E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	80
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f105vct6v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Packa	age inf	ormation	82
	6.1	LFBGA	100 package information	82
	6.2	LQFP	00 package information	85
	6.3	LQFP	34 package information	88
	6.4	Therm	al characteristics	91
		6.4.1	Reference document	. 91
		6.4.2	Selecting the product temperature range	. 92
7	Part r	numbe	ring	94
Appendi	x A A	pplicat	ion block diagrams	95
	A.1	USB C	TG FS interface solutions	95
	A.2	Ethern	et interface solutions	97
	A.3	Compl	ete audio player solutions	99
	A.4	USB C	TG FS interface + Ethernet/I ² S interface solutions	100
8	Revis	ion his	story	103

Table 45.	USB OTG FS startup time	71
Table 46.	USB OTG FS DC electrical characteristics.	71
Table 47.	USB OTG FS electrical characteristics	72
Table 48.	Ethernet DC electrical characteristics	72
Table 49.	Dynamic characteristics: Ethernet MAC signals for SMI.	72
Table 50.	Dynamic characteristics: Ethernet MAC signals for RMII	73
Table 51.	Dynamic characteristics: Ethernet MAC signals for MII	74
Table 52.	ADC characteristics	74
Table 53.	R_{AIN} max for f_{ADC} = 14 MHz	75
Table 54.	ADC accuracy - limited test conditions	76
Table 55.	ADC accuracy	76
Table 56.	DAC characteristics	79
Table 57.	TS characteristics	81
Table 58.	LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)	83
Table 59.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	85
Table 60.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	88
Table 61.	Package thermal characteristics	91
Table 62.	Ordering information scheme	94
Table 63.	PLL configurations	101
Table 64.	Applicative current consumption in Run mode, code with data	
	processing running from Flash	102
Table 65.	Document revision history	103

List of figures

Figure 1.	STM32F105xx and STM32F107xx connectivity line block diagram	. 13
Figure 2.	STM32F105xx and STM32F107xx connectivity line BGA100 ballout top view	. 24
Figure 3.	STM32F105xx and STM32F107xx connectivity line LQFP100 pinout	. 25
Figure 4.	STM32F105xx and STM32F107xx connectivity line LQFP64 pinout	. 26
Figure 5.	Memory map	. 33
Figure 6.	Pin loading conditions.	. 34
Figure 7.	Pin input voltage	. 34
Figure 8.	Power supply scheme.	. 35
Figure 9.	Current consumption measurement scheme	. 35
Figure 10.	Typical current consumption on V _{BAT} with RTC on vs. temperature at	
-	different V _{BAT} values	. 42
Figure 11.	Typical current consumption in Stop mode with regulator in Run mode	
-	versus temperature at different V _{DD} values	. 42
Figure 12.	Typical current consumption in Stop mode with regulator in Low-power	
-	mode versus temperature at different V _{DD} values	. 43
Figure 13.	Typical current consumption in Standby mode versus temperature at	
U	different V _{DD} values	. 43
Figure 14.	High-speed external clock source AC timing diagram	. 48
Figure 15.	Low-speed external clock source AC timing diagram.	. 49
Figure 16.	Typical application with an 8 MHz crystal	. 50
Figure 17.	Typical application with a 32.768 kHz crystal	. 51
Figure 18.	Standard I/O input characteristics - CMOS port	. 58
Figure 19.	Standard I/O input characteristics - TTL port	. 59
Figure 20.	5 V tolerant I/O input characteristics - CMOS port	. 59
Figure 21.	5 V tolerant I/O input characteristics - TTL port	. 59
Figure 22.	I/O AC characteristics definition	. 62
Figure 23.	Recommended NRST pin protection	. 63
Figure 24.	I ² C bus AC waveforms and measurement circuit	. 65
Figure 25.	SPI timing diagram - slave mode and CPHA = 0	. 67
Figure 26.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	. 67
Figure 27.	SPI timing diagram - master mode ⁽¹⁾	. 68
Figure 28.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	. 70
Figure 29.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	. 70
Figure 30.	USB OTG FS timings: definition of data signal rise and fall time	. 71
Figure 31.	Ethernet SMI timing diagram	. 72
Figure 32.	Ethernet RMII timing diagram	. 73
Figure 33.	Ethernet MII timing diagram	. 73
Figure 34.	ADC accuracy characteristics	. 77
Figure 35.	Typical connection diagram using the ADC	. 77
Figure 36.	Power supply and reference decoupling (V_{PEE} not connected to V_{DDA})	. 78
Figure 37.	Power supply and reference decoupling (V_{DEF} connected to V_{DDA})	. 78
Figure 38.	12-bit buffered /non-buffered DAC	. 80
Figure 39.	LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package	
	outline	. 82
Figure 40.	LFBGA100 – 100-ball low profile fine pitch ball grid array. 10 x 10 mm.	
J	0.8 mm pitch, package mechanical data	. 83
Figure 41.	LFBGA100 – 100-ball low profile fine pitch ball grid array. 10 x 10 mm.	
	0.8 mm pitch, package recommended footprint	. 83
	, , pro- 0	

