
Analog Devices Inc./Maxim Integrated - MAXQ2000-QBX+ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size 16-Bit

Speed 20MHz

Connectivity 1-Wire®, SPI, UART/USART

Peripherals LCD, POR, PWM, WDT

Number of I/O 50

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 2.75V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 56-WFQFN Exposed Pad

Supplier Device Package 56-TQFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/analog-devices/maxq2000-qbx

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/maxq2000-qbx-4431453
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2-3

MAXQ Family User’s Guide

SECTION 2: ARCHITECTURE
The MAXQ architecture is designed to be modular and expandable. Top-level instruction decoding is extremely simple and based on
transfers to and from registers. The registers are organized into functional modules, which are in turn divided into the System Register
and Peripheral Register groups. Figure 2-1 illustrates the modular architecture and the basic transport possibilities.

SYSTEM MODULES/�
REGISTERS�

�

PERIPHERAL MODULES/REGISTERS�
�

DATA
MEMORY

dst

MAXQ PRODUCT SPECIFIC
MODULES

(MULTIPLY ACCUMULATE UNIT,
ADC, DAC, PWM, ETC.)

STACK
MEMORY

CKCN

WDCN

IC

ADDRESS
GENERATION

IP

SP

IC

LOOP COUNTERS

LC[η]

IIR

IMR

INTERRUPT
LOGIC

CLOCK CONTROL,
WATCHDOG TIMER

AND POWER MONITOR

BOOLEAN
VARIABLE

MANIPULATION

ACCUMULATORS
(16)

AP

APC

PSF

INSTRUCTION
DECODE

(SRC, DST TRANSPORT
DETERMINATION)

MUX

DATA POINTERS

DP[0], DP[1]
FP =

(BP + OFFS)

DPC

SC

MEMORY MANAGEMENT
UNIT (MMU)

PROGRAM
MEMORY

src

dst src

GENERAL-
PURPOSE

I/O

TIMERS/
COUNTERS

UART
AND SPI

Figure 2-1. MAXQ Transport-Triggered Architecture

Maxim Integrated

2-7

post increment/decrement source pointers by a MOVE instruction or pre increment/decrement destination pointers by a MOVE instruc-
tion. Using Data Pointer indirectly with "++" will automatically increase the content of the active Data Pointer by 1 immediately follow-
ing the execution of read data transfer (@DP[n]++) or immediately preceding the execution of a write operation (@++DP[n]). Using
Data Pointer indirectly with "--" will decrease the content of the active Data Pointer by 1 immediately following the execution of read
data transfer (@DP[n]--) or immediately preceding the execution of a write operation (@--DP[n]).

The Frame Pointer (BP[Offs]) is formed by 16-bit unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register
(Offs). Frame Pointer can be used as a post increment/decrement source pointer by a MOVE instruction or as a pre increment/decrement
destination pointer. Using Frame Pointer indirectly with "++" (@BP[++Offs] for a write or @BP[Offs++] for a read) will automatically increase
the content of the Frame Pointer Offset by 1 immediately before or after the execution of data transfer depending upon whether it is used
as a destination or source pointer respectively. Using Frame Pointer indirectly with "--" (@BP[--Offs] for a write or @BP[Offs--] for a read)
will decrease the content of the Frame Pointer Offset by 1 immediately before/after execution of data transfer depending upon whether it
is used as a destination or source pointer respectively. Note that the increment/decrement function affects the content of the Offs register
only, while the contents of the BP register remain unaffected by the borrow/carry out from the Offs register.

A data memory cycle contains only one system clock period to support fast internal execution. This allows read or write operations on
SRAM to be completed in one clock cycle. Data memory mapping and access control are handled by the MMU. Read/write access to
the data memory can be in word or in byte.

2.3.4 Stack Memory
A 16-bit wide on-chip stack is provided by the MAXQ for storage of program return addresses and general-purpose use. The stack is
used automatically by the processor when the CALL, RET, and RETI instructions are executed and when an interrupt is serviced; it can
also be used explicitly to store and retrieve data by using the @SP- - source, @++SP destination, or the PUSH, POP, and POPI instruc-
tions. The POPI instruction acts identically to the POP instruction except that it additionally clears the INS bit.

The width of the stack is 16 bits to accommodate the instruction pointer size. The stack depth may vary between product implemen-
tations. As the stack pointer register SP is used to hold the index of the top of the stack, the maximum size of the stack allowed for a
MAXQ product is defined by the number of bits defined in the SP register (e.g., 3 bits for stack depth of 8, 4 bits for stack depth of 16).

On reset, the stack pointer SP initializes to the top of the stack (e.g. 07h for an 8-word stack, 0Fh for a 16-word stack). The CALL, PUSH,
and interrupt vectoring operations increment SP and then store a value at @SP. The RET, RETI, POP, and POPI operations retrieve the
value at @SP and then decrement SP.

As with the other RAM-based modules, the stack memory is initialized to indeterminate values upon reset or power-up. Stack memory
is dedicated for stack operations only and cannot be accessed through program or data address spaces.

2.4 Pseudo-Von Neumann Memory Mapping
The MAXQ supports a pseudo-Von Neumann memory structure that can merge program and data into a linear memory map. This is
accomplished by mapping the data memory into the program space or mapping program memory segment into the data space.
Program memory from x0000h to x7FFFh is the normal user code segment, followed by the utility ROM segment. The uppermost part
of the 64kWord memory is the logical area for data memory when accessed as a code segment.

The program memory is logically divided into four program pages:

• P0 contains the lower 16kWords,

• P1 contains the second 16kWords,

• P2 contains the third 16kWords, and

• P3 contains the fourth 16kWords.

By default, P2 and P3 are not accessible for program execution until they are explicitly activated by the user software. The Upper
Program Access (UPA) bit must be set to logic 1 to activate P2 and P3. Once UPA is set, P2 and P3 will occupy the upper half of the
64kWord program space. In this configuration (UPA = 1), the utility ROM cannot be accessed at program memory and the physical
data memory cannot be accessed logically in program space.

