°C	V _{CC} – 3.0V		1.5	4.5	μΑ
		T = 105°C			0.1	8.6	
		WDT and Sampled BOD enabled, T = 25° C			1.4	3.0	
		WDT and Sampled BOD enabled, T = 85° C	$V_{\rm CC} = 3.0V$		2.8	6.0	
		WDT and Sampled BOD enabled, T = 105°C			1.4	8.8	
		RTC from ULP clock, WDT and	V _{CC} = 1.8V		1.2		
		sampled BOD enabled, T = 25°C	V _{CC} = 3.0V		1.5		-
	Power-save power	RTC from 1.024kHz low power	V _{CC} = 1.8V		0.6	2.0	μΑ
	consumption ⁽²⁾	32.768kHz TOSC, T = 25°C	V _{CC} = 3.0V		0.7	2.0	
		RTC from low power 32.768kHz	V _{CC} = 1.8V		0.8	3.0	
		TOSC, T = 25°C	V _{CC} = 3.0V		1.0	3.0	
	Reset power consumption	Current through RESET pin substracted	V _{CC} = 3.0V		300		μΑ

Table 36-100.Current consumption for Active mode and sleep modes.

Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

36.4.15 SPI Characteristics

37.1.1.3 Power-down mode supply current

Figure 37-27. I/O pin output voltage vs. source current.

Figure 37-28. I/O pin output voltage vs. sink current. $V_{cc} = 1.8V.$

37.1.2.3 Thresholds and Hysteresis

Figure 37-33. I/O pin input threshold voltage vs. V_{CC} . V_{IH} I/O pin read as "1".

Figure 37-56. Analog comparator current source vs. calibration value. Temperature = 25°C.

Figure 37-57. Analog comparator current source vs. calibration value. $V_{cc} = 3.0V.$

37.1.10 Oscillator Characteristics

37.1.10.1 Ultra Low-Power internal oscillator

37.1.10.2 32.768kHz Internal Oscillator

Figure 37-150. Reset pin input threshold voltage vs. $\rm V_{\rm cc.}$

Figure 37-151. Reset pin input threshold voltage vs. $V_{CC.}$ V_{IL} - Reset pin read as "0".

37.3.10 Oscillator Characteristics

37.3.10.4 32MHz Internal Oscillator

Figure 37-265. Idle mode supply current vs. V_{CC} . f_{SYS} = 32MHz internal oscillator prescaled to 8MHz

Figure 37-266. Idle mode current vs. V_{CC} . f_{SYS} = 32MHz internal oscillator

37.4.1.5 Standby mode supply current

Figure 37-271. Standby supply current vs. V_{CC} . Standby, $f_{SYS} = 1MHz$

37.4.10.2 32.768kHz Internal Oscillator

Figure 37-324. 32.768kHz internal oscillator frequency vs. calibration value $V_{CC} = 3.0V$, $T = 25^{\circ}C$

