STMicroelectronics - <u>STM32F105VCT6TR Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2014110	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	80
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f105vct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Packa	age inf	ormation	82
	6.1	LFBGA	A100 package information	82
	6.2	LQFP	100 package information	85
	6.3	LQFP	64 package information	88
	6.4	Therm	al characteristics	91
		6.4.1	Reference document	. 91
		6.4.2	Selecting the product temperature range	. 92
7	Part r	numbe	ring	94
Appendi	x A A	pplicat	ion block diagrams	95
	A.1	USB C	DTG FS interface solutions	95
	A.2	Ethern	et interface solutions	97
	A.3	Compl	ete audio player solutions	99
	A.4	USB C	TG FS interface + Ethernet/I ² S interface solutions	100
8	Revis	ion his	story	103

1 Introduction

This datasheet provides the description of the STM32F105xx and STM32F107xx connectivity line microcontrollers. For more details on the whole STMicroelectronics STM32F10xxx family, refer to *Section 2.2: Full compatibility throughout the family*.

The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory refer to the STM32F10xxx Flash programming manual.

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website.

Periph	herals ⁽¹⁾	STM32F105Rx	STM32F107Rx	STM32F105Vx	STM32F107Vx		
	SPI(I ² S) ⁽²⁾	3(2)	3(2)	3(2)	3(2)		
Communicat	l ² C	2	1	2	1		
ion	USART			5	-1		
interfaces	USB OTG FS			Yes			
	CAN	2					
GPIOs		51		80			
12-bit ADC		2					
Number of ch	annels	16					
12-bit DAC				2			
Number of ch	annels	2					
CPU frequence	су		7	2 MHz			
Operating vol	tage	2.0 to 3.6 V					
Operating temperatures		Ambient temperatures: -40 to +85 °C /-40 to +105 °C Junction temperature: -40 to + 125 °C					

Table 2. STM32F105xx and STM32F107xx features and peripheral counts (continued)

1. Refer to *Table 5: Pin definitions* for peripheral availability when the I/O pins are shared by the peripherals required by the application.

2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I^2S audio mode.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 20 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. Refer to *Figure 59: USB O44TG FS* + *Ethernet solution on page 100*.

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In order to achieve audio class performance, an audio crystal can be used. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 96 kHz with less than 0.5% accuracy error. Refer to *Figure 60: USB OTG FS + I2S (Audio)* solution on page 100.

To configure the PLLs, refer to *Table 63 on page 101*, which provides PLL configurations according to the application type.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1, USART2 (remapped), CAN2 (remapped) or USB OTG FS in device mode (DFU: device firmware upgrade). For remapped signals refer to *Table 5: Pin definitions*.

The USART peripheral operates with the internal 8 MHz oscillator (HSI), however the CAN and USB OTG FS can only function if an external 8 MHz, 14.7456 MHz or 25 MHz clock (HSE) is present.

For full details about the boot loader, refer to AN2606.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
Тj	Maximum junction temperature	150	°C

Table 8. Thermal characteristics

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6	V	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V	
V DDA [®]	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v	
V _{BAT}	Backup operating voltage	-	1.8	3.6	V	
	Power dissipation at $T_A =$	LFBGA100	-	500		
P_D	85 °C for suffix 6 or T_{Δ} =	LQFP100	-	434	mW	
	105 °C for suffix $7^{(3)}$	LQFP64	-	444		
_	Power dissipation at T _A =	LQFP100	-	434		
PD	85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽⁴⁾	LQFP64	-	444	mW	
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
Та	suffix version	Low power dissipation ⁽⁵⁾	-40	105		
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
	suffix version	Low power dissipation ⁽⁵⁾	-40	125		
TJ	lunction tomporature reaso	6 suffix version	-40	105	°C	
IJ	Junction temperature range	7 suffix version	-40	125	°C	

Table 9. General operating conditions

1. When the ADC is used, refer to *Table 52: ADC characteristics*.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

3. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed $\mathsf{T}_J\mathsf{max}.$

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed $\mathsf{T}_J\mathsf{max}.$

5. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max.

