

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M3Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USB OTGPeripheralsDMA, POR, PWM, Voltage Detect, WDTNumber of I/O51Program Memory Size256KB (256K x 8)
Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USB OTGPeripheralsDMA, POR, PWM, Voltage Detect, WDTNumber of I/O51
Speed 72MHz Connectivity CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG Peripherals DMA, POR, PWM, Voltage Detect, WDT Number of I/O 51
ConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USB OTGPeripheralsDMA, POR, PWM, Voltage Detect, WDTNumber of I/O51
Peripherals DMA, POR, PWM, Voltage Detect, WDT Number of I/O 51
Number of I/O 51
Program Memory Size 256KB (256K x 8)
Program Memory Type FLASH
EEPROM Size -
RAM Size 64K x 8
Voltage - Supply (Vcc/Vdd) 2V ~ 3.6V
Data ConvertersA/D 16x12b; D/A 2x12b
Oscillator Type Internal
Operating Temperature -40°C ~ 85°C (TA)
Mounting Type Surface Mount
Package / Case 64-LQFP
Supplier Device Package64-LQFP (10x10)
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f105rct6w

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		2.3.29	Embedded Trace Macrocell™23
3	Pinou	its and _l	pin description
4	Memo	ory map	ping
5	Electr	rical cha	aracteristics
	5.1	Parame	ter conditions
		5.1.1	Minimum and maximum values
		5.1.2	Typical values
		5.1.3	Typical curves
		5.1.4	Loading capacitor
		5.1.5	Pin input voltage
		5.1.6	Power supply scheme
		5.1.7	Current consumption measurement
	5.2	Absolute	e maximum ratings
	5.3	Operatir	ng conditions
		5.3.1	General operating conditions
		5.3.2	Operating conditions at power-up / power-down
		5.3.3	Embedded reset and power control block characteristics
		5.3.4	Embedded reference voltage
		5.3.5	Supply current characteristics
		5.3.6	External clock source characteristics
		5.3.7	Internal clock source characteristics
		5.3.8	PLL, PLL2 and PLL3 characteristics
		5.3.9	Memory characteristics
		5.3.10	EMC characteristics
		5.3.11	Absolute maximum ratings (electrical sensitivity)
		5.3.12	I/O current injection characteristics
		5.3.13	I/O port characteristics
		5.3.14	NRST pin characteristics
		5.3.15	TIM timer characteristics
		5.3.16	Communications interfaces
		5.3.17	12-bit ADC characteristics
		5.3.18	DAC electrical specifications
		5.3.19	Temperature sensor characteristics

6	Packa	age inf	ormation	82
	6.1	LFBGA	A100 package information	82
	6.2	LQFP	100 package information	85
	6.3	LQFP	64 package information	88
	6.4	Therm	al characteristics	91
		6.4.1	Reference document	. 91
		6.4.2	Selecting the product temperature range	. 92
7	Part r	numbe	ring	94
Appendi	x A A	pplicat	ion block diagrams	95
	A.1	USB C	DTG FS interface solutions	95
	A.2	Ethern	et interface solutions	97
	A.3	Compl	ete audio player solutions	99
	A.4	USB C	TG FS interface + Ethernet/I ² S interface solutions	100
8	Revis	ion his	story	103

1 Introduction

This datasheet provides the description of the STM32F105xx and STM32F107xx connectivity line microcontrollers. For more details on the whole STMicroelectronics STM32F10xxx family, refer to *Section 2.2: Full compatibility throughout the family*.

The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory refer to the STM32F10xxx Flash programming manual.

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website.

Periph	herals ⁽¹⁾	STM32F105Rx	STM32F107Rx	STM32F105Vx	STM32F107Vx			
	SPI(I ² S) ⁽²⁾	3(2)	3(2) 3(2) 3(2)					
Communicat	l ² C	2	1	2	1			
ion	USART		5					
interfaces	USB OTG FS			Yes				
	CAN							
GPIOs		51		80				
12-bit ADC		2						
Number of ch	annels	16						
12-bit DAC		2						
Number of ch	annels	2						
CPU frequence	су	72 MHz						
Operating vol	tage	2.0 to 3.6 V						
Operating ten	nperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C Junction temperature: -40 to + 125 °C						

Table 2. STM32F105xx and STM32F107xx features and peripheral counts (continued)

1. Refer to *Table 5: Pin definitions* for peripheral availability when the I/O pins are shared by the peripherals required by the application.

2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I^2S audio mode.

Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F105xx and STM32F107xx connectivity line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.

