

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega64a4u-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13. WDT – Watchdog Timer

13.1 Features

- Issues a device reset if the timer is not reset before its timeout period
- Asynchronous operation from dedicated oscillator
- 1kHz output of the 32kHz ultra low power oscillator
- 11 selectable timeout periods, from 8ms to 8s
- Two operation modes:
 - Normal mode
 - Window mode
- Configuration lock to prevent unwanted changes

13.2 Overview

The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application code.

The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued. Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.

The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock source, and will continue to operate to issue a system reset even if the main clocks fail.

The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For increased safety, a fuse for locking the WDT settings is also available.

20. RTC – 16-bit Real-Time Counter

20.1 Features

- 16-bit resolution
- Selectable clock source
 - 32.768kHz external crystal
 - External clock
 - 32.768kHz internal oscillator
 - 32kHz internal ULP oscillator
- Programmable 10-bit clock prescaling
- One compare register
- One period register
- Clear counter on period overflow
- Optional interrupt/event on overflow and compare match

20.2 Overview

The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.

The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal oscillator or the 32kHz internal ULP oscillator.

The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period register value.

Figure 20-1. Real-time counter overview.

32.2 Alternate Pin Functions

The tables below show the primary/default function for each pin on a port in the first column, the pin number in the second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that enable and use the alternate pin functions.

For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the first table where this apply.

PORT A	PIN#	INTERRUPT	ADCA POS/ GAINPOS	ADCA NEG	ADCA GAINNEG	ACA POS	ACA NEG	ACAOUT	REFA
GND	38								
AVCC	39								
PA0	40	SYNC	ADC0	ADC0		AC0	AC0		AREF
PA1	41	SYNC	ADC1	ADC1		AC1	AC1		
PA2	42	SYNC/ASYNC	ADC2	ADC2		AC2			
PA3	43	SYNC	ADC3	ADC3		AC3	AC3		
PA4	44	SYNC	ADC4		ADC4	AC4			
PA5	1	SYNC	ADC5		ADC5	AC5	AC5		
PA6	2	SYNC	ADC6		ADC6	AC6		AC1OUT	
PA7	3	SYNC	ADC7		ADC7		AC7	AC0OUT	

Table 32-1. Port A - alternate functions.

Table 32-2. Port B - alternate functions.

PORT B	PIN#	INTERRUPT	ADCA POS	DACB	REFB
PB0	4	SYNC	ADC8		AREF
PB1	5	SYNC	ADC9		
PB2	6	SYNC/ASYNC	ADC10	DAC0	
PB3	7	SYNC	ADC11	DAC1	

Mnemonic s	Operand s	Description	Operation	Flags	#Clock s
CLZ		Clear Zero Flag	Z ~ 0	Z	1
SEI		Global Interrupt Enable	I ← 1	I	1
CLI		Global Interrupt Disable	I ← 0	T	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
		MCU o	control instructions		
BREAK		Break	(See specific descr. for BREAK)	None	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1

Notes:

1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.

2. One extra cycle must be added when accessing Internal SRAM.

36.1.6 ADC characteristics

Table 36-8.	Power supply,	reference and inp	ut range.
-------------	---------------	-------------------	-----------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference voltage		1.0		AV _{CC} - 0.6	V
R _{in}	Input resistance	Switched		4.0		kΩ
C _{sample}	Input capacitance	Switched		4.4		pF
R _{AREF}	Reference input resistance	(leakage only)		>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7.0		pF
V _{IN}	Input range		-0.1		AV _{CC} +0.1	V
	Conversion range	Differential mode, Vinp - Vinn	-V _{REF}		V _{REF}	V
	Conversion range	Single ended unsigned mode, Vinp	-ΔV		V_{REF} - ΔV	V
ΔV	Fixed offset voltage			190		LSB

