

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce623-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	3
2.0	PIC16CE62X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	11
5.0	I/O Ports	
6.0	EEPROM Peripheral Operation	29
7.0	Timer0 Module	
8.0	Comparator Module	41
9.0	Voltage Reference Module	47
10.0	Special Features of the CPU	49
11.0	Instruction Set Summary	65
	Development Support	
	Electrical Specifications	
14.0	Packaging Information	97
Appe	ndix A: Code for Accessing EEPROM Data Memory	103
Index		105
On Li	ne Support	. 107
Read	ne Support er Response	108
PIC1	6CE62X Product Identification System	. 109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16CE62X are 18 and 20-Pin EPROM-based members of the versatile PIC[®] family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with EEPROM data memory.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16CE62X family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CE62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16CE623 and PIC16CE624 have 96 bytes of RAM. The PIC16CE625 has 128 bytes of RAM. Each microcontroller contains a 128x8 EEPROM memory array for storing non-volatile information, such as calibration data or security codes. This memory has an endurance of 1,000,000 erase/write cycles and a retention of 40 plus years.

Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16CE62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low-cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16CE62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and reset. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development, while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16CE62X mid-range microcontroller families.

A simplified block diagram of the PIC16CE62X is shown in Figure 3-1.

The PIC16CE62X series fits perfectly in applications ranging from multi-pocket battery chargers to low-power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high-performance, ease of use and I/O flexibility make the PIC16CE62X very versatile.

1.1 <u>Development Support</u>

The PIC16CE62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler is also available.

TABLE 1-1: PIC16CE62X FAMILY OF DEVICES

		PIC16CE623	PIC16CE624	PIC16CE625
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Momory	EPROM Program Memory (x14 words)	512	1K	2K
Memory	Data Memory (bytes)	96	96	128
Peripherals	EEPROM Data Memory (bytes)	128	128	128
	Timer Module(s)	TMR0	TMR0	TMR0
Peripherais	Comparators(s)	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes
	Interrupt Sources	4	4	4
	I/O Pins	13	13	13
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
Features	Brown-out Reset	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CE62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Name	DIP/ SOIC Pin #	SSOP Pin #	l/O/P Type	Buffer Type	Description	
OSC1/CLKIN	16	18	I	ST/CMOS	Oscillator crystal input/external clock source input.	
OSC2/CLKOUT	15	17	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.	
MCLR/Vpp	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.	
					PORTA is a bi-directional I/O port.	
RA0/AN0	17	19	I/O	ST	Analog comparator input	
RA1/AN1	18	20	I/O	ST	Analog comparator input	
RA2/AN2/VREF	1	1	I/O	ST	Analog comparator input or VREF output	
RA3/AN3	2	2	I/O	ST	Analog comparator input /output	
RA4/T0CKI	3	3	I/O	ST	Can be selected to be the clock input to the Timer0 timer/counter or a comparator output. Output is open drain type.	
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.	
RB0/INT	6	7	I/O	TTL/ST(1)	RB0/INT can also be selected as an external interrupt pin.	
RB1	7	8	I/O	TTL		
RB2	8	9	I/O	TTL		
RB3	9	10	I/O	TTL		
RB4	10	11	I/O	TTL	Interrupt on change pin.	
RB5	11	12	I/O	TTL	Interrupt on change pin.	
RB6	12	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.	
RB7	13	14	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.	
Vss	5	5,6	Р	l –	Ground reference for logic and I/O pins.	
Vdd	14	15,16	Р	—	Positive supply for logic and I/O pins.	
Legend: O = output I/O = input/output P = power — = Not used I = Input ST = Schmitt Trigger input TTL = TTL input						

TABLE 3-1: PIC16CE62X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. **Note 2:** This buffer is a Schmitt Trigger input when used in serial programming mode.

4.2 Data Memory Organization

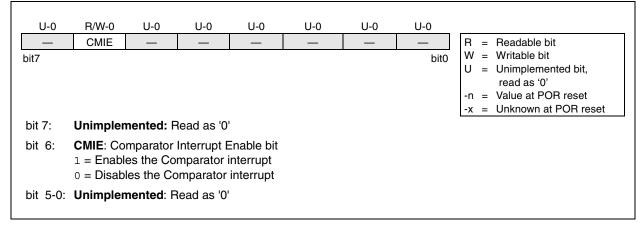
The data memory (Figure 4-4 and Figure 4-5) is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16CE625 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In all three microcontrollers, address space F0h-FFh (Bank1) is mapped to 70-7Fh (Bank0) as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 96×8 in the PIC16CE623/624 and 128 x 8 in the PIC16CE625. Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16CE623/624

File Address	3	-	File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h		EEINTF	90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
	General Purpose Register		
			EFh
		Accesses	F0h
7Fh		70h-7Fh	FFh
/ [1]	Bank 0	Bank 1	
	blemented data me Not a physical regis	•	ead as '0'.