DocID15274 Rev 10

Table 5. I	Pin definitions	(continued)
------------	-----------------	-------------

	Pins						Alternate func	tions ⁽⁴⁾
BGA100	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A8	50	77	PA15	I/O	FT	JTDI	SPI3_NSS / I2S3_WS	TIM2_CH1_ETR / PA15 SPI1_NSS
В9	51	78	PC10	I/O	FT	PC10	UART4_TX	USART3_TX/ SPI3_SCK/I2S3_CK
B8	52	79	PC11	I/O	FT	PC11	UART4_RX	USART3_RX/ SPI3_MISO
C8	53	80	PC12	I/O	FT	PC12	UART5_TX	USART3_CK/ SPI3_MOSI/I2S3_SD
D8	-	81	PD0	I/O	FT	PD0	-	OSC_IN ⁽⁹⁾ /CAN1_RX
E8	-	82	PD1	I/O	FT	PD1	-	OSC_OUT ⁽⁹⁾ /CAN1_TX
B7	54	83	PD2	I/O	FT	PD2	TIM3_ETR / UART5_RX	
C7	-	84	PD3	I/O	FT	PD3	-	USART2_CTS
D7	-	85	PD4	I/O	FT	PD4	-	USART2_RTS
B6	-	86	PD5	I/O	FT	PD5	-	USART2_TX
C6	-	87	PD6	I/O	FT	PD6	-	USART2_RX
D6	-	88	PD7	I/O	FT	PD7	-	USART2_CK
A7	55	89	PB3	I/O	FT	JTDO	SPI3_SCK / I2S3_CK	PB3 / TRACESWO/ TIM2_CH2 / SPI1_SCK
A6	56	90	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4 / TIM3_CH1/ SPI1_MISO
C5	57	91	PB5	I/O	-	PB5	I2C1_SMBA / SPI3_MOSI / ETH_MII_PPS_OUT / I2S3_SD ETH_RMII_PPS_OUT	TIM3_CH2/SPI1_MOSI/ CAN2_RX
B5	58	92	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ /TIM4_CH1 ⁽⁷⁾	USART1_TX/CAN2_TX
A5	59	93	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ /TIM4_CH2 ⁽⁷⁾	USART1_RX
D5	60	94	BOOT0	Ι	-	BOOT0	-	-
B4	61	95	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁷⁾ / ETH_MII_TXD3	I2C1_SCL/CAN1_RX
A4	62	96	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁷⁾	I2C1_SDA / CAN1_TX
D4	-	97	PE0	I/O	FT	PE0	TIM4_ETR	-
C4	-	98	PE1	I/O	FT	PE1	-	-
E5	63	99	V _{SS_3}	S	-	V _{SS_3}	-	-
F5	64	100	V _{DD_3}	S	-	V _{DD_3}	-	-

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

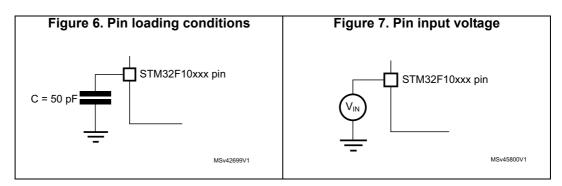
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 7*.

Symbol	Parameter	Conditions	£	Ма	Unit		
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit	
			72 MHz	68	68.4		
			48 MHz	49	49.2		
		External clock ⁽²⁾ , all	36 MHz	38.7	38.9		
		peripherals enabled	24 MHz	27.3	27.9	- mA	
	Supply current in Run mode		16 MHz	20.2	20.5		
			8 MHz	10.2	10.8		
I _{DD}			72 MHz	32.7	32.9		
			48 MHz	25	25.2		
		External clock ⁽²⁾ , all	36 MHz	20.3	20.6		
		peripherals disabled	24 MHz	14.8	15.1		
			16 MHz	11.2	11.7		
			8 MHz	6.6	7.2		

Table 13. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	Conditions	f	Ma	Unit	
	Falametei	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	65.5	66	
			48 MHz	45.4	46	
		External clock ⁽²⁾ , all	36 MHz	35.5	36.1	
	Supply current in Run mode	peripherals enabled	24 MHz	25.2	25.6	- mA
			16 MHz	18	18.5	
			8 MHz	10.5	11	
I _{DD}		External clock ⁽²⁾ , all peripherals disabled	72 MHz	31.4	31.9	
			48 MHz	27.8	28.2	
			36 MHz	17.6	18.3	-
			24 MHz	13.1	13.8	
			16 MHz	10.2	10.9	
			8 MHz	6.1	7.8	

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max..