5.3.4 Embedded reference voltage

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	_	-	100	ppm/°C

Table 12. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 9: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 13*, *Table 14* and *Table 15* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Cumhal	Deverator	Conditions	£	Ма	x ⁽¹⁾	11
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	48.4	49	
			48 MHz	33.9	34.4	
		External clock ⁽²⁾ , all	36 MHz	26.7	27.2	
		peripherals enabled	24 MHz	19.3	19.8	
			16 MHz	14.2	14.8	
	Supply current in		8 MHz	8.7	9.1	
I _{DD}	Sleep mode		72 MHz	10.1	10.6	mA
			48 MHz	8.3	8.75	
		External clock ⁽²⁾ , all	36 MHz	7.5	8	
		peripherals disabled	24 MHz	6.6	7.1	
			16 MHz	6	6.5	
			8 MHz	2.5	3	

Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. Based on characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Тур ⁽¹⁾			ax	
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.0 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
		Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	32	33	600	1300	
I _{DD}	in Stop mode	Regulator in Low Power mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	25	26	590	1280	
-00		Low-speed internal RC oscillator and independent watchdog ON	-	3	3.8	-	-	μA
	in Standby	Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.8	3.6	-	-	
	mode	Low-speed internal RC oscillator and independent watchdog OFF, low- speed oscillator and RTC OFF	-	1.9	2.1	5 ⁽²⁾	6.5 ⁽²⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.1	1.2	1.4	2.1 ⁽²⁾	2.3 ⁽²⁾	

Table 16. Typical and maximum current consumptions in Stop and Standby modes

1. Typical values are measured at $T_A = 25$ °C.

2. Based on characterization, not tested in production.

					p ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit	
			72 MHz	47.3	28.3		
			48 MHz	32	19.6		
			36 MHz	24.6	15.4		
			24 MHz	16.8	10.6		
			16 MHz	11.8	7.4		
		External clock ⁽³⁾	8 MHz	5.9	3.7	mA	
				4 MHz	3.7	2.9	
				2 MHz	2.5	2	
			1 MHz	1.8	1.53		
I _{DD}	Supply current in			500 kHz	1.5	1.3	
טטי	Run mode		125 kHz	1.3	1.2		
			36 MHz	23.9	14.8		
			24 MHz	16.1	9.7		
		Running on high	16 MHz	11.1	6.7		
		speed internal RC	8 MHz	5.6	3.8		
		(HSI), AHB prescaler used to	(HSI), AHB prescaler used to	4 MHz	3.1	2.1	mA
		reduce the	2 MHz	1.8	1.3		
		frequency	1 MHz	1.16	0.9		
			500 kHz	0.8	0.67		
			125 kHz	0.6	0.5		

Table 17. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

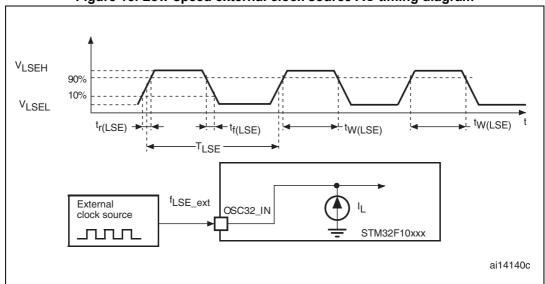


Figure 15. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 3 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	3		25	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 22. HSE 3-25 MHz oscillator characteristics^{(1) (2)}

