
Digi - 101-0383 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 2000

Co-Processor -

Speed 18.432MHz

Flash Size 256KB

RAM Size 128KB

Connector Type 2 IDC Headers 2x20

Size / Dimension 1.9" x 2.3" (48.3mm x 58.4mm)

Operating Temperature -40°C ~ 85°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/101-0383

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/101-0383-4510265
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

2.1 Connections
1. Attach RCM2000 to Prototyping Board

Turn the RCM2000 so that the Rabbit 2000 microprocessor is facing as shown below. Plug
RCM2000 headers J1 and J2 on the bottom side of the RCM2000 into the sockets of headers
J1 and J3 on the Prototyping Board.

Figure 1. Attaching RCM2000 to Prototyping Board

NOTE: It is important that you line up the pins on the RCM2000 headers J1 and J2
exactly with the corresponding pins of header sockets J1 and J3 on the Prototyping
Board. The header pins may become bent or damaged if the pin alignment is offset, and
the RCM2000 will not work.

��

��

���

��

��

��

	
�

	

	�
���

�

���

	

	�

	�

��

��

�
 �� ��

��

��

��

���

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
��

�
�
�
��
��
��
�
�
��
�
�
�
��
�
��
�
�
�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

�

�

�
��

�
!

�
�

�
�

�

�
�

	
��
�

�
�
�

�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

	
�
�

��
	
�
�

�
�

�
��

�
�� �
"

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

	
�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

��
	
��

��
�
�

���

�
�
	
�
�

	
�

��

���

���

���

	

	

	�

� �

��

�#�

�#�

�
#
�

�
#
�

��

�

�	$�
�

�� ��

��

��
�� ��

����

���
��
���

�

���
���
��

���
���
����

�
�

�

�
�

�
�
������
������
��
���
������
��� ����
�����
�

���
��

���
���
���
��

��

���
���
���
���
���
���

��
���

��
���
���
�"
��
��
��
��

���
�!
��
��
�

��
	���

���
���
���
���
�
�
�
�
�
�
�
�
��

����

���
��

���
���
�
�
�

�
�
�
�
���

	��

��

����
	��

���
���	���	��

����

��

���

��

�
��

����

�
"

����" �!
���

���������	�

��������	�
��

�� ��

����������	

����

������
6 RabbitCore RCM2000

2.2 Run a Sample Program
Once the RCM2000 is connected as described in the preceding pages, start Dynamic C by
double-clicking on the Dynamic C icon on your desktop or in your Start menu. Dynamic C
uses the serial port specified during installation.

If you are using a USB port to connect your computer to the RCM2000 module, choose
Options > Project Options and select “Use USB to Serial Converter” under the
Communications tab, then click OK.

Find the file PONG.C, which is in the Dynamic C SAMPLES folder. To run the program,
open it with the File menu (if it is not still open), then compile and run it by pressing F9 or
by selecting Run in the Run menu. The STDIO window will open and will display a small
square bouncing around in a box.

2.2.1 Troubleshooting

If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

• Check that the RCM2000 is powered correctly — the red power LED on the Prototyping
Board should be lit when the RCM2000 is mounted on the Prototyping Board and the AC
adapter is plugged in.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM2000 with the marked (colored) edge of the programming cable
towards pin 1 of the programming header.

• Ensure that the RCM2000 module is firmly and correctly installed in its connectors on
the Prototyping Board.

• Dynamic C uses the COM port specified during installation. Select a different COM
port within Dynamic C. From the Options menu, select Project Options, then select
Communications. Select another COM port from the list, then click OK. Press
<Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it is
unable to locate the target system, repeat the above steps until you locate the COM port
used by the programming cable.

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load the sample program, it is possible that
your PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.
User’s Manual 9

2.3 Where Do I Go From Here?
If everything appears to be working, we recommend the following sequence of action:

1. Run all of the sample programs described in Chapter 3 to get a basic familiarity with
Dynamic C and the RCM2000’s capabilities.

2. For further development, refer to the RabbitCore RCM2000 User’s Manual for details
of the module’s hardware and software components.

A documentation icon should have been installed on your workstation’s desktop; click
on it to reach the documentation menu. You can create a new desktop icon that points to
default.htm in the docs folder in the Dynamic C installation folder.

3. For advanced development topics, refer to the Dynamic C User’s Manual, also in the
online documentation set.

2.3.1 Technical Support

NOTE: If you purchased your RCM2000 through a distributor or through a Rabbit partner,
contact the distributor or partner first for technical support.