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Туј		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	28.2	6	
			48 MHz	19	4.2	
			36 MHz	14.7	3.4	
			24 MHz	10.1	2.5	
			16 MHz	6.7	2	
		External clock ⁽³⁾	8 MHz	3.2	1.3	
	Supply current in Sleep mode		4 MHz	2.3	1.2	mA
			2 MHz	1.7	1.16	
			1 MHz	1.5	1.1	
I.			500 kHz	1.3	1.05	
I _{DD}			125 kHz	1.2	1.05	
			36 MHz	13.7	2.6	
			24 MHz	9.3	1.8	
			16 MHz	6.3	1.3	
		Running on high speed internal RC	8 MHz	2.7	0.6	
		(HSI), AHB prescaler	4 MHz	1.6	0.5	
		used to reduce the frequency	2 MHz	1	0.46	
		1 7	1 MHz	0.8	0.44	
			500 kHz	0.6	0.43	
			125 kHz	0.5	0.42	

Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at $T_A = 25$ °C, $V_{DD} = 3.3$ V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

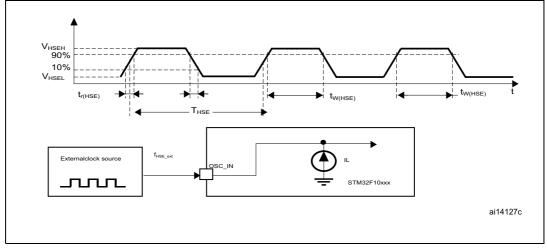
On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 19*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 6

DocID15274 Rev 10

Low-speed external user clock generated from an external source


The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

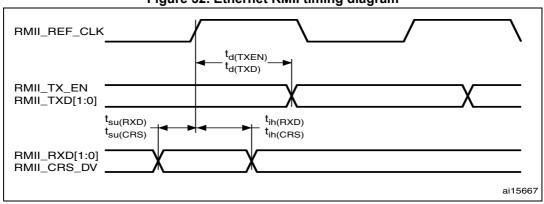
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz				
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V				
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v				
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns				
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	19				
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5		pF				
DuCy _(LSE)	Duty cycle	-	30	-	70	%				
١ _L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA				

Table 21. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

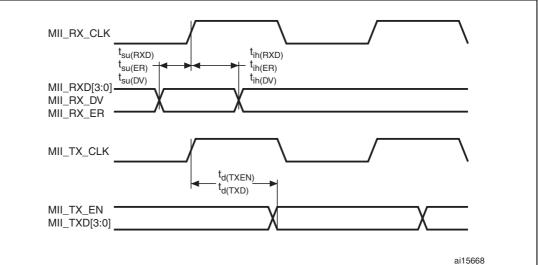
I²S - SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 43* for SPI or in *Table 44* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.


Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}		Master mode	-	18	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4 t _{PCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2 t _{PCLK}	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)}	Data input setup time	Master mode	4	-	
t _{su(SI)}	Data input setup time	Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	no
t _{h(SI)}	Data input noid time	Slave mode	5	-	ns
t _{a(SO)}	Data output access time	Slave mode, f _{PCLK} = 20 MHz	-	3*t _{PCLK}	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	34	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	8	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	32	-	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	10	-	

Table 43. SPI characteristics


Table 50 gives the list of Ethernet MAC signals for the RMII and *Figure 32* shows the corresponding timing diagram.

Symbol	Rating	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	4	-	-	ns
t _{ih(RXD)}	Receive data hold time	2	-	-	ns
t _{su(DV)}	Carrier sense set-up time	4	-	-	ns
t _{ih(DV)}	Carrier sense hold time	2	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	8	10	16	ns
t _{d(TXD)}	Transmit data valid delay time	7	10	16	ns

Table 51 gives the list of Ethernet MAC signals for MII and *Figure 32* shows the corresponding timing diagram.

Figure 33. Ethernet MII timing diagram

5.3.18 DAC electrical specifications

Symbol	Parameter	Min Typ Max U			Unit	Comments	
Symbol	Farameter	IVIIII	Тур	IVIAX	Unit	comments	
V_{DDA}	Analog supply voltage	2.4	-	3.6	V	-	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V_{REF} must always be below V_{DDA}	
V_{SSA}	Ground	0	-	0	V	-	
$R_{LOAD}^{(1)}$	Resistive load with buffer ON	5	-	-	kΩ	-	
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$	
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	(0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x155) to (0xEAB) at V _{REF+} = 2.4 V	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion of the DAC.	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V		
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs	
	DAC DC current	-	-	380	μA	With no load, middle code (0x800) on the inputs	
I _{DDA}	onsumption in quiescent node (Standby mode)	-	-	480	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs	
DNL ⁽²⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.	
=	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.	
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.	
INL ⁽²⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.	