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

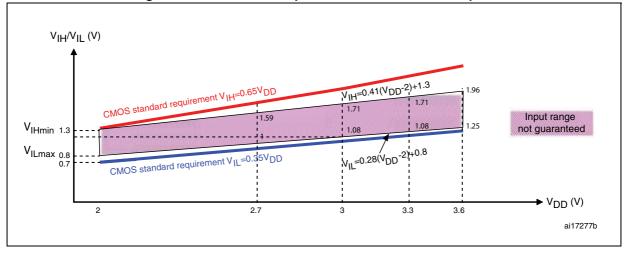
 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Symbol	Para	ameter	Conditions	Min	Тур	Max	Unit
l _{lkg}	Input leakag	e current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	±1	μA
0			V _{IN} = 5 V, I/O FT	-	-	3	
R _{PU}	Weak pull- up equivalent	All pins except for PA10	$V_{IN} = V_{SS}$	30	40	50	kΩ
	resistor ⁽⁵⁾	PA10		8	11	15	
R _{PD}	Weak pull- down equivalent	All pins except for PA10	$V_{IN} = V_{DD}$	30	40	50	kΩ
	resistor ⁽⁵⁾	PA10		8	11	15	1
C _{IO}	I/O pin capa	citance	-	-	5	-	pF

Table 36. I/O static characteristics (continued)

1. FT = Five-volt tolerant. In order to sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.


3. With a minimum of 100 mV.

4. Leakage could be higher than max. if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 18* and *Figure 19* for standard I/Os, and in *Figure 20* and *Figure 21* for 5 V tolerant I/Os.

Figure 18. Standard I/O input characteristics - CMOS port

DocID15274 Rev 10

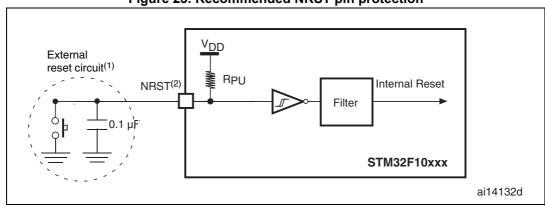


Figure 23. Recommended NRST pin protection

2. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 39. Otherwise the reset will not be taken into account by the device.

5.3.15 TIM timer characteristics

The parameters given in *Table 40* are guaranteed by design.

Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

		1			
Symbol	Parameter	Conditions	Min	Max	Unit
t ann	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.9	-	ns
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
+	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
^t COUNTER	when internal clock is selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT		f _{TIMxCLK} = 72 MHz	-	59.6	s

Table 40. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4 and TIM5 timers.

I²S - SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 43* for SPI or in *Table 44* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SPI clock frequency	Master mode	-	18	MHz
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4 t _{PCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2 t _{PCLK}	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)}	Data input setup time	Master mode	4	-	
t _{su(SI)}	Data input setup time	Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	ns
t _{h(SI)}	Data input noid time	Slave mode	5	-	115
t _{a(SO)}	Data output access time	Slave mode, f _{PCLK} = 20 MHz	-	3*t _{PCLK}	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	34	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	8	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	32	-	
t _{h(MO)}		Master mode (after enable edge)	10	-	

Table 43. SPI characteristics

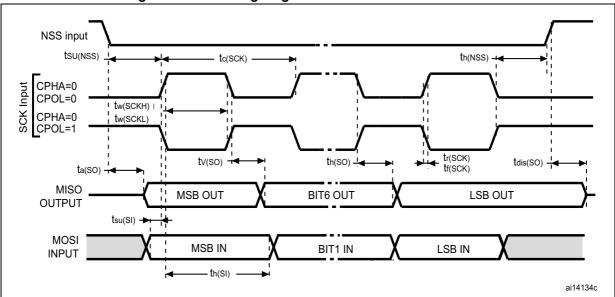
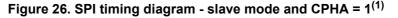
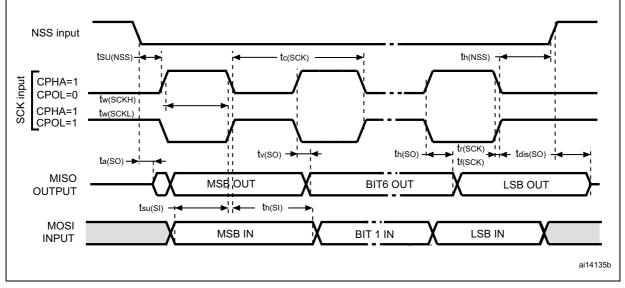