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.
10 RabbitCore RCM2000

http://www.rabbit.com/support/bb/index.html
http://www.rabbitsemiconductor.com/forums/
http://www.rabbit.com/support/questionSubmit.shtml

3.1.1 Running Sample Program FLASHLED.C

This sample program will be used to illustrate some of the functions of Dynamic C.

First, open the file FLASHLED.C, which is in the SAMPLES/RCM2000 folder. The program
will appear in a window, as shown in Figure 3 below (minus some comments). Use the
mouse to place the cursor on the function name WrPortI in the program and type <Ctrl-H>.
This will bring up a documentation box for the function WrPortI. In general, you can do
this with all functions in Dynamic C libraries, including libraries you write yourself. Close
the documentation box and continue.

Figure 3. Sample Program FLASHLED.C

To run the program FLASHLED.C, open it with the File menu (if it is not already open),
then compile and run it by pressing F9 or by selecting Run in the Run menu. The LED on
the Prototyping Board should start flashing if everything went well. If this doesn’t work
review the following points.

• The target should be ready, which is indicated by the message “BIOS successfully com-
piled...” If you did not receive this message or you get a communication error, recom-
pile the BIOS by typing <Ctrl-Y> or select Recompile BIOS from the Compile menu.

main(){

 int j;

 WrPortI(SPCR,&SPCRShadow,0x84);
 WrPortI(PADR,&PADRShadow,0xFF);

 while(1) {

 BitWrPortI(PADR,&PADRShadow,1,1);

 for(j=0; j<32000; j++);

 BitWrPortI(PADR,&PADRShadow,0,1);

 for(j=0; j<25000; j++);

 } // end while

 } // end of main

C programs begin with main

Start a loop

Time delay by counting
to 32,000

End of the endless loop

Note: See the Rabbit 2000 Microprocessor User’s Manual
(Software Chapter) for details on the routines that read and
write I/O ports.

Set up Port A to output
to LED DS2 and DS3

Turn LED DS3 off

Turn LED DS3 on

Time delay by counting
to 25,000
12 RabbitCore RCM2000

• A message reports “No Rabbit Processor Detected” in cases where the RCM2000 and
the Prototyping Board are not connected together, the wall transformer is not con-
nected, or is not plugged in. (The red power LED lights whenever power is connected.)

• The programming cable must be connected to the RCM2000. (The colored wire on the
programming cable is closest to pin 1 on header J3 on the RCM2000, as shown in
Figure 2.) The other end of the programming cable must be connected to the PC serial
port. The COM port specified in the Dynamic C Options menu must be the same as the
one the programming cable is connected to.

• To check if you have the correct serial port, select Compile, then Compile BIOS, or
type <Ctrl-Y>. If the “BIOS successfully compiled …” message does not display, try a
different serial port using the Dynamic C Options menu until you find the serial port
you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1.1 Single-Stepping

Compile or re-compile FLASHLED.C by clicking the Compile button on the task bar. The
program will compile and the screen will come up with a highlighted character (green) at
the first executable statement of the program. Use the F8 key to single-step. Each time the
F8 key is pressed, the cursor will advance one statement. When you get to the for(j=0,
j< ... statement, it becomes impractical to single-step further because you would have
to press F8 thousands of times. We will use this statement to illustrate watch expressions.

3.1.1.2 Watch Expressions

Type <Ctrl-W> or chose Add/Del Watch Expression in the Inspect menu. A box will
come up. Type the lower case letter j and click on add to top and close. Now continue sin-
gle-stepping with F8. Each time you step, the watch expression (j) will be evaluated and
printed in the watch window. Note how the value of j advances when the statement j++ is
executed.

3.1.1.3 Break Point

Move the cursor to the start of the statement:

 for(j=0; j<25000; j++);

To set a break point on this statement, type F2 or select Toggle Breakpoint from the Run
menu. A red highlight will appear on the first character of the statement. To get the pro-
gram running at full speed, type F9 or select Run on the Run menu. The program will
advance until it hits the break point. Then the break point will start flashing and show both
red and green colors. Note that LED DS3 is now solidly turned on. This is because we
have passed the statement turning on LED DS3. Note that j in the watch window has the
value 32000. This is because the loop above terminated when j reached 32000.

