

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega16a4u-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8. DMAC – Direct Memory Access Controller

8.1 Features

- Allows high speed data transfers with minimal CPU intervention
 - from data memory to data memory
 - from data memory to peripheral
 - from peripheral to data memory
 - from peripheral to peripheral
- Four DMA channels with separate
 - transfer triggers
 - interrupt vectors
 - addressing modes
- Programmable channel priority
- From 1 byte to 16MB of data in a single transaction
 - Up to 64KB block transfers with repeat
 - 1, 2, 4, or 8 byte burst transfers
- Multiple addressing modes
 - Static
 - Incremental
 - Decremental
- Optional reload of source and destination addresses at the end of each
 - Burst
 - Block
 - Transaction
- Optional interrupt on end of transaction
- Optional connection to CRC generator for CRC on DMA data

8.2 Overview

The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and thus offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees up CPU time. The four DMA channels enable up to four independent and parallel transfers.

The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from communication modules. The DMA controller can also read from memory mapped EEPROM.

Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from 1 byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source and destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination addresses can be done after each burst or block transfer, or when a transaction is complete. Application software, peripherals, and events can trigger DMA transfers.

The four DMA channels have individual configuration and control settings. This include source, destination, transfer triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a transaction is complete or when the DMA controller detects an error on a DMA channel.

To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer when the first is finished, and vice versa.

16. TC0/1 – 16-bit Timer/Counter Type 0 and 1

16.1 Features

- Five 16-bit timer/counters
 - Three timer/counters of type 0
 - Two timer/counters of type 1
 - Split-mode enabling two 8-bit timer/counter from each timer/counter type 0
- 32-bit timer/counter support by cascading two timer/counters
- Up to four compare or capture (CC) channels
 - Four CC channels for timer/counters of type 0
 - Two CC channels for timer/counters of type 1
- Double buffered timer period setting
- Double buffered capture or compare channels
- Waveform generation:
 - Frequency generation
 - Single-slope pulse width modulation
 - Dual-slope pulse width modulation
- Input capture:
 - Input capture with noise cancelling
 - Frequency capture
 - Pulse width capture
 - 32-bit input capture
- Timer overflow and error interrupts/events
- One compare match or input capture interrupt/event per CC channel
- Can be used with event system for:
 - Quadrature decoding
 - Count and direction control
 - Capture
- Can be used with DMA and to trigger DMA transactions
- High-resolution extension
 - Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
- Advanced waveform extension:
 - Low- and high-side output with programmable dead-time insertion (DTI)
- Event controlled fault protection for safe disabling of drivers

16.2 Overview

Atmel AVR XMEGA devices have a set of five flexible 16-bit Timer/Counters (TC). Their capabilities include accurate program execution timing, frequency and waveform generation, and input capture with time and frequency measurement of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.

A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC channels can be used together with the base counter to do compare match control, frequency generation, and pulse width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either capture or compare functions, but cannot perform both at the same time.

A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system. The event system can also be used for direction control and capture trigger or to synchronize operations.

19. Hi-Res – High Resolution Extension

19.1 Features

- Increases waveform generator resolution up to 8x (three bits)
- Supports frequency, single-slope PWM, and dual-slope PWM generation
- Supports the AWeX when this is used for the same timer/counter

19.2 Overview

The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (Clk_{PER4}). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There are three hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD and PORTE. The notation of these are HIRESC, HIRESD and HIRESE, respectively.

22. TWI – Two-Wire Interface

22.1 Features

- Two Identical two-wire interface peripherals
 - Bidirectional, two-wire communication interface
 - Phillips I²C compatible
 - System Management Bus (SMBus) compatible
- Bus master and slave operation supported
 - Slave operation
 - Single bus master operation
 - Bus master in multi-master bus environment
 - Multi-master arbitration
- Flexible slave address match functions
 - 7-bit and general call address recognition in hardware
 - 10-bit addressing supported
 - Address mask register for dual address match or address range masking
 - Optional software address recognition for unlimited number of addresses
- Slave can operate in all sleep modes, including power-down
- Slave address match can wake device from all sleep modes
- 100kHz and 400kHz bus frequency support
- Slew-rate limited output drivers
- Input filter for bus noise and spike suppression
- Support arbitration between start/repeated start and data bit (SMBus)
- Slave arbitration allows support for address resolve protocol (ARP) (SMBus)

22.2 Overview

The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I²C and System Management Bus (SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.

A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.

The TWI module supports master and slave functionality. The master and slave functionality are separated from each other, and can be enabled and configured separately. The master module supports multi-master bus operation and arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command and smart mode can be enabled to auto-trigger operations and reduce software complexity.

The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is also supported. A dedicated address mask register can act as a second address match register or as a register for address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address matching to let this be handled in software instead.