Figure 25. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

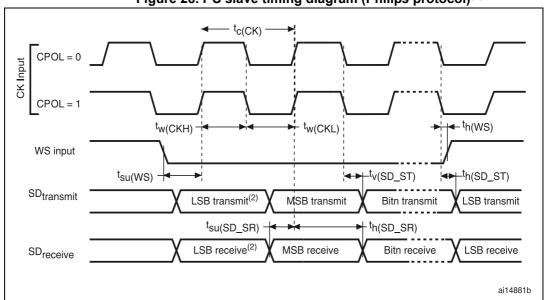
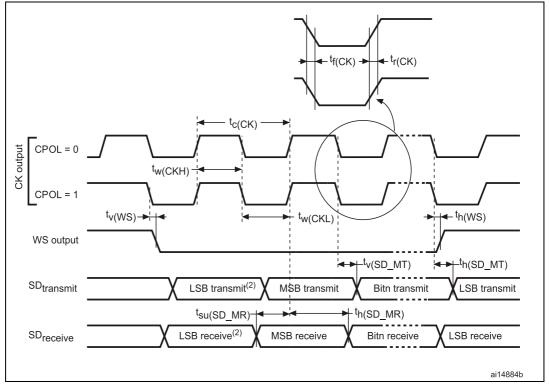



Figure 28. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD}.$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 29. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Based on characterization, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

	Driver characteristics							
Symbol Parameter Conditions Min Max Unit								
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V			

Table 47 USB OTG ES electrical characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification - Chapter 7 (version 2.0). 2.

Ethernet characteristics

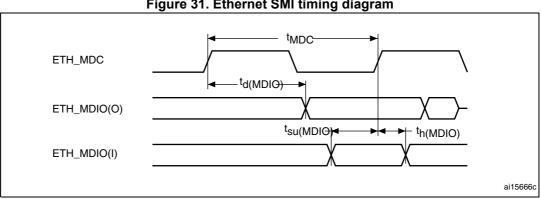

Table 48 showns the Ethernet operating voltage.

Table 48. Ethernet DC electrical characteristics

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	Input level V _{DD} Ethernet operating voltage		3.0	3.6	V

1. All the voltages are measured from the local ground potential.

Table 49 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 31 shows the corresponding timing diagram.

Figure 31. Ethernet SMI timing diagram

Table 49. Dynamic characteristics: Ethernet MAC signals for SMI

Symbol	Rating	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time (1.71 MHz, AHB = 72 MHz)	583	583.5	584	ns
t _{d(MDIO)}	MDIO write data valid time	13.5	14.5	15.5	ns
t _{su(MDIO)}	Read data setup time	35	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	ns

Table 51. Dynamic characteristics. Ethernet MAO signals for Min							
Symbol	Rating	Min	Тур	Мах	Unit		
t _{su(RXD)}	Receive data setup time	10	-	-	ns		
t _{ih(RXD)}	Receive data hold time	10	-	-	ns		
t _{su(DV)}	Data valid setup time	10	-	-	ns		
t _{ih(DV)}	Data valid hold time	10	-	-	ns		
t _{su(ER)}	Error setup time	10	-	-	ns		
t _{ih(ER)}	Error hold time	10	-	-	ns		
t _{d(TXEN)}	Transmit enable valid delay time	14	16	18	ns		
t _{d(TXD)}	Transmit data valid delay time	13	16	20	ns		

 Table 51. Dynamic characteristics: Ethernet MAC signals for MII

CAN (controller area network) interface

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 9*.

Note: It is recommended to perform a calibration after each power-up.