To remove the break point, type F2 or select Toggle Breakpoint on the Run menu. To
continue program execution, type F9 or select Run from the Run menu. Now the LED
should be flashing again since the program is running at full speed.
User’s Manual 13

• Setting break points. The F2 key is used to turn on or turn off (toggle) a break point at
the cursor position if the program has already been compiled. You can set a break point
if the program is paused at a break point. You can also set a break point in a program
that is running at full speed. This will cause the program to break if the execution
thread hits your break point.

• Watch expressions. A watch expression is a C expression that is evaluated on command
in the watch window. An expression is basically any type of C formula that can include
operators, variables and function calls, but not statements that require multiple lines
such as for or switch. You can have a list of watch expressions in the watch window. If
you are single-stepping, then they are all evaluated on each step. You can also com-
mand the watch expression to be evaluated by using the <Ctrl-U> command. When a
watch expression is evaluated at a break point, it is evaluated as if the statement was at
the beginning of the function where you are single-stepping. If your program is running
you can also evaluate watch expressions with a <Ctrl-U> if your program has a
runwatch() command that is frequently executed. In this case, only expressions
involving global variables can be evaluated, and the expression is evaluated as if it
were in a separate function with no local variables.

3.1.1.7 Cooperative Multitasking

Cooperative multitasking is a convenient way to perform several different tasks at the
same time. An example would be to step a machine through a sequence of steps and at the
same time independently carry on a dialog with the operator via a human interface. Coop-
erative multitasking differs from another approach called preemptive multitasking.
Dynamic C supports both types of multitasking. In cooperative multitasking each separate
task voluntarily surrenders its compute time when it does not need to perform any more
activity immediately. In preemptive multitasking control is forcibly removed from the task
via an interrupt.

Dynamic C has language extensions to support multitasking. The major C constructs are
called costatements, cofunctions, and slicing. These are described more completely in the
Dynamic C User’s Manual. The example below, sample program FLASHLEDS2.C, uses
costatements. A costatement is a way to perform a sequence of operations that involve
pauses or waits for some external event to take place. A complete description of costate-
ments is in the Dynamic C User’s Manual. The FLASHLEDS2.C sample program has two
independent tasks. The first task flashes LED DS2 2.5 times a second. The second task
flashes DS3 every 1.5 seconds.
User’s Manual 15

3.1.2 Getting to Know the RCM2000

The following sample programs can be found in the SAMPLES\RCM2000 folder.

• EXTSRAM.C—demonstrates the setup and simple addressing to an external SRAM.
This program first maps the external SRAM to the I/O Bank 0 register with a maximum
of 15 wait states, chip select strobe (which is ignored because of the circuitry), and
allows writes. The first 256 bytes of SRAM are cleared and read back. Values are then
written to the same area and are read back. The Dynamic C STDIO window will indi-
cate if writes and reads did not occur

Connect an external SRAM as shown below before you run this sample program.

• FLASHLED.C—repeatedly flashes LED DS3 on the Prototyping Board on and off.
LED DS3 is controlled by Parallel Port A bit 1 (PA1).

• FLASHLED2.C—repeatedly flashes LED DS3 on the Prototyping Board on and off.
LED DS3 is controlled by Parallel Port A bit 1 (PA1).

This sample program also shows the use of the runwatch() function to allow
Dynamic C to update watch expressions while running. The following steps explain
how to do this.

1. Add a watch expression for "k" in the Inspect > Add Watch dialog box.

2. Click "Add" or "Add to top" so that it will be in the watch list permanently.

3. Click OK to close the dialog box.

4. Press <Ctrl+U> while the program is running. This will update the watch window

������
�����������

	
���	
�
��

�@
�

���

���

���

��@��� ������

�����

� �
���
���
18 RabbitCore RCM2000

• LCD_DEMO.C—demonstrates a simple setup for an LCD that uses the HD44780 con-
troller or an equivalent.

Connect the LCD to the RCM2000 address and data lines on the Prototyping Board.
D0—DB0
D1—DB1
D2—DB2
D3—DB3
D4—DB4
D5—DB5
D6—DB6
D7—DB7

A0—RS (Register Select: 0 = command, 1 = data)
A1—R/W (0=write, 1=read)
*—E (normally low: latches on high-to-low transition)

• SWTEST.C—demonstrates the use of pushbutton switches S2 and S3 to toggle LEDs
DS2 and DS3 on the Prototyping Board on and off.