The logical mapping of physical program memory page(s) into data space depends upon two factors: physical memory currently in
use for program execution; and word/byte data memory access selection. If execution is from the utility ROM, physical program mem-
ory page(s) can logically be mapped to the upper half of data memory space. If logical data memory is used for execution, physical
program memory page(s) can logically be mapped to the lower half of data memory space. If byte access mode is selected, only one

MAXQ Family User’s Guide

Maxim Integrated

3-19

Table 3-3. Watchdog Timeout Period Selection
WATCHDOG TIMEOUT

(IN NUMBER OF OSCILLATOR CLOCKS)SYSTEM CLOCK MODE
SYSTEM CLOCK

SELECT BITS PMME,
CD1, CD0 WD1:0 = 00b WD1:0 = 01b WD1:0 = 10b WD1:0 = 11b

Divide by 1 (default) 000 212 215 218 221

Divide by 2 001 213 216 219 222

Divide by 4 010 214 217 220 223

Divide by 8 011 215 218 221 224

Power Management Mode
(Divide by 256)

1xx 220 223 226 229

Note: Registers in italics are read-only. Registers in bold are 16-bit (except A[n], Acc, A[AP] for MAXQ10). Registers with indexes 8h and higher can only be
accessed as destinations by using the prefix register. Similarly, registers with indexes 10h and higher can only be accessed as sources through the prefix regis-
ter. All undefined or unused indexes (indicated by an em-dash ‘—‘) are either used for op code implementation or reserved for future expansion, and should not
be accessed explicitly. Accessing these locations as registers can have deterministic effects, but the effects will probably not be the intended ones.

Table 3-4. System Register Map
MODULE SPECIFIER

6h 7h 8h 9h Ah Bh Ch Dh Eh Fh

0h — — AP A[0] Acc PFX[0] IP — — —

1h — — APC A[1] A[AP] PFX[1] — SP — —

2h — — — A[2] — PFX[2] — IV — —

3h — — — A[3] — PFX[3] — — OFFS DP[0]

4h — — PSF A[4] — PFX[4] — — DPC —

5h — — IC A[5] — PFX[5] — — GR —

6h — — IMR A[6] — PFX[6] — LC[0] GRL —

7h — — — A[7] — PFX[7] — LC[1] BP DP[1]

8h — — SC A[8] — — — — GRS —

9h — — — A[9] — — — — GRH —

Ah — — — A[10] — — — — GRXL —

Bh — — IIR A[11] — — — — FP —

Ch — — — A[12] — — — — — —

Dh — — — A[13] — — — — — —

Eh — — CKCN A[14] — — — — — —

Fh — — WDCN A[15] — — — — — —

10h — — — — — — — — — —

11h — — — — — — — — — —

12h — — — — — — — — — —

13h — — — — — — — — — —

14h — — — — — — — — — —

15h — — — — — — — — — —

16h — — — — — — — — — —

17h — — — — — — — — — —

18h — — — — — — — — — —

19h — — — — — — — — — —

1Ah — — — — — — — — — —

1Bh — — — — — — — — — —

1Ch — — — — — — — — — —

1Dh — — — — — — — — — —

1Eh — — — — — — — — — —

1Fh — — — — — — — — — —

R
E

G
IS

T
E

R
IN

D
E

X
W

IT
H

IN
M

O
D

U
L

E
MAXQ Family User’s Guide

Maxim Integrated

7.1.4 Timer 0 Mode: Two 8-Bit Timer/Counters
When T0CN register bits M1:M0 = 11b, Timer 0 provides two 8-bit timer/counters as shown in Figure 7-3. In this mode, T0L is an 8-bit
timer/counter that can be used to count clock cycles or 1-to-0 transitions on pin T0 as determined by C/T. (T0CN.2). As in the other
modes, the GATE function can use T0G to give external run control of the timer to an outside signal.

T0H becomes an independent 8-bit timer that can only count clock cycles as shown in Figure 7-3. The clock-input enable for both
timer/counters (T0L and T0H) is controlled by the Timer 0 Run (TR0) bit, while the Timer 0 interrupt flag bit (TF0) is associated only with
rollover of the T0H register.

7-4

MAXQ Family User’s Guide

TR0 = T0CN.4

CLK

0

0 7

7

T0L

0

1

1

C/T = T0CN.2

INTERRUPT

T0M = T0CN.6

T0G PIN

T0 PIN

GATE = T0CN.3

DIVIDE�
BY 12

SYSTEM�
CLOCK

TF0 = T0CN.5

0
T0H

Figure 7-3. Timer/Counter 0 Dual 8-Bit Mode

Maxim Integrated

(T1CN.2) must also be set to logic 1 to enable the timer. The DCEN bit has no effect in this mode. This mode produces a 50% duty
cycle square-wave output. The frequency of the square wave is given by the formula in Figure 8-4. Each timer overflow causes an edge
transition on the pin, i.e., the state of the pin toggles. Note that the timer itself does not generate an interrupt, but if needed, the Timer
1 external interrupt is still available for use when enabled (EXEN1 = 1).

8.2 Timer/Counter 1 Peripheral Registers

8.2.1 Timer/Counter 1 Control Register (T1CN)

Bit 7: Timer 1 Overflow Flag (TF1). This bit is set when Timer 1 overflows from FFFFh or the count is equal to the capture register in
down count mode. It must be cleared by software.

Bit 6: External Timer 1 Trigger Flag (EXF1). A negative transition on the T1EX causes this flag to be set if (CP/RL1 = EXEN1 = 1) or
(CP/RL1 = DCEN = 0 and EXEN1 = 1). When CP/RL1 = 0 and DCEN = 1, EXF1 toggles whenever Timer 1 underflows or overflows. In
this mode, EXF1 can be used as the 17th Timer bit and will not cause an interrupt. If set by a negative transition, this flag must be
cleared by software. Setting this bit to 1 forces a Timer interrupt if enabled.

Bit 5: Timer 1 Output Enable (T1OE). Setting this bit to 1 enables the clock output function of T1 pin if C/T1 = 0. Timer 1 rollovers will
not cause interrupts. Clearing this bit to 0 causes the T1 pin to function as either a standard port pin or a counter input for Timer 1.