	Table 52. ADC characteristics							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V_{DDA}	Power supply	-	2.4	-	3.6	V		
V_{REF^+}	Positive reference voltage	-	2.4	-	V _{DDA}	V		
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA		
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz		
$f_S^{(2)}$	Sampling rate	-	0.05	-	1	MHz		
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz		
		-	-	-	17	1/f _{ADC}		
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V		
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 53</i> for details	-	-	50	kΩ		
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	kΩ		
$C_{ADC}^{(2)}$	Internal sample and hold capacitor	-	-	-	8	pF		
t _{CAL} ⁽²⁾	Calibration time	f _{ADC} = 14 MHz	5	.9		μs		
'CAL`´		-	83			1/f _{ADC}		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{lat} (2)	Injection trigger conversion latency	f _{ADC} = 14 MHz	-	-	0.214	μs
'lat` '		-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion latency	f _{ADC} = 14 MHz	-	-	0.143	μs
'latr'		-	-	-	2 ⁽⁴⁾	1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS.		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
t _{CONV} ⁽²⁾	Total conversion time (including	f _{ADC} = 14 MHz	1	-	18	μs
	Total conversion time (including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Table 52. ADC characteristics (continued)

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

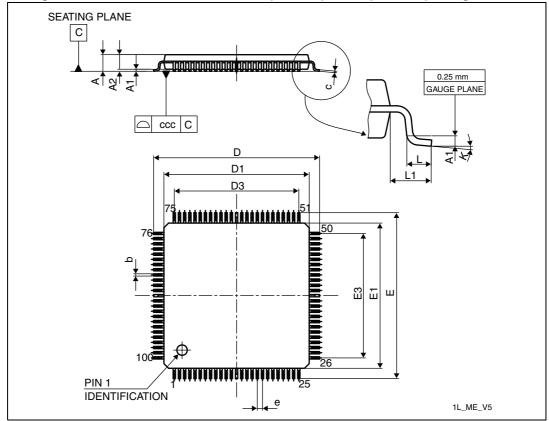
4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 52.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{r_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA


Table 53. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

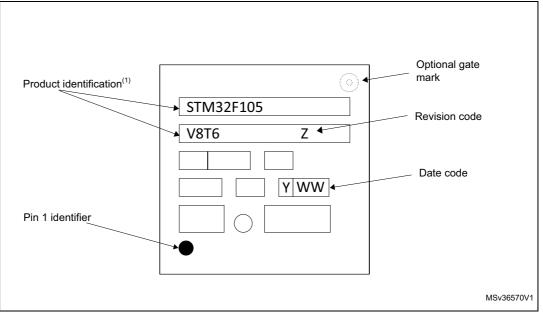
1. Based on characterization, not tested in production.

6.2 LQFP100 package information

Figure 43. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

1. Drawing is not to scale. Dimension are in millimeter.

Table	59. LQPF100 - 100-pin, 14 x 14 mm l mechanical dat	
		· · · · · · (1)

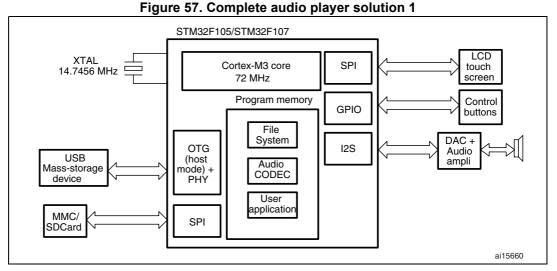

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591

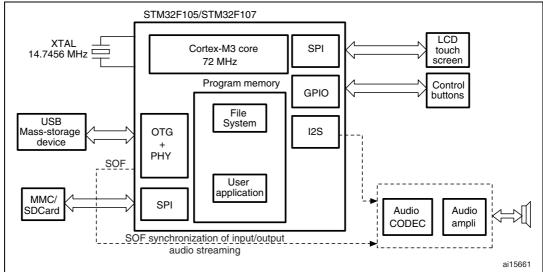
Device marking for LQFP100

The following figure shows the device marking for the LQFP100 package.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 45.LQFP100 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.


A.3 Complete audio player solutions

Two solutions are offered, illustrated in Figure 57 and Figure 58.

Figure 57 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I²S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure 58 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

Figure 58. Complete audio player solution 2

