

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f107rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 45.	USB OTG FS startup time	71
Table 46.	USB OTG FS DC electrical characteristics.	71
Table 47.	USB OTG FS electrical characteristics	72
Table 48.	Ethernet DC electrical characteristics	72
Table 49.	Dynamic characteristics: Ethernet MAC signals for SMI.	72
Table 50.	Dynamic characteristics: Ethernet MAC signals for RMII	73
Table 51.	Dynamic characteristics: Ethernet MAC signals for MII	74
Table 52.	ADC characteristics	74
Table 53.	R_{AIN} max for f_{ADC} = 14 MHz	75
Table 54.	ADC accuracy - limited test conditions	76
Table 55.	ADC accuracy	76
Table 56.	DAC characteristics	79
Table 57.	TS characteristics	81
Table 58.	LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)	83
Table 59.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	85
Table 60.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	88
Table 61.	Package thermal characteristics	91
Table 62.	Ordering information scheme	94
Table 63.	PLL configurations	101
Table 64.	Applicative current consumption in Run mode, code with data	
	processing running from Flash	102
Table 65.	Document revision history	103

2 Description

The STM32F105xx and STM32F107xx connectivity line family incorporates the highperformance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 256 Kbytes and SRAM 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well as standard and advanced communication interfaces: up to two I²Cs, three SPIs, two I2Ss, five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx only.

The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F105xx and STM32F107xx connectivity line family offers devices in three different package types: from 64 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the STM32F105xx and STM32F107xx connectivity line microcontroller family suitable for a wide range of applications such as motor drives and application control, medical and handheld equipment, industrial applications, PLCs, inverters, printers, and scanners, alarm systems, video intercom, HVAC and home audio equipment.

2.1 Device overview

Figure 1 shows the general block diagram of the device family.

Peripherals ⁽¹⁾		STN	//32F10	5Rx	STM32	F107Rx	STN	132F105	δVx	STM32	F107Vx
Flash memory	y in Kbytes	64 128 256			128	256	64	128	256	128	256
SRAM in Kby	tes						64				
Package		LQFP6		64		LQFP 100	LQFP 100, BGA 100	LQFP 100	LQFP 100	LQFP 100, BGA 100	
Ethernet		No Yes			es	No Yes				es	
General- purpose			4								
Timers	Advanced- control						1				
	Basic						2				

Table 2.	STM32F105xx and	STM32F107xx	features and	peripheral	counts
			icatures and	peripriciai	counts

- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 with the timestamp comparator connected to the TIM2 trigger input
- Triggers interrupt when system time becomes greater than target time

2.3.21 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total) are not shared with any other peripheral.

2.3.22 Universal serial bus on-the-go full-speed (USB OTG FS)

The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG fullspeed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- 1.25 KB of SRAM used exclusively by the endpoints (not shared with any other peripheral)
- 4 bidirectional endpoints
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected
- the SOF output can be used to synchronize the external audio DAC clock in isochronous mode
- in accordance with the USB 2.0 Specification, the supported transfer speeds are:
 - in Host mode: full speed and low speed
 - in Device mode: full speed

2.3.23 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

I/Os on APB2 with up to 18 MHz toggling speed

Figure 4. STM32F105xx and STM32F107xx connectivity line LQFP64 pinout

4 Memory mapping

The memory map is shown in *Figure 5*.

Figure 5. Memory map

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A .

Symbol	Parameter	Condition	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate		0	-	
TJ	V _{DD} fall time rate	-	20	-	μ5/ν

Table 10. Operating condition at power-up / power down

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 11* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
M	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V _{PVD}		PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
VDOD/DDD	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
▼ POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
T _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1	2.5	4.5	ms

Table 11. Embedded reset and power control block characteristics

1. The product behavior is guaranteed by design down to the minimum $V_{\mbox{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

				Ту	o ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit	
			72 MHz	47.3	28.3		
			48 MHz	32	19.6		
			36 MHz	24.6	15.4		
			24 MHz	16.8	10.6		
			16 MHz	11.8	7.4		
		External clock ⁽³⁾	8 MHz	5.9	3.7	mA	
	Supply current in Run mode			4 MHz	3.7	2.9	
			2 MHz	2.5	2		
			1 MHz	1.8	1.53		
			500 kHz	1.5	1.3		
'DD			125 kHz	1.3	1.2		
			36 MHz	23.9	14.8		
			24 MHz	16.1	9.7		
		Running on high	16 MHz	11.1	6.7		
		speed internal RC	8 MHz	5.6	3.8		
		(HSI), AHB prescaler used to	4 MHz	3.1	2.1	mA	
		reduce the	2 MHz	1.8	1.3		
		frequency	1 MHz	1.16	0.9		
			500 kHz	0.8	0.67		
			125 kHz	0.6	0.5		

Table 17. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	-	-	5	-	MΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	-	15	pF
l ₂	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.4	μA
9 _m	Oscillator Transconductance	-	5	-	-	μA/V

Table 23. LS	SE oscillator	characteristics	(f _{LSE} = 32.	.768 kHz) ⁽¹⁾
--------------	---------------	-----------------	-------------------------	--------------------------

5.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 36*).