Bit 4: Down Count Enable (DCEN). This bit, in conjunction with the T1EX pin, controls the direction that Timer 1 counts in 16-bit auto-
reload mode. Clearing this bit to 0 causes Timer 1 to count up. Setting this bit to 1 causes Timer 1 to count up if the T1EX pin is 1 and
to count down if the T1EX pin is 0.

Bit 3: Timer 1 External Enable (EXEN1). Setting this bit to 1 enables the capture/reload function on the T1EX pin for a negative tran-
sition. Clearing this bit to 0 causes Timer 1 to ignore all external events on T1EX pin.

Bit 2: Timer 1 Run Control (TR1). Setting this bit enables Timer 1. Clearing this bit halts the Timer 1.

Bit 1: Counter/Timer Select (C/T1). This bit determines whether Timer 1 functions as a Timer or counter. Setting this bit to 1 causes
Timer 1 to count negative transitions on the T1 pin. Clearing this bit to 0 causes Timer 1 to function as a Timer. The speed of Timer 1
is determined by the T1M bit, either divide by 1 or divide by 12 of the system clock, including the clock output mode.

Bit 0: Capture/Reload Select (CP/RL1). This bit determines whether the capture or reload function is used for Timer 1. Timer 1 func-
tions in an auto-reload mode following each overflow. Setting this bit to 1 causes a Timer 1 capture to occur when a falling edge is
detected on T1EX if EXEN1 = 1. Clearing this bit to 0 causes an auto-reload to occur when Timer 1 overflow or a falling edge is detect-
ed on T1EX if EXEN1 = 1.

8-5

MAXQ Family User’s Guide

Bit # 7 6 5 4 3 2 1 0

Name TF1 EXF1 T1OE DCEN EXEN1 TR1 C/T1 CP/RL1

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

8.2.6 Timer/Counter 1 Mode Register (T1MD)

Bits 7 to 2: Reserved

Bit 1: Enable Timer 1 Interrupt (ET1). Setting this bit to 1 enables interrupts from the Timer 1 TF1 and EXF1 flags in T1CN. The EXF1
flag does not cause interrupts in the up/down count mode.

Bit 0: Timer 1 Clock Select (T1M). The T0M bit selects the clock frequency for Timer 1:

0 = Uses a divide by 12 of the system clock frequency as Timer 1 base clock

1 = Uses a divide by 1 of the system clock frequency as Timer 1 base clock

8.3 Time-Base Selection for Timers 0 and 1
The MAXQ allows selection of the time base for each timer independently. The input clock for each timer defaults to 12 system clocks
per timer tick. The timer-input clock frequency can be increased by setting the respective TxM bit for the timer (T0M for Timer 0; T1M
for Timer 1). Setting the TxM bit allows the system clock input to be used for the timer-input clock. Table 8-2 shows the resulting timer
input clock for the various system clock modes according to timer control bit TxM setting.

Table 8-2. Input Clock Frequency Selection for Timer 0 and Timer 1

8-7

MAXQ Family User’s Guide

TIMER 0, 1
INPUT CLOCK FREQUENCYSYSTEM CLOCK MODE SYSTEM CLOCK SELECT

BITS PMME, CD1, CD0
TxM = 0 TxM = 1

Divide by 1 000 CLK / 12 CLK / 1
Divide by 2 001 CLK / 24 CLK / 2
Divide by 4 010 CLK / 48 CLK / 4
Divide by 8 011 CLK / 96 CLK / 8

Power Management Mode
(Divide by 256)

1xx CLK / 3072 CLK / 256

Bit # 7 6 5 4 3 2 1 0

Name — — — — — — ET1 T1M

Reset 0 0 0 0 0 0 0 0

Access r r r r r r rw rw

r = read, w = write

Maxim Integrated

9-6

MAXQ Family User’s Guide

9.2.1 16-Bit Timer: Auto-Reload/Compare
The 16-bit auto-reload/compare mode for Timer 2 is in effect when the Timer 2 mode select bit (T2MD) is cleared and the capture/com-
pare function definition bits are both cleared (CCF[1:0] = 00b). The Timer 2 value is contained in the T2V register. The Timer 2 run con-
trol bit (TR2) starts and stops the 16-bit Timer. The input clock for 16-bit Timer 2 is defined as the system clock divided by the ratio
specified by the T2DIV[2:0] prescale bits. The Timer begins counting from the value contained in the T2L:T2H register pair until over-
flowing. When an overflow occurs, the reload value (T2RH:T2RL) is reloaded instead of the x0000h state. The Timer 2 overflow flag
(TF2) is set every time that an overflow condition (T2V = 0xFFFFh) is detected. If Timer 2 interrupts have been enabled (ET2 = 1), the
TF2 flag can generate an interrupt request. When operating in compare mode, the capture/compare registers (T2CH:T2CL) are com-
pared versus the Timer 2 value registers. Whenever a compare match occurs, the capture/compare status flag (TCC2) is set. If Timer
2 interrupts have been enabled (ET2 = 1), this event is capable of generating an interrupt request. If the capture/compare register is
set to a value outside the Timer 2 counting range, a compare match is not signaled and the TCC2 flag is not set. Internally, a Timer 2
output clock is generated, which toggles on the cycle following any compare match or overflow, unless the compare match value has
been set equal to the overflow condition, in which case, only one toggle will occur. This clock may be sourced by certain peripherals
and/or may be output on one or more pins as permitted by the microcontroller.

9.2.1.1 Output Enable (PWM Out)
The Output Enable bits (T2OE[1:0]) enable the Timer 2 output clock to be presented on the pins associated with the respective bits. If
Timer 2 has a single I/O pin, the T2OE[0] bit is associated with the T2P pin and the T2OE[1] bit is not implemented (as it would serve
no purpose).

9.2.1.2 Polarity Control
The Polarity Control bits (T2POL[1:0]) can be used to modify (invert) the enabled clock outputs to the pin(s). The enabled clock outputs
(defined by T2OE[1:0]) will toggle on each compare match or overflow. The T2POL[1:0] bits are logically XORed with the Timer 2 out-
put signal, therefore setting a given T2POL[x] bit will result in a high starting state. The T2POL[n] bit can be changed at any time, how-
ever the assigned T2POL[n] state will take effect on the external pin only when the corresponding T2OE[n] bit is changed from 0 to 1.
When generating PWM output, please note that changing the compare match register can result in a perceived duty cycle inversion if a
compare match is missed or multiple compare matches occur during the reload to overflow counting.