Parallel Port A bit 0 = LED DS2
Parallel Port A bit 1 = LED DS3

Parallel Port B bit 2 = switch S2
Parallel Port B bit 3 = switch S3

• TOGGLELED.C—demonstrates the use of costatements to detect switch presses using
the press-and-release method of debouncing. As soon as the sample program starts run-
ning, LED DS3 on the Prototyping Board (which is controlled by PA1) starts flashing
once per second. Press switch S2 on the Prototyping Board (which is connected to PB2)
to toggle LED DS2 on the Prototyping Board (which is controlled by PA0). The push-
button switch is debounced by the software.

������
����������	�
����

��������

�

�@
�

��@
��

��

���

�	

���

��

���

��������

�

�@
�

��@
��

��

���

�@
��-.'�14,*���@�"
(,�&'-/'.���

����������

��@���-.'�14,*���@�

(,�&'-/'.���

��@�� ��@��
20 RabbitCore RCM2000

H
ea

de
r J

2

1–13 A[12:0] Output Rabbit 2000 address bus

14 STAT Output (Status) Output

15 PC0 Output TXD

16 PC1 Input RXD

17 PC2 Output TXC

18 PC3 Input RXC

19 PC4 Output TXB

20 PC5 Input RXB

21 PC6 Output TXA

22 PC7 Input RXA

21 PC6 Output TXA Connected to program-
ming port22 PC7 Input RXA

23–26 PD[0:3]

Bitwise or parallel
programmable I/O, can be
driven or open-drain output

16 mA sourcing and
sinking current at full AC
switching speed

27 PD4 ATXB output

28 PD5 ARXB input

29 PD6 ATXA output

30 PD7 ARXA input

31, 40 GND

32, 39 VCC

33 VBATR 3 V battery input

34 VRAM 2.1 V output 100 kΩ minimum load

35–36 SMODE0,
SMODE1

(0,0)—start executing at
address zero

No programming cable
attached

SMODE0 =1, SMODE1 = 1
Cold boot from asynchro-
nous serial port A at 2400
bps (programming cable
connected)

(0,1)—cold boot from slave
port
(1,0)—cold boot from
clocked serial port A

With programming cable
attached

37 /RES_OUT Reset Output

38 /RES_IN Reset Input

Table 2. RCM2000 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
26 RabbitCore RCM2000

4.4 Serial Programming Cable
The programming cable is used to connect the RCM2000’s programming port to a PC
serial COM port. The programming cable converts the RS-232 voltage levels used by the
PC serial port to the TTL voltage levels used by the Rabbit 2000.

When the PROG connector on the programming cable is connected to the RCM2000’s
programming header, programs can be downloaded and debugged over the serial interface.

The DIAG connector of the programming cable may be used on the RCM2000’s program-
ming header with the RCM2000 operating in the Run Mode. This allows the programming
port to be used as a regular serial port.

4.4.1 Changing Between Program Mode and Run Mode

The RCM2000 is automatically in Program Mode when the PROG connector on the
programming cable is attached to the RCM2000, and is automatically in Run Mode when
no programming cable is attached. When the Rabbit 2000 is reset, the operating mode is
determined by the status of the SMODE pins. When the programming cable’s PROG
connector is attached, the SMODE pins are pulled high, placing the Rabbit 2000 in the
Program Mode. When the programming cable’s PROG connector is not attached, the
SMODE pins are pulled low, causing the Rabbit 2000 to operate in the Run Mode.

Figure 7. RCM2000 Program Mode and Run Mode Setup

A program “runs” in either mode, but can only be downloaded and debugged when the
RCM2000 is in the program mode.

Refer to the Rabbit 2000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

��

��

���

��

��

��

	
�

	

	�
���

�

���

	

	�

	�

��

��

�
 �� ��

��

��

�
�
�

��
�

��

��
�

��
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�

�
�

��
�

��
�

��
�

��
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
��

�
�
�
��
��
��
�
�
��
��
�
��
�
��
�
�
�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

�

�

�
��

�
!

�
�

�
�

�

�
�

	
��
�

�
�
�

�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

	
�
�

��
	
��

�
�

�
��

�
�� �
"

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�
�

�
�
��

	
�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

��
	
��

��
�
�

���

�
�
	
�
�

	
�

��

���

���

���

	

	

	�

� �

��

�#�

�#�

�#
�

�
#
�

�

�	$�
�

��

��

���

��

��

��

	
�

	

	�
���

�

���

	

	�

	�

��

��

�
 �� ��

��

��

�
�
�

��
�

��

��
�

��
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�

�
�

��
�

��
�

��
�

��
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
��

�
�
�
��
��
��
�
�
��
��
�
��
�
��
�
�
�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

�

�

�
��

�
!