Table 56. DAC characteristics

Electrical characteristics

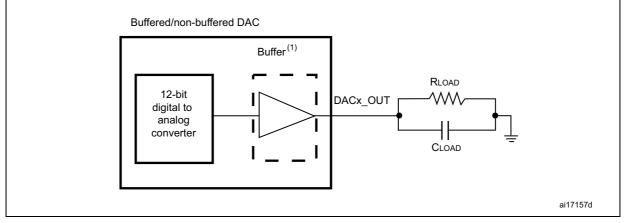
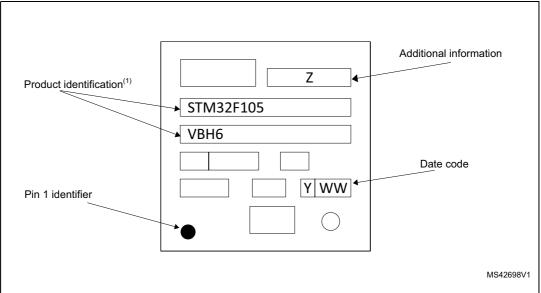
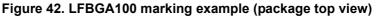

	Table 56. DAC characteristics (continued)							
Symbol	Parameter	Min	Тур	Мах	Unit	Comments		
Offset ⁽²⁾	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration		
	(difference between measured value at Code (0x800) and the ideal value = V _{REF+} /2)	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V		
		-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V		
Gain error ⁽²⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration		
t _{SETTLING} ⁽²⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$		
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$		
t _{WAKEUP} ⁽²⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.		
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF		

Table 56. DAC characteristics	(continued)
-------------------------------	-------------

1. Guaranteed by design, not tested in production.

2. Guaranteed by characterization, not tested in production.


 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

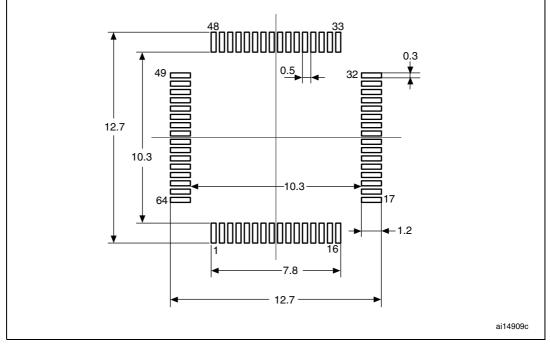


Device marking for LFBGA100

The following figure shows the device marking for the LQFP100 package.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
е	-	0.500	-	-	0.0197	-	
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ссс	-	-	0.080	-	-	0.0031	

Table 60.LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

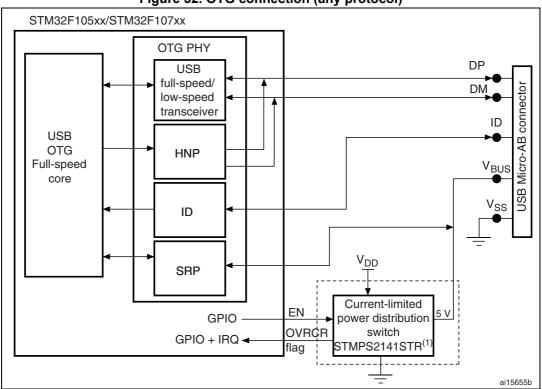

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 47.LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are in millimeters.

1. STMPS2141STR needed only if the application has to support bus-powered devices.

	Table 65. Document revision history (continued)						
Date	Revision	Changes					
19-Jun-2009	3	Section 2.3.8: Boot modes and Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support updated. Section 2.3.24: Remap capability added. Figure 1: STM32F105xx and STM32F107xx connectivity line block diagram and Figure 5: Memory map updated. In Table 5: Pin definitions: - I2S3_WS, I2S3_CK and I2S3_SD default alternate functions added - small changes in signal names - Note 6 modified - ETH_MII_PPS_OUT and ETH_RMII_PPS_OUT replaced by ETH_PPS_OUT - ETH_MII_DDC and ETH_RMII_MDIO replaced by ETH_MDIO - ETH_MII_MDIO and ETH_RMII_MDIO replaced by ETH_MDIO - ETH_MII_MDC and ETH_RMII_MDIC replaced by ETH_MDC Figures: Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled and Typical current consumption in Run mode, code with data processing running from Flash, Table 14: Maximum current consumption in Run mode, code with data processing running from RAM and Table 15: Maximum current consumption in Run mode, code with data processing running from Flash, Table 14: Maximum current consumption in Run mode, code with data processing running from RAM and Table 15: Maximum current consumption in Stop mode, code running from Flash or RAM are to be determined. Figure 12 and Figure 13 show typical curves. PLL1 renamed to PLL. I _{DD} supply current in Stop mode modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes. Figure 11: Typical current consumption in Stop mode with regulator in Run mode versus temperature at different VDD values, Figure 13: Typical current consumption in Run mode, code with data processing running from Flash, Table 18: Typical current consumption in Step mode, code running from Flash or RAM and Table 19: Peripheral current consumption in Run mode, code with data processing running from Flash, Table 20: High-speed external user clock characteristics. Min PLL input clock (fPLL_IN), fPLL_OUT min and fPLL_VCO min modified in Table 20: High-speed extern					