The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision, and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave modes.

It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external TWI bus driver. This can be used for applications where the device operates from a different V_{CC} voltage than used by the TWI bus.

Atmel

27. CRC – Cyclic Redundancy Check Generator

27.1 Features

- Cyclic redundancy check (CRC) generation and checking for
 - Communication data
 - Program or data in flash memory
 - Data in SRAM and I/O memory space
- Integrated with flash memory, DMA controller and CPU
 - Continuous CRC on data going through a DMA channel
 - Automatic CRC of the complete or a selectable range of the flash memory
 - CPU can load data to the CRC generator through the I/O interface
- CRC polynomial software selectable to
 - CRC-16 (CRC-CCITT)
 - CRC-32 (IEEE 802.3)
- Zero remainder detection

CRC-16:

27.2 Overview

A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and it is commonly used to determine the correctness of a data transmission, and data present in the data and program memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be appended to the data and used as a checksum. When the same data are later received or read, the device or application repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error. The application will then detect this and may take a corrective action, such as requesting the data to be sent again or simply not using the incorrect data.

Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits (any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2⁻ⁿ of all longer error bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3).

Polynomial:	x ¹⁶ +x ¹² +x ⁵ +1
Hex value:	0x1021
• CRC-32:	
Polynomial:	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

36.3.4 Wake-up time from sleep modes

Table 36-70.	Device wake-u	p time from slee	p modes with various	system clock sources.

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
t _{wakeup}	Wake-up time from idle, standby, and extended standby mode	External 2MHz clock		2.0		
		32.768kHz internal oscillator		120		
		2MHz internal oscillator		2.0		μs
		32MHz internal oscillator		0.2		-
	Wake-up time from power-save and power-down mode	External 2MHz clock		4.5		
		32.768kHz internal oscillator		320		μs
		2MHz internal oscillator		9.0		
		32MHz internal oscillator		4.0		
Note: 1.	The wake-up time is the time from the wake	up request is given until the peripheral clock is available	on pin, see Figu	ure 36-16. All pe	ripherals and m	odules

1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-16. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

Figure 36-16.Wake-up time definition.

36.3.8 Analog Comparator Characteristics

Table 36-79. Analog Comparator characteristics.

Symbol	Parameter	Condition	I	Min.	Тур.	Max.	Units
V _{off}	Input offset voltage				<±10		mV
l _{lk}	Input leakage current				<1		nA
	Input voltage range			-0.1		AV _{CC}	V
	AC startup time				100		μs
V _{hys1}	Hysteresis, none				0		mV
V	V _{hys2} Hysteresis, small	mode = High Speed (HS)			20		m\/
V _{hys2}		mode = Low Power (LP)			30		
M		mode = HS			35		m)/
V _{hys3}	Hysteresis, large	mode = LP			60		mv
		V _{CC} = 3.0V, T= 85°C	mode = HS		30	90	
	Dranagation dalay	mode = HS	1		30		
L _{delay}	Propagation delay	V _{CC} = 3.0V, T= 85°C	mode = LP		130	500	ns
		mode = LP			130		
	64-level voltage scaler	Integral non-linearity (INL)		0.3	0.5	lsb

36.3.9 Bandgap and Internal 1.0V Reference Characteristics

 Table 36-80.
 Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startun timo	As reference for ADC or DAC	1 (Clk _{PER} + 2.5	ōµs	
	Startup time	As input voltage to ADC and AC		1.5		μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.5		%

Table 36-95. SPI timing characteristics and requirements.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{scк}	SCK period	Master		(See Table 21-4 in XMEGA AU Manual)		
t _{sckw}	SCK high/low width	Master		0.5*SCK		
t _{SCKR}	SCK rise time	Master		2.7		
t _{SCKF}	SCK fall time	Master		2.7		
t _{MIS}	MISO setup to SCK	Master		11		
t _{MIH}	MISO hold after SCK	Master		0		
t _{MOS}	MOSI setup SCK	Master		0.5*SCK		
t _{MOH}	MOSI hold after SCK	Master		1.0		
t _{sscк}	Slave SCK Period	Slave	4*t Clk _{PER}			
t _{ssckw}	SCK high/low width	Slave	2*t Clk _{PER}			ns
t _{SSCKR}	SCK rise time	Slave			1600	
t _{SSCKF}	SCK fall time	Slave			1600	
t _{sis}	MOSI setup to SCK	Slave	3.0			
t _{SIH}	MOSI hold after SCK	Slave	t _{PER}			
t _{sss}	SS setup to SCK	Slave	20			
t _{SSH}	SS hold after SCK	Slave	20			
t _{sos}	MISO setup SCK	Slave		8.0		
t _{SOH}	MISO hold after SCK	Slave		13.0		
t _{soss}	MISO setup after \overline{SS} low	Slave		11.0		
t _{sosh}	MISO hold after \overline{SS} high	Slave		8.0		