�
�

�
�

�

�
�

	
��
�

�
�
�

�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

	
�
�

��
	
��

�
�

�
��

�
�� �
"

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�
�

�
�
��

	
�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

��
	
��

��
�
�

���

�
�
	
�
�

	
�

��

���

���

���

	

	

	�

� �

��

�#�

�#�

�#
�

�
#
�

�

�	$�
�

�� ��

��

��
�� ��

����

���
��
���

�

���
���
��

���
���
����

�
�

�

�
�

�
�
������
������
��
���
������
��� ����
�����
�

���
��

���
���
���
��

��

���
���
���
���
���
���

��
���

��
���
���
�"
��
��
��
��

���
�!
��
��
�

��
	���

���
���
���
���
�
�
�
�
�
�
�
�
��

����

���
��

���
���
�
�
�

�
�
�
�
���

	��

��

����
	��

���
���	���	��

����

��

���

��

�
��

����

�
"

����" �!
���

�� ��

��

��
�� ��

����

���
��
���

�

���
���
��

���
���
����

�
�

�

�
�

�
�
������
������
��
���
������
��� ����
�����
�

���
��

���
���
���
��

��

���
���
���
���
���
���

��
���

��
���
���
�"
��
��
��
��

���
�!
��
��
�

��
	���

���
���
���
���
�
�
�
�
�
�
�
�
��

����

���
��

���
���
�
�
�

�
�
�
�
���

	��

��

����
	��

���
���	���	��

����

��

���

��

�
��

����

�
"

����" �!
���

�������

�()(.'/�*4/'
)4,'*�:1�+40&

14,��

����������	��������

��:%���:%�

����0�,��%���'*-%�:.%$�(.!$/#$/�1�'%�
���������	������������������������������������� !���
���"
����#������$��
!; %���%1�4#$/����! !(.#$/�+��/�!11#$/�(!3-%)

�������

�#$&��	���

���

����

���	������	
������(

�������1(.0
30 RabbitCore RCM2000

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
User’s Manual 37

5.4 Upgrading Dynamic C
Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

The default installation of a patch or bug fix is to install the file in a directory (folder) dif-
ferent from that of the original Dynamic C installation. Rabbit recommends using a differ-
ent directory so that you can verify the operation of the patch without overwriting the
existing Dynamic C installation. If you have made any changes to the BIOS or to libraries,
or if you have programs in the old directory (folder), make these same changes to the
BIOS or libraries in the new directory containing the patch. Do not simply copy over an
entire file since you may overwrite a bug fix; of course, you may copy over any programs
you have written. Once you are sure the new patch works entirely to your satisfaction, you
may retire the existing installation, but keep it available to handle legacy applications.

5.4.1 Extras

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits.

Starting with Dynamic C version 9.60, Dynamic C includes the popular µC/OS-II real-
time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and
other select libraries. Rabbit also offers for purchase the Rabbit Embedded Security Pack
featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard
(AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase.

Visit our Web site at www.rabbit.com for further information and complete documentation.
40 RabbitCore RCM2000

http://www.rabbit.com/products/dc/
http://www.rabbit.com/support/supportcenter.html

A.2 Bus Loading
You must pay careful attention to bus loading when designing an interface to the RCM2000. This
section provides bus loading for external devices.

Table A-2 lists the capacitance for the various RCM2000 I/O ports.

Table A-3 lists the external capacitive bus loading for the various Rabbit 2000 output
ports. Be sure to add the loads for the devices you are using in your custom system and
verify that they do not exceed the values in Table A-3.

Table A-2. Capacitance of RCM2000 I/O Ports

I/O Ports
Input Capacitance

(pF)
Output Capacitance

(pF)

Typ. Max. Typ. Max.

Parallel Ports A to E 6 pF 12 pF 10 pF 14 pF

Data Lines D0–D7 16 pF 30 pF 24 pF 32 pF

Address Lines A0–A12 — — 24 pF 32 pF

Table A-3. External Capacitive Bus Loading -40°C to +85°C

Output Port Clock Speed
(MHz)

Maximum External
Capacitive Loading (pF)

A[12:1]
D[7:1]

25.8 50

A[12:1]
D[7:1]

18.4
55 for 90 ns flash

100 for 55 ns flash*

* The RCM2020 operating at 18.4 MHz will typically come with a
flash EPROM whose access time is 55 ns. Because of the volatil-
ity of the memory market, a 90 ns flash EPROM could be used on
the RCM2020.