Table 36-9. Clock and timing.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	ADC Clock frequency	Maximum is 1/4 of peripheral clock frequency	100		2000	kHz
		Measuring internal signals	100		125	-
		Current limitation (CURRLIMIT) off	100		2000	
f	Samplo rato	CURRLIMIT = LOW	100		1500	kene
IADC	Sample rate	CURRLIMIT = MEDIUM	100		1000	къръ
		CURRLIMIT = HIGH	100		500	-
	Sampling time	1/2 Clk _{ADC} cycle	0.25		5	μs
	Conversion time (latency)	(RES+2)/2+(GAIN !=0) RES (Resolution) = 8 or 12	5		8	Clk _{ADC} cycles
	Start-up time	ADC clock cycles		12	24	Clk _{ADC} cycles
	ADC settling time	After changing reference or input mode		7	7	Clk _{ADC}
ADC settling time		After ADC flush		1	1	cycles

36.1.8 Analog Comparator Characteristics

Table 36-15. Analog Comparator characteristics.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
V _{off}	Input offset voltage				<±10		mV
l _{lk}	Input leakage current				<1.0		nA
	Input voltage range			-0.1		AV _{CC}	V
	AC startup time				100		μs
V _{hys1}	Hysteresis, none				0		mV
V		mode = High Spee	ed (HS)		13		m\/
V hys2	Trysteresis, small	mode = Low Pow	er (LP)		30		111V
V		mode = HS	6		30		m\/
V hys3	Tysteresis, large	mode = LP			60		111V
		V _{CC} = 3.0V, T= 85°C	mode = HS		30	90	
+	Propagation dology	mode = HS	6		30		
^L delay	elay Propagation delay	V _{CC} = 3.0V, T= 85°C	mode = LP		130	500	115
		mode = LP	•		130		
	64-level voltage scaler	Integral non-linearity (INL)			0.3	0.5	lsb

36.1.9 Bandgap and Internal 1.0V Reference Characteristics

 Table 36-16.
 Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Stortun time	As reference for ADC or DAC	1 (Clk _{PER} + 2.5	ōµs	
	Startup time	As input voltage to ADC and AC	1.5		μs	
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1.0	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.5		%

36.2 ATxmega32A4U

36.2.1 Absolute Maximum Ratings

Stresses beyond those listed in Table 36-33 may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 36-3	3. Absol	ute maxim	um ratings
------------	----------	-----------	------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power supply voltage		-0.3		4	V
I _{VCC}	Current into a V _{CC} pin				200	mA
I _{GND}	Current out of a Gnd pin				200	mA
V _{PIN}	Pin voltage with respect to Gnd and V_{CC}		-0.5		V _{CC} +0.5	V
I _{PIN}	I/O pin sink/source current		-25		25	mA
T _A	Storage temperature		-65		150	°C
Tj	Junction temperature				150	°C

36.2.2 General Operating Ratings

The device must operate within the ratings listed in Table 36-34 in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 36-34. General operating conditions.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power supply voltage		1.60		3.6	V
AV _{CC}	Analog supply voltage		1.60		3.6	V
T _A	Temperature range		-40		85	°C
Тj	Junction temperature		-40		105	°C

Table 36-35. Operating voltage and frequency.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Clk _{CPU}	CPU clock frequency	V _{CC} = 1.6V	0		12	MHz
		V _{CC} = 1.8V	0		12	
		V _{CC} = 2.7V	0		32	
		V _{CC} = 3.6V	0		32	

The maximum CPU clock frequency depends on V_{CC}. As shown in Figure 36-8 the Frequency vs. V_{CC} curve is linear between $1.8V < V_{CC} < 2.7V$.