9.2.1.3 Gated
To use the T2P pin as a timer-input clock gate, the T2OE[0] bit must be cleared to 0 and the G2EN bit must be set to 1. When T2OE[0]
= 1, the G2EN bit setting has no effect. When T2OE[0] is cleared to 0, the respective polarity control bit is used to modify the polarity
of the input signal to the Timer. In the gated mode, the Timer 2 input clock is gated anytime that the external signal matches the state
of the T2POL[0] bit. This means that the default clock gating condition for the T2P pin is logic low (since T2POL[0] = 0 default). Setting
T2POL[0] = 1 results in the Timer 2 input clock being gated when the T2P pin is high. Note if multiple pins are allocated for Timer 2
(i.e., T2P, T2PB), the primary pin can be used for clock gating, while the secondary pin can be used to output the gated PWM output
signal (if T2OE[1] = 1).

9.2.1.4 Single Shot (and Gating)
When operating in 16-bit compare mode, the single-shot is used to automate the generation of single pulses under software control or
in response to an external signal (single-shot gated). To generate single-shot output pulses solely under software control, the G2EN bit
should be cleared to 0, the output enables and polarity controls should be configured as desired, and the single-shot bit should be set
to 1. Writing the single-shot bit effectively overrides the TR2 = 0 condition until Timer 2 overflow/reload occurs. The single-shot bit is
automatically cleared once the overflow/reload occurs.

Writing SS2 and TR2 = 1 at the same time still causes the SS2 bit to stay in effect until an overflow/reload occurs; however, since TR2
was also written to 1, the specified PWM output continues even after SS2 becomes clear.

If two pins are available for the Timer 2 implementation, an additional mode is supported: single-shot gated. Single-shot gated requires
that the T2P pin be used as an input (T2OE[0] = 0). It also requires that G2EN = 1, thus differentiating it from the software controlled
single-shot mode on the second output pin. If G2EN is enabled and SS2 is written to 1, the gating condition must first be removed for
the single-shot enabled output to occur on the pin. When the clock gate is removed, the single-shot output occurs. Just as described,
the SS2 bit = 1 state remains in effect until overflow/reload. Note that this makes it possible for the single-shot to span multiple
gated/non-gated intervals. Once the SS2 = 1 conditions completes, if TR2 = 1, the gated PWM mode is in effect. Otherwise (TR2 = 0),
Timer 2 is stopped.

Maxim Integrated

9-15

MAXQ Family User’s Guide

9.4 Timer/Counter 2 Peripheral Registers

9.4.1 Timer/Counter 2 Configuration Register (T2CFG)

Bit 7: Timer 2 Clock Input Select Bit (T2CI). Setting this bit enables an alternate input clock source to the Timer 2 block. The alter-
nate input clock selection is the 32kHz clock. The alternate input clock must be sampled by the system clock, which requires that the
system clock be at least 4 x 32kHz for proper operation unless the system clock is also source from the 32kHz crystal.

Bits 6 to 4: Timer 2 Clock Divide 2:0 Bits (T2DIV[2:0]). These three bits select the divide ratio for the timer clock-input clock (as a
function of the system clock) when operating in timer mode with T2CI = 0.

Bit 3: Timer 2 Mode Select (T2MD). This bit enables the dual 8-bit mode of operation. The default-reset state is 0, which selects the
16-bit mode of operation. When the dual 8-bit mode is established, the primary timer/counter (T2H) carries all of the counter/capture
functionality while the secondary 8-bit timer (T2L) must operate in timer compare mode, sourcing the defined internal clock.

0 = 16-bit mode (default)

1 = dual 8-bit mode

Bits 2 to 1: Capture/Compare Function Select Bits (CCF[1:0]). These bits, in conjunction with the C/T2 bit, select the basic operat-
ing mode of Timer 2. In the dual 8-bit mode of operation (T2MD = 1), the T2L timer only operates in compare mode.

Bit 0: Counter/Timer Select (C/T2). This bit enables/disables the edge counter mode of operation for the 16-bit counter (T2H:T2L) or
the 8-bit counter (T2H) when the dual 8-bit mode of operation is enabled (T2MD = 1). The edge for counting (rising/falling/both) is
defined by the CCF[1:0] bits.

0 = timer mode

1 = counter mode

Bit # 7 6 5 4 3 2 1 0

Name T2CI T2DIV2 T2DIV1 T2DIV0 T2MD CCF1 CCF0 C/T2

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

T2DIV2 T2DIV1 T2DIV0 DIVIDE RATIO

0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

CCF1 CCF0 EDGE(S) C/T2 = 0 (TIMER MODE) C/T2 = 1 (COUNTER MODE)

0 0 None Compare Mode Disabled

0 1 Rising Capture/Reload Counter

1 0 Falling Capture/Reload Counter

0 1 Rising and Falling Capture/Reload Counter

Maxim Integrated

9-19

MAXQ Family User’s Guide

9.4.7 Timer 2 Reload High Register (T2RH)

Bits 7 to 0: Timer 2 Reload High (T2RH.[7:0]). This register is used to load and read the most significant 8-bit reload value in Timer 2.

9.4.8 Timer 2 Capture/Compare Register (T2C)

Bits 15 to 0: Timer 2 Capture/Compare (T2C.[15:0]). This 16-bit register that holds the compare value when operating in compare
mode and gets the capture value when operating in capture mode. When operating in 16-bit mode (T2MD = 0), the full 16-bits are
read/write accessible. If the dual 8-bit mode of operation is selected, the upper byte of T2C is inaccessible. T2C reads while in the
dual 8-bit mode will return 00h as the high byte and writes to the upper byte of T2C will be blocked. A separate T2CH register is pro-
vided to facilitate high-byte access.