Peripl	nerals ⁽¹⁾	STM32F105Rx	STM32F107Rx	STM32F105Vx	STM32F107Vx				
	SPI(I ² S) ⁽²⁾	3(2)	3(2)	3(2)	3(2)				
Communication interfaces I ² C 2 1 2 USART 5 USB OTG FS Yes CAN 2 GPIOs 51 80 12-bit ADC 2 Number of channels 16 12-bit DAC 2	1								
ion	USART		· · ·	5					
interfaces	USB OTG FS		Yes						
	CAN	2							
GPIOs		51 80							
12-bit ADC		2							
Number of ch	annels			16					
12-bit DAC		2							
Number of ch	annels	2							
CPU frequence	су	72 MHz							
Operating voltage 2.0 to 3.6 V									
Operating ten	erating temperatures Ambient temperatures: -40 to +85 °C /-40 to +105 °C Junction temperature: -40 to + 125 °C				5°C				

Table 2. STM32F105xx and STM32F107xx features and peripheral counts (continued)

1. Refer to *Table 5: Pin definitions* for peripheral availability when the I/O pins are shared by the peripherals required by the application.

2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I^2S audio mode.

Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F105xx and STM32F107xx connectivity line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.

DocID15274 Rev 10

- 1. I = input, O = output, S = supply, HiZ = high impedance.
- 2. FT = 5 V tolerant. All I/Os are V_{DD} capable.
- 3. Function availability depends on the chosen device.
- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- 5. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
 from the STMicroelectronics website: www.st.com.
- 8. SPI2/I2S2 and I2C2 are not available when the Ethernet is being used.
- 9. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and BGA100 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.

5.3.4 Embedded reference voltage

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V
▼ REFINT	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/°C

Table 12. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 9: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 13*, *Table 14* and *Table 15* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Peri	pheral	Typical consumption at 25 °C	Unit
	DMA1	14.03	
AHB (up to 72 MHz)	DMA2	9.31	
	OTG_fs	111.11	
	ETH-MAC	56.25	µA/MHz
	CRC	1.11	
	BusMatrix ⁽¹⁾	15.97	
	APB1-Bridge	9.72	
	TIM2	33.61	
	TIM3	33.06	
	TIM4	32.50	
	TIM5	31.94	
	TIM6	6.11	
	TIM7	6.11	
	SPI2/I2S2 ⁽²⁾	7.50	
	SPI3/I2S3 ⁽²⁾	7.50	
	USART2	10.83	
ADD1(up to 26MUT)	USART3	11.11	
	UART4	10.83	μΑνινιπΖ
	UART5	10.56	
	I2C1	11.39	
	I2C2	11.11	
	CAN1	19.44	
	CAN2	18.33	
	DAC ⁽³⁾	8.61	
	WWDG	3.33	
	PWR	2.22	
	ВКР	0.83	
	IWDG	3.89	

Table 19. Peripheral current consumption

Figure 15. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 3 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	3		25	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 22. HSE 3-25 MHz oscillator characteristics^{(1) (2)}

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency		-	-	8		MHz
DuCy _(HSI)	Duty cycle		-	45	-	55	%
		User-trimmed with the RCC_CR register ⁽²⁾		-	-	1 ⁽³⁾	%
ACC _{HSI}	Accuracy of the HSI oscillator	Factory- calibrated ⁽⁴⁾	T _A = -40 to 105 °C	-2	-	2.5	%
			T _A = −10 to 85 °C	-1.5	-	2.2	%
			T _A = 0 to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time		-	1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption		-	-	80	100	μA

Table 24.	HSI oscillator	characteristics	(1)
-----------	----------------	-----------------	-----

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website *www.st.com*.