36.4.6 ADC characteristics

Table 36-104. Power supply, reference and input range.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference voltage		1		AV _{CC} - 0.6	V
R _{in}	Input resistance	Switched		4.0		kΩ
C _{sample}	Input capacitance	Switched		4.4		pF
R _{AREF}	Reference input resistance	(leakage only)		>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7		pF
V _{IN}	Input range		-0.1		AV _{CC} +0.1	V
	Conversion range	Differential mode, Vinp - Vinn	-V _{REF}		V _{REF}	V
	Conversion range	Single ended unsigned mode, Vinp	-ΔV		$V_{REF} \Delta V$	V
ΔV	Fixed offset voltage			190		lsb

Table 36-105.Clock and timing.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	ADC Clock frequency	Maximum is 1/4 of Peripheral clock frequency	100		2000	kHz
		Measuring internal signals	100		125	
		Current limitation (CURRLIMIT) off	100		2000	
f	Sample rate	CURRLIMIT = LOW	100		1500	kene
ADC	Sample rate	CURRLIMIT = MEDIUM	100		1000	ksps
		CURRLIMIT = HIGH	100		500	
	Sampling time	1/2 Clk _{ADC} cycle	0.25		5	μs
	Conversion time (latency)	(RES+2)/2+(GAIN !=0) RES (Resolution) = 8 or 12	5		8	Clk _{ADC} cycles
	Start-up time	ADC clock cycles		12	24	Clk _{ADC} cycles
	ADC settling time	After changing reference or input mode		7	7	Clk _{ADC}
	ADC settling time	After ADC flush		1	1	cycles

Table 36-124. External clock with prescaler ⁽¹⁾for system clock.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /+		V _{CC} = 1.6 - 1.8V	0		90	Mu-
I''CK	Clock Frequency W	V _{CC} = 2.7 - 3.6V	0		142	
t _{ск}	Clock Period	V _{CC} = 1.6 - 1.8V	11			
		V _{CC} = 2.7 - 3.6V	7			115
+	Clock High Time	V _{CC} = 1.6 - 1.8V	4.5			D0
ЧСН		V _{CC} = 2.7 - 3.6V	2.4			115
	Clock Low Time	V _{CC} = 1.6 - 1.8V	4.5			
^L CL		V _{CC} = 2.7 - 3.6V	2.4			115
+	Disc Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			1.5	ne
^L CR	Rise Time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			1.0	115
+	Foll Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			1.5	nc
^L CF	Fair time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			1.0	115
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Notes: 1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.

2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

36.4.14.7 External 16MHz crystal oscillator and XOSC characteristic

Table 36-125.	External 16MHz cr	ystal oscillator and XOS	C characteristics.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			FRQRANGE=0		<10		
	Cycle to cycle jitter	XUSCPWR-0	FRQRANGE=1, 2, or 3		<1		ns
		XOSCPWR=1			<1		
Long term j			FRQRANGE=0		<6		
	Long term jitter	XUSUF WK-0	FRQRANGE=1, 2, or 3		<0.5		ns
		XOSCPWR=1			<0.5		
			FRQRANGE=0		<0.1		
	Fraguaday arrar	XOSCPWR=0	FRQRANGE=1		<0.05		0/_
	Frequency end		FRQRANGE=2 or 3		<0.005		/0
		XOSCPWR=1			<0.005		

Figure 37-34. I/O pin input threshold voltage vs. V_{CC} . V_{IL} I/O pin read as "0".

Figure 37-35. I/O pin input hysteresis vs. V_{cc} .

Figure 37-72. 32.768kHz internal oscillator frequency vs. calibration value. $V_{cc} = 3.0V$, $T = 25^{\circ}C$.

37.1.10.3 2MHz Internal Oscillator

37.2.1.2 Idle mode supply current

Frequency [MHz]

Atmel

Figure 37-158. 2MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator.

37.3.2 I/O Pin Characteristics

37.3.2.1 Pull-up

Figure 37-219. DAC noise vs. temperature.

. V_{CC} = 2.7V, V_{REF} = 1.0V .

37.3.5 Analog Comparator Characteristics

37.3.10.5 32MHz internal oscillator calibrated to 48MHz

Atmel

Figure 37-257. Active mode supply current vs. V_{CC} . $f_{SYS} = 2MHz$ internal oscillator

37.4.1.5 Standby mode supply current

Figure 37-271. Standby supply current vs. V_{CC} . Standby, $f_{SYS} = 1MHz$

Figure 37-333. 48MHz internal oscillator CALA calibration step size V_{cc} = 3V

37.4.11 Two-Wire Interface characteristics