9.4.9 Timer 2 Capture/Compare High Register (T2CH)

Bits 7 to 0: Timer 2 Capture/Compare High (T2CH.[7:0]). This register is used to load and read the most significant 8-bit capture/
compare value of Timer 2.

Bit # 7 6 5 4 3 2 1 0

Name T2RH.7 T2RH.6 T2RH.5 T2RH.4 T2RH.3 T2RH.2 T2RH.1 T2RH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name T2C.15 T2C.14 T2C.13 T2C.12 T2C.11 T2C.10 T2C.9 T2C.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2C.7 T2C.6 T2C.5 T2C.4 T2C.3 T2C.2 T2C.1 T2C.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name T2CH.7 T2CH.6 T2CH.5 T2CH.4 T2CH.3 T2CH.2 T2CH.1 T2CH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

10-4

MAXQ Family User’s Guide

10.1.2 UART Mode 1
This mode provides asynchronous, full-duplex communication. A total of 10 bits is transmitted, consisting of a start bit (logic 0), 8 data
bits, and 1 stop bit (logic 1), as illustrated in Figure 10-2. The data is transferred LSb first. The baud rate is programmable through the
baud clock generator. Following a write to SBUF, the UART begins transmission five cycles after the first baud clock from the baud
clock generator. Transmission takes place on the TXD pin. It begins with the start bit being placed on the pin. Data is then shifted out
onto the pin, LSb first. The stop bit follows. The TI bit is set by hardware after the stop bit is placed on the pin. All bits are shifted out
at the rate determined by the baud clock generator.

Once the baud clock generator is active, reception can begin at any time. The REN bit (SCON.4) must be set to logic 1 to allow recep-
tion. The detection of a falling edge on the RXD pin is interpreted as the beginning of a start bit, and will begin the reception process.
Data is shifted in at the selected baud rate. At the middle of the stop bit time, certain conditions must be met to load SBUF with the
received data:

RI must = 0, and either

If SM2 = 0, the state of the stop bit does not matter

or

If SM2 = 1, the state of the stop bit must = 1.

If these conditions are true, then SBUF (address) is loaded with the received byte, the RB8 bit (SCON.2) is loaded with the stop bit,
and the RI bit (SCON.0) is set. If these conditions are false, then the received data will be lost (SBUF and RB8 not loaded) and RI will
not be set. Regardless of the receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0
transition on the RXD pin.

Each data bit received is sampled on the 7th, 8th and 9th clock used by the divide-by-16 counter. Using majority voting, two equal
samples out of the three determine the logic level for each received bit. If the start bit was determined to be invalid (= 1), then the
receiver goes back to looking for a 1-to-0 transition on the RXD pin to start the reception of data.

10.1.3 UART Mode 2
This mode uses a total of 11 bits in asynchronous, full-duplex communication as illustrated in Figure 10-3. The 11 bits consist of one
start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a logic 1). Like Mode 1, the transmissions occur on the TXD
signal pin and receptions on RXD.

For transmission purposes, the 9th bit can be stuffed as a logic 0 or 1. The 9th bit is transferred from the TB8 bit position in the SCON
register (SCON.3) following a write to SBUF to initiate a transmission. Transmission begins five clock cycles after the first rollover of the
divide-by-16 counter following a software write to SBUF. It begins with the start bit being placed on the TXD pin. The data is then shift-
ed out onto the pin, LSb first, followed by the 9th bit, and finally the stop bit. The TI bit (SCON.1) is set when the stop bit is placed on
the pin.

Once the baud-rate generator is active and the REN bit (SCON.4) has been set to logic 1, reception can begin at any time. Reception
begins when a falling edge is detected as part of the incoming start bit on the RXD pin. The RXD pin is then sampled according to the
baud-rate speed. The 9th bit is placed in the RB8 bit location in SCON (SCON.2). At the middle of the 9th bit time, certain conditions
must be met to load SBUF with the received data.

RI must = 0, and either

If SM2 = 0, the state of the 9th bit does not matter

or

If SM2 = 1, the state of the 9th bit must = 1.

If these conditions are true, then SBUF will be loaded with the received byte, RB8 will be loaded with the 9th bit, and RI will be set. If
these conditions are false, then the received data will be lost (SBUF and RB8 not loaded) and RI will not be set. Regardless of the
receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition on RXD.

Data is sampled in a similar fashion to Mode 1 with the majority voting on three consecutive samples. Mode 2 uses the sample divide-
by-16 counter with either the clock divided by 2 or 4, thus resulting in a baud clock of either system clock/32 or system clock/64.

Maxim Integrated

11-2

MAXQ Family User’s Guide

SECTION 11: SERIAL PERIPHERAL INTERFACE (SPI) MODULE
The serial peripheral interface (SPI) module of the MAXQ microcontroller provides an independent serial communication channel to
communicate synchronously with peripheral devices in a multiple master or multiple slave system. The interface allows access to a
four-wire full-duplex serial bus that can be operated in either master mode or slave mode. The SPI functionality must be enabled by
setting the SPI Enable (SPIEN) bit of the SPI Control register to logic 1. The maximum data rate of the SPI interface is 1/2 the system
clock frequency for master mode operation and 1/8 the system clock frequency for slave mode operation. The four external interface
signals used by the SPI module are MISO, MOSI, SPICK, and SSEL. The function of each of these signals is as follows:

The block diagram in Figure 11-1 shows the SPI external interface signals, control unit, read buffer, and single shift register common
to the transmit and receive data path. Each time that an SPI transfer completes, the received character is transferred to the read buffer,
giving double buffering on the receive side. The CPU has read/write access to the control unit and the SPI data buffer (SPIB). Writes
to SPIB are always directed to the shift register while reads always come from the receive holding buffer.