3. Guaranteed by design, not tested in production.

4. Based on characterization, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 25.	LSI	oscillator	characteristics	(1)
-----------	-----	------------	-----------------	-----

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	_	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design, not tested in production.

Wakeup time from low-power mode

The wakeup times given in *Table 26* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

5.3.16 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

The STM32F105xx and STM32F107xx I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 41*. Refer also to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Deremeter	Standard r	node l ² C ⁽¹⁾	Fast mode	Unit		
Symbol	Parameter	Min	Max	Min	Max	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	20 + 0.1C _b	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 41. I²C characteristics

1. Guaranteed by design, not tested in production.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies and it must be a mulitple of 10 MHz in order to reach I²C fast mode maximum clock 400 kHz.

3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 28. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD}.$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 29. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Based on characterization, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5.3.18 DAC electrical specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Comments	
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V_{REF+} must always be below V_{DDA}	
V _{SSA}	Ground	0	-	0	V	-	
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-	
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$	
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	3.6 V and (0x155) to (0xEAB) at $V_{REF+} = 2.4 V$	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.	
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code $(0xF1C)$ at V _{REF+} = 3.6 V in terms of DC consumption on the inputs	
	DAC DC current	-	-	380	μA	With no load, middle code (0x800) on the inputs	
I _{DDA}	consumption in quiescent mode (Standby mode)	-	-	480	μΑ	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs	
DNL ⁽²⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.	
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.	
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.	
INL ⁽²⁾	and the value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.	

Table 56. DAC characteristics

5.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 57. TS characteristics

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
е	-	0.500	-	-	0.0197	-	
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ccc	-	-	0.080	-	-	0.0031	

Table 60.LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 47.LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are in millimeters.

Device marking for LQFP64

The following figure shows the device marking for the LQFP64 package.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 48.LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 62: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 61* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 62: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ S: $P_{Dmax} = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID15274 Rev 10

Using the values obtained in *Table 61* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- T_{Jmax} = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 62: Ordering information scheme*).

A.4 USB OTG FS interface + Ethernet/I²S interface solutions

With the clock tree implemented on the STM32F107xx, only one crystal is required to work with both the USB (host/device/OTG) and the Ethernet (MII/RMII) interfaces. *Figure 59* illustrate the solution.

Figure 59. USB O44TG FS + Ethernet solution

With the clock tree implem1ented on the STM32F107xx, only one crystal is required to work with both the USB (host/device/OTG) and the I²S (Audio) interfaces. *Figure 60* illustrate the solution.

Figure 60. USB OTG FS + I²S (Audio) solution

Date	Revision	Changes
19-Jun-2009	3	Section 2.3.8: Boot modes and Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support updated. Section 2.3.24: Remap capability added. Figure 1: STM32F105xx and STM32F107xx connectivity line block diagram and Figure 5: Memory map updated. In Table 5: Pin definitions: - I2S3_WS, I2S3_CK and I2S3_SD default alternate functions added - small changes in signal names - Note 6 modified - ETH_MII_PPS_OUT and ETH_RMII_PPS_OUT replaced by ETH_PPS_OUT - ETH_MII_PDC and ETH_RMII_MDIO replaced by ETH_MDIO - ETH_MII_MDC and ETH_RMII_MDIO replaced by ETH_MDIO - ETH_MII_MDC and ETH_RMII_MDIC replaced by ETH_MDC Figures: Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled and Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled removed. Table 13: Maximum current consumption in Run mode, code with data processing running from Flash, Table 14: Maximum current consumption in Run mode, code with data processing running from RAM and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM are to be determined. Figure 12 and Figure 13 show typical curves. PLL1 renamed to PLL. I _{DD} supply current in Stop mode modified in Table 16: Typical and maximum current consumption in Stop and Standby modes. Figure 11: Typical current consumption in Stop mode with regulator in Run mode versus temperature at different VDD values updated. Table 17: Typical current consumption in Run mode, code with data processing running from Flash, Table 18: Typical current consumption in Standby mode versus temperature at different VDD values and Figure 13: Typical current consumption in Sleep mode, code running from Flash or RAM and Table 19: Peripheral current consumption updated. f _{HSE_ext} modified in Table 20: High-speed external user clock characteristics. ACC _{HSI} max values modified in Table 24: HSI oscillator characteristics updated. Table

Table 65. Document revision hist	ory (continued)
----------------------------------	-----------------