A0
D0

25.8, 18.4 100

PD[3:0] 25.8, 18.4, 100

PA[7:0]
PB[7,6]
PC[6,4,2,0]
PD[7:4]
PE[7:0]

25.8, 18.4 90

All data, address, and I/O
lines with clock doubler
disabled

12.9, 9.2 100
46 RabbitCore RCM2000

B.4 Using the Prototyping Board
The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used to demonstrate the functionality of the RCM2000
right out of the box without any modifications to either board. There are no jumpers or dip
switches to configure or misconfigure on the Prototyping Board so that the initial setup is
very straightforward.

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM2000. Two LEDs (DS2 and DS3) are connected to PA0 and PA1, and
two switches (S2 and S3) are connected to PB2 and PB3 to demonstrate the interface to
the Rabbit 2000 microprocessor. Reset switch S1 is the hardware reset for the RCM2000.

To maximize the availability of RCM2000 resources, the demonstration hardware (LEDs
and switches) on the Prototyping Board may be disconnected. This is done by cutting the
traces below the silk-screen outline of header JP1 on the bottom side of the Prototyping
Board. Figure B-4 shows the four places where cuts should be made. An exacto knife
would work nicely to cut the traces. Alternatively, a small standard screwdriver may be
carefully and forcefully used to wipe through the PCB traces.

Figure B-4. Where to Cut Traces to Permanently Disable
Demonstration Hardware on Prototyping Board

The power LED (PWR) and the RESET switch remain connected. Jumpers across the
appropriate pins on header JP1 can be used to reconnect specific demonstration hardware
later if needed.

	
�

��

���

���

���

	

	

	�

�:0

���
����������
58 RabbitCore RCM2000

62 RabbitCore RCM2000

APPENDIX C. POWER MANAGEMENT

Appendix C describes the RCM2000 power circuitry.

C.1 Power Supplies
The RCM2000 requires a regulated 5 V ± 0.25 V DC power source.

An RCM2000 with no loading at the outputs operating at 18.432 MHz typically draws 88 mA,
and an RCM2000 operating at 25.8048 MHz typically draws 120 mA. The RCM2000 will
consume 13 mA to 15 mA of additional current when the programming cable is used to
connect J3 to a PC.

C.1.1 Batteries and External Battery Connections

The RCM2000 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up SRAM and keep the internal Rabbit 2000 real-time clock running.

Header J2, shown in Figure C-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 2000 real-time clock to retain data with the RCM2000 powered down.

Figure C-1. External Battery Connections at Header J2

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

���

����

�

�

�

��

����

�30'.,-)
�-00'.8
User’s Manual 63

The drain on the battery by the RCM2000 is typically 10 µA when no other power is sup-
plied. If a 950 mA·h battery is used, the battery can last more than 6 years:

Since the shelf life of the battery is 10 years, the battery can last for its full shelf life. The
actual life in your application will depend on the current drawn by components not on the
RCM2000 and the storage capacity of the battery.

C.1.2 Battery-Backup Circuit

The battery-backup circuit serves three purposes:

• It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting
the current consumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

• A voltage, VOSC, is supplied to U5, which keeps the 32.768 kHz oscillator working
when the voltage begins to drop.

VRAM and Vcc are nearly equal (<100 mV, typically 10 mV) when power is supplied to
the RCM2000.

Figure C-2 shows the RCM2000 battery-backup circuit.

Figure C-2. RCM2000 Battery-Backup Circuit

VRAM is also available on pin 34 of header J2 to facilitate battery backup of the external
circuit. Note that the recommended minimum resistive load at VRAM is 100 kΩ, and new
battery life calculations should be done to take external loading into account.

950 mA·h
10 µA------------------------ 10.8 years (shelf life = 10 years).=

���
���?�

����
����$�#�

%&�����
��������

���

���?�

��?�

���

���

���?�

�����

�77

���?�

��

���?�
��
14,��

�"

�

�

� ����������

��!
��,A

�!
��,A
64 RabbitCore RCM2000

C.2 Chip Select Circuit
Figure C-4 shows a schematic of the chip select circuit.