Date	Revision	Changes
Date	Revision	Changes Document status promoted from Preliminary data to full datasheet. Number of DACs corrected in Table 3: STM32F105xx and STM32F107xx family versus STM32F103xx family. Note 5 added in Table 5: Pin definitions. V _{RERINT} and T _{Coeff} added to Table 12: Embedded internal reference voltage. Values added to Table 13: Maximum current consumption in Run mode, code with data processing running from Flash, Table 14: Maximum current consumption in Sleep mode, code running from Flash or RAM. Typical I _{DD_VBAT} value added in Table 16: Typical and maximum current consumptions in Slop and Standby modes. Figure 10: Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values added. Values modified in Table 17: Typical current consumption in Run mode, code with data processing running from Flash and Table 18: Typical current consumption in Sleep mode, code running from Flash or RAM. fHSE_ext min modified in Table 20: High-speed external user clock characteristics. CL1 and CL2 replaced by C in Table 22: HSE 3-25 MHz oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Note 1 modified below Figure 16: Typical application with an 8 MHz crystal. Conditions removed from Table 26: Low-power mode wakeup timings. Standards modified in Section 5.3.10: EMC characteristics. RPU and RPD modified in Table 36: I/O static characteristics. Conditions added for V _{NF(NRST)}

Table 65. Document revision history (continued)

Date	Revision	Changes
11-May-2010	5	Added BGA package. <i>Table 5: Pin definitions</i> : ETH_RMII_RXD0 and ETH_RMII_RXD1 added in remap column for PD9 and PD10, respectively. Note added to ETH_MII_RX_DV, ETH_MII_RXD0, ETH_MII_RXD1, ETH_MII_RXD2 and ETH_MII_RXD3 Updated <i>Table 36: I/O static characteristics on page 57</i> Added <i>Figure 18: Standard I/O input characteristics - CMOS port</i> to <i>Figure 21: 5 V tolerant I/O input characteristics - TTL port</i> Updated <i>Table 43: SPI characteristics on page 66</i> . Updated <i>Table 43: SPI characteristics on page 69</i> . Updated <i>Table 48: Ethernet DC electrical characteristics on page 72</i> . Updated <i>Table 48: Ethernet DC electrical characteristics on page 72</i> . Updated <i>Table 49: Dynamic characteristics: Ethernet MAC signals</i> <i>for SMI on page 72</i> . Updated <i>Table 50: Dynamic characteristics: Ethernet MAC signals</i> <i>for RMII on page 73</i> Updated <i>Figure 59: USB O44TG FS + Ethernet solution on</i> <i>page 100</i> . Updated <i>Figure 60: USB OTG FS + I2S (Audio) solution on</i> <i>page 100</i> .
01-Aug-2011	6	Changed SRAM size to 64 KB on all parts. Updated PD0 and PD1 description in <i>Table 5: Pin definitions on</i> page 27 Updated footnotes below <i>Table 6: Voltage characteristics on page 36</i> and <i>Table 7: Current characteristics on page 36</i> Updated tw min in <i>Table 20: High-speed external user clock</i> <i>characteristics on page 47</i> Updated startup time in <i>Table 23: LSE oscillator characteristics (fLSE</i> = 32.768 kHz) on page 50 Added Section 5.3.12: I/O current injection characteristics on page 56 Updated <i>Table 36: I/O static characteristics on page 57</i> Add Interna code V to <i>Table 62: Ordering information scheme on</i> page 94
06-Mar-2014	7	Added a "Packing" entry to <i>Table 62: Ordering information scheme</i> including "Blank = tray" and "TR = Tape and reel". Referenced 4 Figures: <i>Figure 41, Figure 49, Figure 59</i> and <i>Figure 60.</i> Updated the "Package" line with "BGA100" in <i>Table 2:</i> <i>STM32F105xx and STM32F107xx features and peripheral counts.</i>

Table 65. Document revision history (continued)