EXTERNAL PIN SIGNAL MASTER MODE USE SLAVE MODE USE
MISO: Master In, Slave Out Input to serial shift register Output from serial shift register when selected
MOSI: Master Out, Slave In Ouput from serial shift register Input to serial shift register when selected

SPICK: SPI Clock Serial shift clock sourced to slave device(s) Serial shift clock from an external master

SSEL: Slave Select (Optional) Mode fault-detection input if enabled
(MODFE = 1)

Slave select input

SPIEN =�
SPICN.0

MSTM = SPICN.1

SHIFT REGISTER

MOSI

SPIB WRITES

RECEIVE DATA�
BUFFER

SPIB READS

0

0

1

15/7

15/7

MISO0

1

SPI STATUS & CONTROL UNIT

0

SPICK1

0

SSEL

Figure 11-1. SPI Block Diagram

Maxim Integrated

12.6 Hardware Multiplier Examples
The following are code examples of multiplier operations.

;Unsigned Multiply 16-bit x 16-bit
move MCNT, #21h ; CLD=1, SUS=1 (unsigned)
move MA, #0FFFh ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= 00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

;Signed Multiply 16-bit x 16-bit
move MCNT, #20h ; CLD=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= FF00_0001h

; MC2:0=FFFF_FF00_0001h

;Unsigned Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #03h ; MMAC=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #02h ; SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= FF00_0003h
; MC2:0=0000_0000_0002h

;Unsigned Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #07h ; MMAC=1, MSUB=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=FF00_0003h
; MC2:0=0000_0000_0002h

;Signed Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #06h ; MMAC=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= 02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply Negate 16-bit x 16-bit
move MCNT, #24h ; CLD=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R =00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

12-9

MAXQ Family User’s Guide

Maxim Integrated

13-2

MAXQ Family User’s Guide

SECTION 13: 1-Wire BUS MASTER
The 1-Wire Bus Master can be used by the MAXQ microcontroller to support 1-Wire communication to external 1-Wire devices without
tying up valuable CPU resources. The Bus Master provides complete control of the 1-Wire bus, and transmit and receive activities. All tim-
ing and control sequences of the 1-Wire bus are generated within the Bus Master. Communication between the CPU and the Bus Master
is through read/write access of 1-Wire Master Address (OWA) and 1-Wire Master Data (OWD) peripheral registers. When bus activity has
generated a condition that requires CPU service, the Bus Master sets a status bit, allowing an interrupt to be generated if enabled. The
1-Wire Bus Master is operable for any system clock frequency between 4MHz and 25MHz, and supports the Bit Banging and Search ROM
Accelerator modes. Detailed operation of the 1-Wire bus is described in the Book of iButton Standards, available on the Maxim/Dallas
Semiconductor website at www.maxim-ic.com/iButtonbook. Figure 13-1 shows a functional block diagram of the 1-Wire Bus Master.

1-WIRE�
BUS�

TIMING�
AND�

CONTROL

INTERRUPT FLAG

INTERRUPT ENABLE

COMMAND

CONTROL

TRANSMIT BUFFER

Tx SHIFT REGISTER

Rx SHIFT REGISTER

RECEIVE BUFFER

CLOCK DIVIDER

BAUD GENERATION

INTERRUPT�
CONTROL�

LOGIC

CONTROL

RESET

OWD

OWA

1-WIRE MASTER

RESET

CLK

OWOUT

OWIN

MAXQ

Figure 13-1. 1-Wire Bus Master Functional Diagram

Maxim Integrated

13-12

MAXQ Family User’s Guide

VDD

GND

OWOUT

INITIALIZATION SEQUENCE

OWOUT

VDD

GND

OWIN

VDD

GND

tRSTL tRSTH

tPDH tPDL

tPDS

tWRITE 0 SLOT tWRITE 1 SLOT

tLOW1 >1µstLOW0

15µs 15µs

SLAVE SAMPLING

15µs 15µs

SLAVE SAMPLING

30µs 30µs

tREAD 0 SLOT tREAD 1 SLOT

tRDV BUS MASTER�
SAMPLING

BUS MASTER�
SAMPLING

1µs 1µs

tRDV

WRITE TIME SLOT

READ TIME SLOT

MASTER ACTIVE LOW

SLAVE ACTIVE LOW

MASTER AND SLAVE ACTIVE LOW

RESISTOR PULLUP

Figure 13-2. 1-Wire Bus Signaling in Standard Mode

Maxim Integrated

14-2

MAXQ Family User’s Guide

SECTION 14: REAL-TIME CLOCK MODULE
The real-time clock (RTC) is a binary timer that keeps the time of day and provides time-of-day and sub-second alarm functionality in
the form of system interrupts. The RTC consists of cascaded 32-bit and 8-bit ripple counters that respectively represent absolute sec-
onds (~136 years) and sub-seconds (in 1/256 second resolution). The 8-bit sub-second counter increments with each 256Hz clock tick
derived from the 32.768kHz oscillator. A separate auto-reload sub-second alarm counter can be used to generate interval alarms with
granularity of 1/256 seconds. The 32-bit seconds counter increments with each rollover of the 8-bit sub-second counter. The 32-bit
counter can be used with the programmable time-of-day comparison alarm to provide a single event timer. The RTC must be stopped
for the counter registers to initially be written, but once enabled, the RTC counts continuously as long as it is enabled and does not stop
for reads of the counter registers. The RTC also supports a digital trim facility for those applications requiring high accuracy.

User-application code accesses the RTC via eight peripheral registers. The 16-bit RTC Control register (RCNT) provides the control
and status for RTC functions, including RTC read/write access controls, clock selection/control, RTC enable, square-wave output
enable, alarm enables, and their interrupt flags. The seconds count information is set or initialized only by writing to the 16-bit RTC
Second High and the 16-bit RTC Second Low register (RTSH and RTSL registers). Similarly, the 8-bit RTC Sub-Second register (RTSS)
can be used to establish and access the sub-second counter. The Time-of-Day alarm is composed of the RASH:RASL register pair
and the interval alarm is programmable via the RSSA register. The digital trim value is held in the RTRM register.

Figure 14-1 shows a functional diagram of a full-featured RTC. Certain MAXQ microcontroller devices may be equipped with a subset
of the RTC functionality described. Refer to the individual device data sheet or supplemental user guide for more information.