Figure C-4. Chip Select Circuit

The current drain on the battery in a battery-backed circuit must be kept to a minimum.
When the RCM2000 is not powered, the battery keeps the SRAM memory contents and
the real-time clock (RTC) going. The SRAM has a powerdown mode that greatly reduces
power consumption. This powerdown mode is activated by raising the chip select (CS)
signal line. Normally the SRAM requires Vcc to operate. However, only 2 V is required
for data retention in powerdown mode. Thus, when power is removed from the circuit, the
battery voltage needs to be provided to both the SRAM power pin and to the CS signal
line. The CS control circuit accomplishes this task for the CS signal line.

In a powered-up condition, the CS control circuit must allow the processor’s chip select
signal /CS1 to control the SRAM’s CS signal /CSRAM. So, with power applied, /CSRAM
must be the same signal as /CS1, and with power removed, /CSRAM must be held high
(but only needs to be battery voltage high). Q13 and Q14 are MOSFET transistors with
opposing polarity. They are both turned on when power is applied to the circuit. They
allow the CS signal to pass from the processor to the SRAM so that the processor can peri-
odically access the SRAM. When power is removed from the circuit, the transistors will
turn off and isolate /CSRAM from the processor. The isolated /CSRAM line has a 100 kΩ
pullup resistor to VRAM (R28). This pullup resistor keeps /CSRAM at the VRAM voltage
level (which under no-power conditions is the backup battery’s regulated voltage at a little
more than 2 V).

Transistors Q13 and Q14 are of opposite polarity so that a rail-to-rail voltages can be
passed. When the /CS1 voltage is low, Q13 will conduct. When the /CS1 voltage is high,
Q14 will conduct. It takes time for the transistors to turn on, creating a propagation delay.
This delay is typically very small, about 10 ns to 15 ns.

��	�

��	���

���	 C��

C�

C��

���

��"

����

���?�
�� ��

����?���,A
66 RabbitCore RCM2000

D.3 LCD Connections

Figure D-4. Sample LCD Connections

Sample Program: LCD_DEMO.C in SAMPLES\COREMODULE.

The shaded part of the circuit in Figure D-4 can be used to drive a second LCD, but addi-
tional software not included in LCD_DEMO.C will have to be written.

������
�����������

��������

�

�@
�

��@
��

���
���
���

��������

�

�@
�

��@
��

���
70 RabbitCore RCM2000

INDEX

A
additional information

online documentation 4

B
battery backup

reset generator 65
battery life 64
bus loading 46

C
clock doubler 32
conformal coating 50

D
Development Kit 3

RCM2000 3
digital I/O 23

I/O buffer sourcing and sink-
ing limits 49

memory interface 28
SMODE0 29
SMODE1 29

digital inputs 27
digital outputs 27
dimensions

Prototyping Board 55
RCM2000 42

Dynamic C 3, 35
add-on modules 40
features 14
multitasking 15
Rabbit Embedded Security

Pack 40
sample programs 11

break point 13
editing a program 14
single-stepping 13
watch expressions 13

standard features 36
debugging 37

telephone-based technical
support 40

upgrades and patches 40
USB port settings 9

E
EMI

spectrum spreader feature . 33
exclusion zone 43

F
features 1

Prototyping Board 54
flash memory addresses

user blocks 34

H
hardware connections 6

install RCM2000 on Prototyp-
ing Board 6

power supply 8
programming cable 7

hardware reset 8

I
I/O buffer sourcing and sinking

limits 49

J
jumper configurations 51

JP1 (SRAM size) 51
JP2 (flash memory size) 51
JP3 (flash memory bank

select) 34, 51
jumper locations 51

M
manuals 4

P
PCLK output 38

pinout
Prototyping Board59
RCM200024

alternate configurations
...............................25, 26

power supplies
+5 V63
battery backup63, 64
battery life64

power supply
connections8

programming cable
PROG connector30
RCM2000 connections7

programming port29
Prototyping Board53, 54

adding components61
dimensions55
features54
mounting RCM20006
pinout59
power supply57
prototyping area59, 60
specifications56

R
Rabbit subsystems23
RCM2000

mounting on Prototyping
Board6

reset ..8

S
sample circuits67

D/A converter72
external memory71
keypad and LCD connec-

tions69
LCD connections70
RS-232/RS-485 serial com-

munication68
User’s Manual 73