36.2.3 Current consumption

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			V _{CC} = 1.8V		40		
		32KHZ, EXT. CIK	V _{CC} = 3.0V		80		-
			V _{CC} = 1.8V		230		μA
	Active power	1MHZ, EXT. CIK	V _{CC} = 3.0V		480		-
			V _{CC} = 1.8V		430	600	-
		ZMHZ, EXT. CIK	N/ 0.0X/		0.9	1.4	
		32MHz, Ext. Clk	$v_{\rm CC} = 3.0V$		9.6	12	IIIA
			V _{CC} = 1.8V		2.4		
		32KHZ, EXI. UK	V _{CC} = 3.0V		3.9		
	Idle power consumption ⁽¹⁾		V _{CC} = 1.8V		62		
			V _{CC} = 3.0V		118		μΑ
			V _{CC} = 1.8V		125	225	
			(-2.0)		240	350	
		32MHz, Ext. Clk	V _{CC} – 5.0V		3.8	5.5	mA
		T = 25°C			0.1	1.0	
		T = 85°C	$V_{\rm CC}$ = 3.0V		1.2	4.5	μΑ
		T = 105°C			3.5	6.0	
	Power-down power consumption	WDT and sampled BOD enabled, $T = 25^{\circ}C$			1.3	3.0	
		WDT and sampled BOD enabled, $T = 85^{\circ}C$	V _{CC} = 3.0V		2.4	6.0	
		WDT and sampled BOD enabled, T = 105°C			4.5	8.0	-
		RTC from ULP clock, WDT and	V _{CC} = 1.8V		1.2		
		sampled BOD enabled, T = 25°C	V _{CC} = 3.0V		1.3		-
	Power-save power	RTC from 1.024kHz low power	V _{CC} = 1.8V		0.6	2.0	
	consumption ⁽²⁾	32.768kHz TOSC, T = 25°C	V _{CC} = 3.0V		0.7	2.0	μΑ
		RTC from low power 32.768kHz	V _{CC} = 1.8V		0.8	3.0	
		TOSC, T = 25°C	V _{CC} = 3.0V		1.0	3.0	
	Reset power consumption	Current through RESET pin substracted	V _{CC} = 3.0V		320		

Table 36-36. Current consumption for Active mode and sleep modes.

1. All Power Reduction Registers set. Notes:

2. Maximum limits are based on characterization, and not tested in production.

Table 36-37. Current consumption for modules and peripherals.

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units	
	ULP oscillator				1.0		μA	
	32.768kHz int. oscillator				27		μA	
	2MHz int. appillator				85			
		DFLL enabled with	32.768kHz int. osc. as reference		115		μΑ	
	22MHz int accillator				270			
		DFLL enabled with	32.768kHz int. osc. as reference		460		μΑ	
	PLL	20x multiplication f 32MHz int. osc. DI	20x multiplication factor, 32MHz int. osc. DIV4 as reference		220		μA	
	Watchdog timer				1.0		μA	
	POD	Continuous mode	ontinuous mode		138			
	вор	Sampled mode, inc	cludes ULP oscillator		1.2		μ, ,	
_	Internal 1.0V reference				100		μA	
I _{CC}	Temperature sensor				95		μA	
	400				3.0		- mA	
		250ksps	CURRLIMIT = LOW		2.6			
	ADC	V _{REF} = Ext ref	CURRLIMIT = MEDIUM		2.1			
			CURRLIMIT = HIGH		1.6			
	DAC	250ksps	Normal mode		1.9			
	DAC	No load	Low power mode		1.1		ША	
	10	High speed mode	1		330			
	AC	Low power mode			130		μΑ	
	DMA	615kbps between I	/O registers and SRAM		108		μA	
	Timer/counter				16		μA	
	USART	Rx and Tx enabled	I, 9600 BAUD		2.5		μA	
	Flash memory and EEPROM programming				4.0	8.0	mA	

Note:

All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

36.3.16 Two-Wire Interface Characteristics

Table 36-96 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 36-21.

Figure 36-21.Two-wire interface bus timing.