DIGITAL
TRIM

DIVIDE BY 128(27)
1/256Hz

32kHz CLK 1/512Hz

1Hz

1/512Hz

RTRM

RTSS

RSSA

RTSL RTSH

RASL RASH

COMPARE

RCNT

ADE

ALDF

ALSF

RTCE

ASETSGN, TRM4: 0

SQEFT

SQUARE-
WAVE OUT

Figure 14-1. RTC Functional Block Diagram

Maxim Integrated

Table 16-1 shows the background mode commands supported by the MAXQ microcontroller. Encodings not listed in this table are not
supported in background mode and are treated as no operations.

Table 16-1. Background Mode Commands

16-4

MAXQ Family User’s Guide

OP CODE COMMAND OPERATION
0000-0000 No Operation No Operation. Default state for Debug Shift register.

0000-0001 Read ICDC Read Control Data from the ICDC. The contents of the ICDC register are loaded into the Debug Shift Register via
the ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0010 Read ICDF Read Flags from the ICDF. The contents of the ICDF register (one byte) are loaded into the Debug Shift Register
via the ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0011 Read ICDA Read Data from the ICDA. The contents of the ICDA register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0100 Read ICDD Read Data from the ICDD. The contents of the ICDD register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0101 Read BP0 Read Data from the BP0. The contents of the BP0 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0110 Read BP1 Read Data from the BP1. The contents of the BP1 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0111 Read BP2 Read Data from the BP2. The contents of the BP2 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1000 Read BP3 Read Data from the BP3. The contents of the BP3 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1001 Read BP4 Read Data from the BP4. The contents of the BP4 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1010 Read BP5 Read Data from the BP5. The contents of the BP5 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0001-0001 Write ICDC Write Control Data to the ICDC. The contents of ICDB are loaded into the ICDC register by the debug engine at
the end of the data transfer cycle.

0001-0011 Write ICDA Write Data to the ICDA. The contents of ICDB are loaded into the ICDA register by the debug engine at the end
of the data transfer cycles. Data is transferred with the least significant byte first.

0001-0100 Write ICDD Write Data to the ICDD. The contents of ICDB are loaded into the ICDD register by the debug engine at the end
of data transfer cycles. Data is transferred with the least significant byte first.

0001-0101 Write BP0 Write Data to the BP0. The contents of ICDB are loaded into the BP0 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-0110 Write BP1 Write Data to the BP1. The contents of ICDB are loaded into the BP1 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-0111 Write BP2 Write Data to the BP2. The contents of ICDB are loaded into the BP2 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1000 Write BP3 Write Data to the BP3. The contents of ICDB are loaded into the BP3 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1001 Write BP4 Write Data to the BP4. The contents of ICDB are loaded into the BP4 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1010 Write BP5 Write Data to the BP5. The contents of ICDB are loaded into the BP5 register by the debug engine at the end of
data transfer cycles. Data is transferred with the least significant byte first.

0001-1111 Debug Debug Command. This command forces the debug engine into debug mode and halts the CPU operation at the
completion of the current instruction after the debug engine recognizes the debug command.

Maxim Integrated

16.2.2 Read Register Map Command Host-ROM Interaction
A read register map command reads out data contents for all implemented system and peripheral registers. The host does not specify
a target register but instead should expect register data output in successive order, starting with the lowest order register in register mod-
ule 0. Data is loaded by the ROM to the 8-bit ICDB register and is output one byte per transfer cycle. Thus, for a 16-bit register, two trans-
fer cycles are necessary. The host initiates each transfer cycle to shift out the data bytes and will find valid data output tagged with a
debug-valid (status = 11b). At the end of each transfer cycle, the debug engine clears the TXC flag to signal the ROM service routine
that another byte may be loaded to ICDB. The ROM service routine sets the TXC flag each time after loading data to the ICDB register.
This process is repeated until all registers have been read and output to the host. The host system recognizes the completion of the
register read when the status debug-idle is presented. This indicates that the debug engine is ready for another operation.

16.2.3 Single-Step Operation (Trace)
The debug engine supports single step operation in debug mode by executing a trace command from the host. The debug engine
allows the CPU to return to its normal program execution for one cycle and then forces a debug mode re-entry:

1) Set status to 10b (debug-busy).

2) Pop the return address from the stack.

3) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

4) Supply the CPU with an instruction addressed by the return address.

5) Stall the CPU at the end of the instruction execution.

6) Block the next instruction fetch from program memory.

7) Push the return address onto the stack.

8) Set the contents of IP to x8010h.

9) Clear the IGE bit to 0 to disable the interrupt handler.

10) Halt CPU operation.

11) Set the status to debug-idle.

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The host must main-
tain consistency of program flow during the debug process. The Instruction Pointer is automatically incremented after each trace oper-
ation, thus a new return address will be pushed onto the stack before returning the control to the debug engine. Also, note that the
interrupt handler is an essential part of the CPU and a pending interrupt could be granted during single step operation since the IGE
bit state present on debug mode entry is restored for the single step.

16.2.4 Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a Return command to the debug
engine. This command causes the following actions:

1) Pop the return address from the stack.

2) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

3) Supply the CPU with an instruction addressed by the return address.

4) Allow the CPU to execute the normal user program.

5) Set the status to 00b (non-debug).

To prevent a possible endless-breakpoint matching loop, no break occurs for a breakpoint match on the first instruction after returning
from debug mode to background mode. Returning to background mode also enables all internal timer functions.

16.2.5 Debug Mode Special Considerations
The following are special considerations when using Debug Mode.

• The debug engine cannot be operated reliably when the CPU is configured in the Power Management Mode (divide-by-256 system
clock mode). To allow for proper execution of debug mode commands when invoked during PMM, the Switchback enable (SWB)
bit should be configured to a logic 1. With SWB = 1, entering active debug mode (whether by breakpoint match or issuance of the
debug command) forces a switchback to the divide-by-1 system clock mode and allow the debug engine to function correctly. This

16-12

MAXQ Family User’s Guide

Maxim Integrated

allows user code to configure breakpoints that occur inside PMM, thus providing reliable use of debug commands. However, it does
not allow a good means for re-entering PMM.

• Special caution should be exercised when using the Write Register command on register bits that globally affect system operation
(e.g., IGE, STOP). If the write register command is used to invoke stop mode (setting STOP = 1), the RST pin may be asserted to
reset the debug engine and return to the background mode of operation.