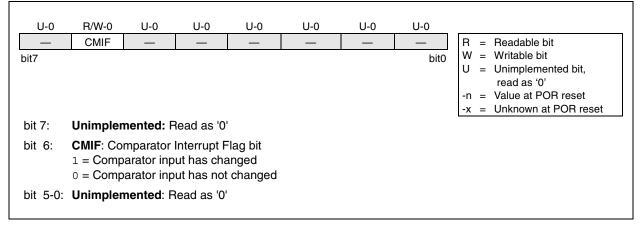

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16CE625

File			File
Address	;		Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h		EEINTF	90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
	General	General	AUII
	Purpose Register	Purpose Register	
	negistei	negister	BFh
			C0h
		_	F0h
		Accesses	
751		70h-7Fh	FFh
7Fh I	Bank 0	Bank 1	J FFN
—			
	plemented data me		ad as '0'.
Note 1:	Not a physical regis	ster.	

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4: PIE1 REGISTER (ADDRESS 8CH)



4.2.2.5 PIR1 REGISTER

This register contains the individual flag bit for the comparator interrupt.

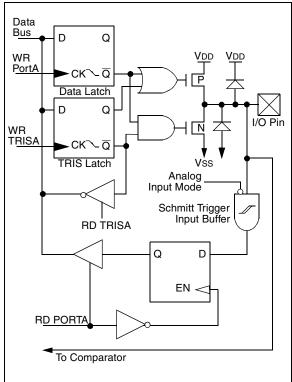
Note:	Interrupt flag bits get set when an interrupt							
	condition occurs, regardless of the state of							
	its corresponding enable bit or the global							
	enable bit, GIE (INTCON<7>). User							
	software should ensure the appropriate							
	interrupt flag bits are clear prior to enabling							
	an interrupt.							

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

5.0 I/O PORTS

The PIC16CE62X parts have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the TOCKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a hi- impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

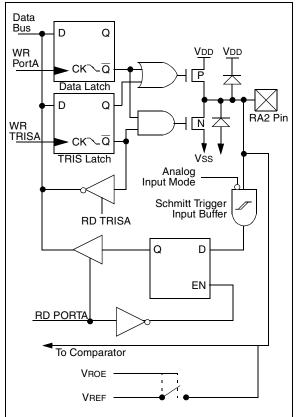
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (Comparator Control Register) register and the VRCON (Voltage Reference Control Register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA<1:0> PINS

Note:	On reset, the TRISA register is set to all					
	inputs. The digital inputs are disabled and					
	the comparator inputs are forced to ground					
	to reduce excess current consumption.					

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

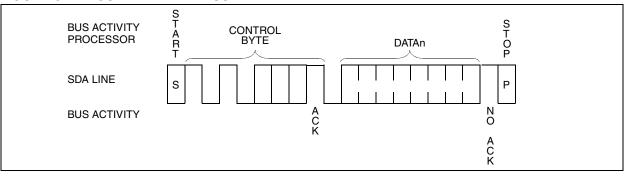
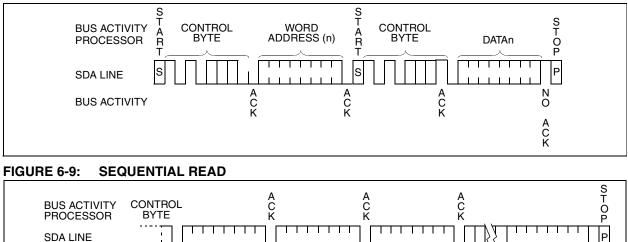

CLRF	PORTA		;Initialize PORTA by setting ;output data latches
MOVLW	0X07		;Turn comparators off and
MOVWF	CMCON		;enable pins for I/O
			;functions
BSF	STATUS,	RP0	;Select Bank1
MOVLW	0x1F		;Value used to initialize
			;data direction
MOVWF	TRISA		;Set RA<4:0> as inputs
			;TRISA<7:5> are always
			;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

^{© 1998-2013} Microchip Technology Inc.


FIGURE 6-8: RANDOM READ

BUS ACTIVITY

. .