Table 36-96. Two-wire interface characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{IH}	Input high voltage		0.7*V _{CC}		V _{CC} +0.5	V
V _{IL}	Input low voltage		-0.5		0.3*V _{CC}	V
V _{hys}	Hysteresis of Schmitt trigger inputs		0.05*V _{CC} ⁽¹⁾		0	V
V _{OL}	Output low voltage	3mA, sink current	0		0.4	V
t _r	Rise time for both SDA and SCL		20+0.1C _b ⁽¹⁾⁽²⁾		0	ns
t _{of}	Output fall time from V_{IHmin} to V_{ILmax}	$10pF < C_b < 400pF^{(2)}$	20+0.1C _b ⁽¹⁾⁽²⁾		300	ns
t _{SP}	Spikes suppressed by input filter		0		50	ns
I _I	Input current for each I/O pin	$0.1V_{CC} < V_{I} < 0.9V_{CC}$	-10		10	μA
CI	Capacitance for each I/O pin		0		10	pF
f _{SCL}	SCL clock frequency	f _{PER} ⁽³⁾ >max(10f _{SCL} , 250kHz)	0		400	kHz
R _P	Value of pull-up resistor	$f_{SCL} \le 100 \text{kHz}$ $f_{SCL} > 100 \text{kHz}$	$\frac{V_{CC} - 0.4V}{3mA}$		$\frac{\frac{100ns}{C_b}}{\frac{300ns}{C_b}}$	Ω
	Held time (repeated) START condition	$f_{SCL} \leq 100 kHz$	4.0			
^L HD;STA	noid time (repeated) START condition	f _{SCL} > 100kHz	0.6			μs
+	Low pariad of SCL clock	$f_{SCL} \le 100 kHz$	4.7			
LOW		f _{SCL} > 100kHz	1.3			μο
+	High paried of SCL clock	$f_{SCL} \leq 100 kHz$	4.0			
⁴ HIGH	Flight period of SCE Clock	f _{SCL} > 100kHz	0.6			μο
t _{su;sta}	Set-up time for a repeated START	$f_{SCL} \leq 100 kHz$	4.7			
	condition	f _{SCL} > 100kHz	0.6			μs

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
Offset error, input referred		1x gain, normal mode			-2.0		
	8x gain, normal mode			-5.0		mV	
	64x gain, normal mode			-4.0			
Noise	1x gain, normal mode			0.5			
	Noise	8x gain, normal mode	$V_{\rm CC} = 3.6V$		1.5		mV rms
		64x gain, normal mode			11		

Note: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

36.4.7 DAC Characteristics

Table 36-108. Power supply, reference and output range.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	
AV _{REF}	External reference voltage		1.0		V _{CC} - 0.6	V
R _{channel}	DC output impedance				50	Ω
	Linear output voltage range		0.15		AV _{CC} -0.15	V
R _{AREF}	Reference input resistance			>10		MΩ
CAREF	Reference input capacitance	Static load		7.0		pF
	Minimum Resistance load		1			kΩ
	Maximum conscitance load				100	pF
	Maximum capacitance load	1000 Ω serial resistance			1	nF
	Output sink/source	Operating within accuracy specification			AV _{CC} /1000	m 4
		Safe operation			10	IIIA

Table 36-109. Clock and timing.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
f _{DAC}	Conversion rate	C _{load} =100pF, maximum step size	Normal mode	0		1000	ksps
			Low power mode			500	

36.4.14.5 Internal Phase Locked Loop (PLL) characteristics

Table 36-122. Internal PLL characteristics.

Symbo I	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	MHz
f _{OUT}	Output frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	20		48	
		V _{CC} = 2.7 - 3.6V	20		128	
	Start-up time			25		μs
	Re-lock time			25		μs

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

36.4.14.6 External clock characteristics

Table 36-123.External clock used as system clock without prescaling.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /ł	Clock Erequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	0		12	MH-7
1/1CK	Clock Trequency W	V _{CC} = 2.7 - 3.6V	0		32	
+	Clock Period	V _{CC} = 1.6 - 1.8V	83.3			ns
ЧСК	CIUCK FEIIOU	V _{CC} = 2.7 - 3.6V	31.5			
t _{CH}	Clock High Time	V _{CC} = 1.6 - 1.8V	30.0			20
		V _{CC} = 2.7 - 3.6V	12.5			115
4	Clock Low Time	V _{CC} = 1.6 - 1.8V	30.0			ne
^L CL		V _{CC} = 2.7 - 3.6V	12.5			115
+	Piso Time (for maximum fraguanes)	V _{CC} = 1.6 - 1.8V			10	ne
^L CR		V _{CC} = 2.7 - 3.6V			3	- 115
+	Fall Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			10	ns
t _{CF}		V _{CC} = 2.7 - 3.6V			3	
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Note: 1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