• Single stepping ('Trace') through any IGE bit change operation results in the debug engine overriding the bit change since it retains
the IGE bit setting captured when active debug mode was entered.

• Single stepping ('Trace') into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts normally capable
of causing exit from stop mode to do so.

• Single stepping ('Trace') through any memory read instruction that reads from the utility ROM (such as 'move Acc,' @DP[0] with
DP[0] set to 8000h) will cause the memory read to return an incorrect value.

• Single stepping ('Trace') cannot be used when executing code from the utility ROM.

• Data memory allocation is important during system development if in-circuit debug is planned. The top 32-byte memory location
may be used by the debug service routine during debug mode. The data contents in these locations may be altered and cannot be
recovered.

• One available stack location is needed for debug mode. If the stack is full when entering debug mode, the oldest data in the stack
will be overwritten.

• The crystal warmup counter is the only counter not disabled when active debug mode is entered. If the crystal warmup counter com-
pletes while in active debug mode, a glitchless switch will be made to selected clock source (which was being counted). It is impor-
tant that the user recognize that this action will occur since the TAP clock should be run no faster than 1/8 the system clock frequency.

• Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since the system clock is
turned off inside active debug mode between debug mode commands.

• Power Management Mode cannot be invoked in the first instruction executed when returning from active debug mode. The PMME
bit will not be set if such an attempt is made.

16.3 In-Circuit Debug Peripheral Registers

16.3.1 In-Circuit Debug Temp 0 Register (ICDT0)

Bits 15 to 0: In-Circuit Debug Temp 0 (ICDT0.[15:0]). This register is read/write accessible by the CPU only in background mode or
debug mode. This register is intended for use by the utility ROM routines as temporary storage to save registers that might otherwise
have to be placed in the stack.

16-13

MAXQ Family User’s Guide

Bit # 15 14 13 12 11 10 9 8

Name ICDT0.15 ICDT0.14 ICDT0.13 ICDT0.12 ICDT0.11 ICDT0.10 ICDT0.9 ICDT0.8

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name ICDT0.7 ICDT0.6 ICDT0.5 ICDT0.4 ICDT0.3 ICDT0.2 ICDT0.1 ICDT0.0

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

s = special

Maxim Integrated

17-2

MAXQ Family User’s Guide

SECTION 17: IN-SYSTEM PROGRAMMING (JTAG)
Internal nonvolatile memory of MAXQ microcontrollers can be initialized via Bootstrap Loader mode. To enable the Bootstrap loader
and establish a desired communication channel, the System Programming instruction (100b) must be loaded into the TAP instruction
register using the IR-Scan sequence. Once the instruction is latched in the instruction parallel buffer (IR2:0) and is recognized by the
TAP controller in the Update-IR state, a 3-bit data shift register is activated as the communication channel for DR-Scan sequences. The
TAP retains the System Programming instruction until a new instruction is shifted in or the TAP controller returns to the Test-Logic-Reset
state. This 3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit Serial Programming Buffer (SPB).
The System Programming Buffer (SPB) contains three bits with the following functions:

• SPB.0: System Programming Enable (SPE). Setting this bit to logic 1 denotes that system programming is desired upon exit-
ing reset. When it is cleared to logic 0, no system programming is needed. The logic state of SPE is examined by the reset
vector in the Utility ROM to determine the program flow after a reset. When SPE = 1, the Bootstrap Loader selected by the
PSS1:0 bits are activated to perform a Bootstrap Loader function. When SPE = 0, the Utility ROM transfers execution control
to the normal user program.

• SPB.2:1: Programming Source Select (PSS1:PSS0). These bits allow the host to select programming interface sources. The
PSS bits have no functions when the SPE bit is cleared.

The DR-Scan sequence is used to configure the SPB bits. The data content of the SPB register is reflected in the ICDF register and
allows read/write access by the CPU. These bits are cleared by power-on reset or Test-Logic-Reset of the TAP controller.

17.1 JTAG Bootloader Operation
Devices that support a JTAG bootloader have the benefit of using the same status bit handshaking hardware as is used for in-circuit
debugging. When the SPE bit of the System Programming Buffer (SPB) is set to 1 and JTAG is selected as the programming source
(PSS1:0 = 00b), the background and active debug mode state machines are disabled. Once the host loads the Debug instruction into
the TAP instruction register (IR2:0), the 10-bit shift register interface to ICDB and the status bits becomes available for host-to-ROM
bootloader communication. The status bits should be interpreted as follows for JTAG bootloader operation:

When the using the JTAG bootloader option (SPE = 1, PSS1:0 = 00b), the sole purpose of the debug hardware is to simultaneously
transfer the data byte shifted in from the host into the ICDB register and transfer the contents of an internal holding register (loaded by
ROM code writes of ICDB) into the shift register for output to the host. This transfer takes place on the falling edge of TCK at the Update-
DR state. The debug hardware additionally clears the TXC bit at this point in the state diagram. The ROM loader code controls the sta-
tus bit output to the host by asserting TXC = 1 when it has valid data to be shifted out. The ROM code may flexibly implement what-
ever communication protocol and command set it wishes within the data byte portion of the shifted 10-bit word.

PSS1 PSS0 PROGRAMMING
SOURCE

0 0 JTAG
0 1 UART
1 0 SPI
1 1 Reserved

BITS 1:0 STATUS CONDITION
00 Reserved Invalid condition.
01 Reserved Invalid condition

10 Loader-Busy ROM Loader is busy executing code
or processing the current command.

11 Loader-Valid ROM Loader is supplying valid output
data to the host in current shift operation.

Maxim Integrated

RL/RLC .18-26

RR/RRC .18-28

SLA/SLA2/SLA4 .18-30

SR/SRA/SRA2/SRA4 .18-32

SUB/SUBB src .18-36

XCH .18-37

XCHN .18-37

XOR src .18-38

XOR Acc. .18-38

18-2

MAXQ Family User’s Guide

LIST OF TABLES
Table 18-1. Instruction Set Summary .18-3

Table 18-2. Source Specifier Codes .18-14

Table 18-3. Destination Specifier Codes .18-15

Maxim Integrated