A C K

DATAn

DATAn + 1

DATAn + 2

N O

A C K

DATAn + X

10.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 10-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 10-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

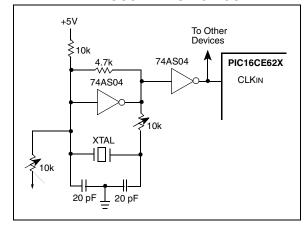
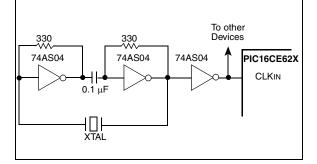
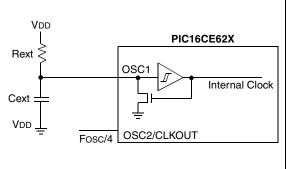



Figure 10-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 10-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

10.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-5 shows how the R/C combination is connected to the PIC16CE62X. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 14.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 14.0 for variation of oscillator frequency due to VDD for given Rext/Cext values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 10-5: RC OSCILLATOR MODE

TABLE 10-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set and the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 10-6: INITIALIZATION CONDITION FOR REGISTERS

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	-	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	00h	-	-	-
TMR0	01h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	uuuu uuuu	นนนน นนนน
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	นนนน นนนน
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	x000 0000	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	นนนน นนนน
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
EEINTF	90h	111	111	111
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 10-5 for reset value for specific condition.

5: If wake-up was due to comparator input changing , then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

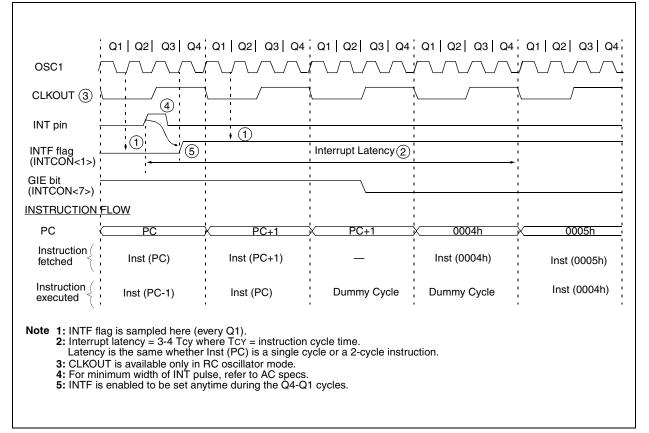
6: If reset was due to brown-out, then PCON bit 0 = 0. All other resets will cause bit 0 = u.

10.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.8 for details on SLEEP and Figure 10-19 for timing of wake-up from SLEEP through RB0/INT interrupt.

10.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.


10.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

10.5.4 COMPARATOR INTERRUPT

See Section 8.6 for complete description of comparator interrupts.

FIGURE 10-16: INT PIN INTERRUPT TIMING

TABLE 11-2: PIC16CE62X INSTRUCTION SET

Mnemonic,		Description		14-Bit Opcode				Status	Notes	
Operands				MSb		LSb		Affected		
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0000	0011	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENT	FED FIL	E REGISTER OPERATIONS						•		
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL A	ND CO	NTROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SLEEP				1					1	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC120	PIC14	PIC160	91019	PIC160	PIC16F	PIC16	PIC16C	PIC160	PIC16F	PIC16C	DTFOIG	22121919	PIC18C)	83CX 52CX	кхээн	мсвгх	WCP25
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
												>	>					
MPLAB [®] C18 Compiler														>				
B MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
2 MPLAB [®] -ICE	>	>	>	>	>	**`	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	~	>	>		>	>	~		>	~	~					
E ICEPIC™ Low-Cost III In-Circuit Emulator	`		>	>	>		>	>	>		~							
MPLAB [®] -ICD In-Circuit Debugger De				*>			*>			>								
20 PICSTART®Plus E Low-Cost Universal Dev. Kit	~	>	>	`	`	×**	`	`	`	>	>	~	`	`				
ଅଟେ PRO MATE® I Universal Programmer ଦ	>	>	>	>	>	**/	>	>	>	>	>	~	~	~	>	>		
SIMICE	>		>															
PICDEM-1			~		>		<↓		~			~						
PICDEM-2				à			∕†							~				
2 PICDEM-3											~							
PICDEM-14A		>																
PICDEM-17													~					
E KEELoo® Evaluation Kit																>		
KEELOQ Transponder Kit																>		
microlD™ Programmer's Kit																	~	
125 kHz microID Developer's Kit																	>	
25 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microID Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

ğ Contact Microcrip reciniology inc. for availability [†] Development tool is available on select devices.