Table 36-124. External clock with prescaler ⁽¹⁾for system clock.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /ł		V _{CC} = 1.6 - 1.8V	0		90	Mu-
1/1CK	Clock Frequency W	V _{CC} = 2.7 - 3.6V	0		142	
+	Clock Period	V _{CC} = 1.6 - 1.8V	11			20
ч _{СК}		V _{CC} = 2.7 - 3.6V	7			- 115
	Clock High Time	V _{CC} = 1.6 - 1.8V	4.5			
ЧСН		V _{CC} = 2.7 - 3.6V	2.4			115
	Clock Low Time	V _{CC} = 1.6 - 1.8V	4.5			ns
^L CL		V _{CC} = 2.7 - 3.6V	2.4			
+	Disc Time (for movimum frequency)	V _{CC} = 1.6 - 1.8V			1.5	D0
^L CR	Rise fille (IOI maximum requercy)	V _{CC} = 2.7 - 3.6V			1.0	115
+	Foll Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			1.5	ne
t _{CF}	Fail Time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			1.0	115
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Notes: 1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.

2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

36.4.14.7 External 16MHz crystal oscillator and XOSC characteristic

Table 36-125.	External 16MHz cr	ystal oscillator and XOS	C characteristics.

Symbol	Parameter	Condition	Condition		Тур.	Max.	Units
			FRQRANGE=0		<10		
	Cycle to cycle jitter	XUSCPWR-0	FRQRANGE=1, 2, or 3		<1		ns
	XOSCPWR=1			<1			
Long term jitter		FRQRANGE=0		<6			
	Long term jitter		FRQRANGE=1, 2, or 3		<0.5		ns
		XOSCPWR=1			<0.5		
			FRQRANGE=0		<0.1		
Fi	Fraguaday arrar	XOSCPWR=0	FRQRANGE=1		<0.05		0/
	riequency endi	Frequency error	FRQRANGE=2 or 3		<0.005		/0
		XOSCPWR=1			<0.005		

37.1.1.5 Standby mode supply current

Figure 37-19. Standby supply current vs. V_{CC} . Standby, $f_{SYS} = 1MHz$.

37.1.2 I/O Pin Characteristics

37.1.2.1 Pull-up

37.1.5 Analog Comparator Characteristics

Figure 37-53. Analog comparator hysteresis vs. V_{CC}. Low power, small hysteresis.

Figure 37-74. 2MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator.

Figure 37-148. Reset pin pull-up resistor current vs. reset pin voltage.

Figure 37-149. Reset pin pull-up resistor current vs. reset pin voltage.

Figure 37-229. BOD thresholds vs. temperature. BOD level = 3.0V.

37.3.8 External Reset Characteristics

38. Errata

38.1 ATxmega16A4U

38.1.1 Rev. E

- ADC may have missing codes in SE unsigned mode at low temp and low Vcc
- CRC fails for Range CRC when end address is the last word address of a flash section
- AWeX fault protection restore is not done correct in Pattern Generation Mode
- ADC may have missing codes in SE unsigned mode at low temp and low Vcc The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.

Problem fix/Workaround

Use the ADC in SE signed mode.

2. CRC fails for Range CRC when end address is the last word address of a flash section If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If application table read lock is enabled, the range CRC cannot end on the last address before the application table.

Problem fix/Workaround

Ensure that the end address used in Range CRC does not end at the last address before a section with read lock enabled. Instead, use the dedicated CRC commands for complete applications sections.

3. AWeX fault protection restore is not done correct in Pattern Generation Mode

When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode (CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation Mode (PGM), OUTOVEN should instead have been restored according to the DTLSBUF register.

Problem fix/Workaround

For CWCM no workaround is required.

For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set correct OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable the correct outputs again.

38.1.2 Rev. A - D

Not sampled.