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns

Table 39. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

I²S - SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 43* for SPI or in *Table 44* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{SCK}	SPI clock froquency	Master mode	-	18	MUZ	
1/t _{c(SCK)}	SFT Clock frequency	Slave mode		18		
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4 t _{PCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2 t _{PCLK}	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60		
t _{su(MI)}	Data input sotup timo	Master mode	4	-		
t _{su(SI)}	Data input setup time	Slave mode	5	-		
t _{h(MI)}	Data input hold time	Master mode	5	-	ne	
t _{h(SI)}		Slave mode	5	-	115	
t _{a(SO)}	Data output access time	Slave mode, f _{PCLK} = 20 MHz	-	3*t _{PCLK}		
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	34		
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	8		
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	32	-		
t _{h(MO)}		Master mode (after enable edge)	10	-	1	

Table 43. SPI characteristics

Symbol	Parameter	Conditions	Conditions		Мах	Unit
f _{CK}	I ² S clock frequency	Master data: 16 bits, a freq = 48 K	Master data: 16 bits, audio freq = 48 K		1.54	MHz
^{1/t} c(CK)		Slave		0	6.5	
t _{r(СК)} t _{f(СК)}	I ² S clock rise and fall time	capacitive load C _L = §	capacitive load C _L = 50 pF		8	
t _{w(CKH)} ⁽¹⁾	I ² S clock high time	Master f _{PCLK} = 16 MF	Ιz,	317	320	
t _{w(CKL)} ⁽¹⁾	I ² S clock low time	audio freq = 48 K		333	336	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	Master mode		-	
+ (1)	W/S hold time	Master mode	I2S2	0	-	ns
ካ(WS) ` ´		Master mode	I2S3	0	-	
+ (1)	W/S sotup time	Slave mode	I2S2	4	-	
^L su(WS)		Slave mode	I2S3	9	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	Slave mode		-	
DuCy(SCK)	I2S slave input clock duty cycle	Slave mode	Slave mode		70	%
+ (1)		Master receiver	I2S2	8	-	
'su(SD_MR)	Data input satur timo		I2S3	10	-	
t (1)		Slave receiver	I2S2	3	-	
'su(SD_SR)`´		Slave receiver	I2S3	8	-	
t		Master receiver	I2S2	2	-	
'h(SD_MR)	Data input hold time		I2S3	4	-	
t (1)		Slave receiver	I2S2	2	-	
^t h(SD_SR)`´		Slave receiver	I2S3	4	-	
t (1)(3)	Data output valid time	Slave transmitter	I2S2	23	-	115
v(SD_ST)		(after enable edge)	I2S3	33	-	
t (1)	Data output hold time	Slave transmitter	12S2	29	-	1
۰h(SD_ST)		(after enable edge)	I2S3	27	-	
t	Data output valid time	Master transmitter	I2S2	-	5	
•v(SD_MT) ``		(after enable edge)	I2S3	-	2	
t (1)	Data output hold time	Master transmitter	I2S2	11	-	
ካ(SD_MT) ` ′	Data output hold time	(after enable edge)	I2S3	4	-	

Table 4	14. I ² S	characteristics
---------	----------------------	-----------------

1. Based on design simulation and/or characterization results, not tested in production.

Driver characteristics								
Symbol	ol Parameter Conditions Min Max Unit							
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage	_	1.3	2.0	V			

Table 47 USB OTG ES electrical characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification - Chapter 7 (version 2.0). 2.

Ethernet characteristics

Table 48 showns the Ethernet operating voltage.

Table 48. Ethernet DC electrical characteristics

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V _{DD}	Ethernet operating voltage	3.0	3.6	V

1. All the voltages are measured from the local ground potential.

Table 49 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 31 shows the corresponding timing diagram.

Figure 31. Ethernet SMI timing diagram

Table 49. Dynamic characteristics: Ethernet MAC signals for SMI

Symbol	Rating	Min	Тур	Мах	Unit
t _{MDC}	MDC cycle time (1.71 MHz, AHB = 72 MHz)	583	583.5	584	ns
t _{d(MDIO)}	MDIO write data valid time	13.5	14.5	15.5	ns
t _{su(MDIO)}	Read data setup time	35	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	ns

Figure 34. ADC accuracy characteristics

- Refer to Table 52 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}\,\text{and}\,\mathsf{C}_{ADC}.$ 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

5.3.18 DAC electrical specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V_{REF+} must always be below V_{DDA}
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	3.6 V and (0x155) to (0xEAB) at $V_{REF+} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code $(0xF1C)$ at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC current	-	-	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA}	consumption in quiescent mode (Standby mode)	-	-	480	μΑ	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽²⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽²⁾	and the value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.

Table 56. DAC characteristics

5.3.19 Temperature sensor characteristics

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 57. TS characteristics

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

6.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 62: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 61* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 62: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ S: $P_{Dmax} = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

7 Part numbering

Example:	STM32	F 105 R C	T 6	V xxx TR
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
F = general-purpose				
Device subfamily				
105 = connectivity, USB OTG FS				
107 = connectivity, USB OTG FS & Ethernet				
Pin count				
R = 64 pins				
V = 100 pins				
Flash memory size				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
C = 256 Kbytes of Flash memory				
Package				
H = BGA				
T = LQFP				
Temperature range				
$6 = $ Industrial temperature range -40 to $85 \degree C$				
7 = Industrial temperature range -40 to 105 °C				
Software option				
Internal code or Blank				
Options				
xxx = programmed parts				
Packing				

Table 62. Ordering information scheme

Blank = tray TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest ST sales office.

Appendix A Application block diagrams

A.1 USB OTG FS interface solutions

1. Use a regulator if you want to build a bus-powered device.

1. STMPS2141STR needed only if the application has to support bus-powered devices.

A.2 Ethernet interface solutions

- 1. HCLK must be greater than 25 MHz.
- 2. Pulse per second when using IEEE1588 PTP, optional signal.

1. HCLK must be greater than 25 MHz.

A.3 Complete audio player solutions

Two solutions are offered, illustrated in Figure 57 and Figure 58.

Figure 57 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I²S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure 58 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

Figure 58. Complete audio player solution 2