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CH	ARACTER	ISTICS		n d Ope		e	tions (unless otherwise stated) $-40^{\circ}C$ $\leq Ta \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq Ta \leq +70^{\circ}C$ for commercial and $-40^{\circ}C$ $\leq Ta \leq +125^{\circ}C$ for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode, (Note 4)
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode, (Note 6)
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS osc mode
			-	4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WDT disabled*, HS osc mode
			-	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V
			-	-	5.0	μA	$VDD = 4.5V^*$
			_	-	9.0 15	μΑ μΑ	VDD = 5.5V VDD = 5.5V Extended
D022	ΔIWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD = 4.0V
					12	μΑ	(125°C)
D022A	Δ IBOR	Brown-out Reset Current (Note 5)	-	75	125	μA	$\overline{\text{BOD}}$ enabled, VDD = 5.0V
D023	∆ICOMP	Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	ΔIEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	∆IEE Read	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	$V_{CC} = 3.0V, EE V_{DD} = V_{CC}$
4.4	ΔIEE	Standby Current	-		100	μΑ	Vcc = 3.0V, EE VDD = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures
		RC Oscillator Operating Frequency XT Oscillator Operating Frequency	0 0	_	4	MHz MHz	All temperatures All temperatures
		HS Oscillator Operating Frequency	0		4 20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

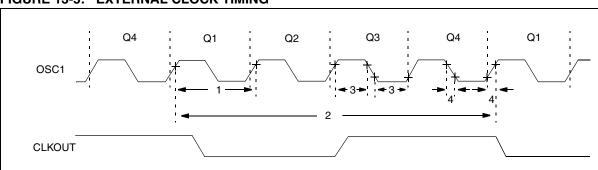
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.


3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

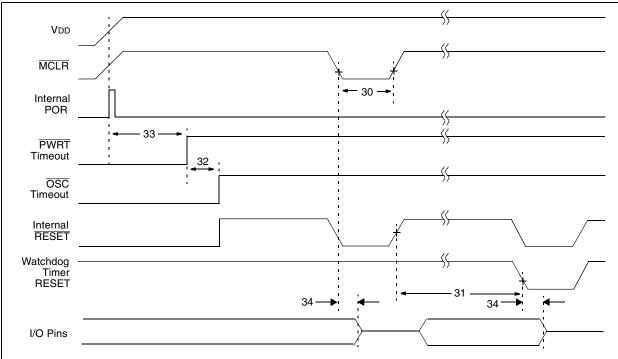
5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

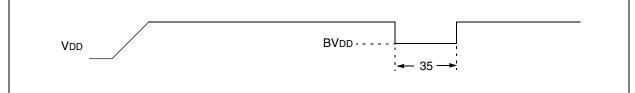
13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-5: EXTERNAL CLOCK TIMING

TABLE 13-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode, VDD=5.0V
		(Note 1)	DC	—	20	MHz	HS osc mode
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode, VDD=5.0V
		(Note 1)	0.1	—	4	MHz	XT osc mode
			1	—	20	MHz	HS osc mode
			DC	-	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	_	ns	XT and RC osc mode
		(Note 1)	50	—	—	ns	HS osc mode
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			50	—	1,000	ns	HS osc mode
			5	—	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy=Fosc/4
3*	TosL,	External Clock in (OSC1) High or	100*	—	—	ns	XT oscillator, Tosc L/H duty cycle
	TosH	Low Time	2*	—	—	μs	LP oscillator, Tosc L/H duty cycle
			20*		—	ns	HS oscillator, Tosc L/H duty cycle
4*	TosR,	External Clock in (OSC1) Rise or	25*	—	—	ns	XT oscillator
	TosF	Fall Time	50*	—	—	ns	LP oscillator
			15*	—	—	ns	HS oscillator

These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	_	_	ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
34	Tioz	I/O hi-impedance from MCLR low		—	2.0	μS	
35	TBOR	Brown-out Reset Pulse Width	100*	—		μs	$3.7V \leq V\text{DD} \leq 4.3V$

These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

NOTES:

INDEX

Α	
ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	7
Assembler	
MPASM Assembler	77
в	

В

BCF Instruction	
Block Diagram	
TIMER0	35
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	
BSF Instruction	68
BTFSC Instruction	
BTFSS Instruction	
С	

CALL Instruction	
Clocking Scheme/Instruction Cycle	10
CLRF Instruction	
CLRW Instruction	69
CLRWDT Instruction	70
CMCON Register	
Code Protection	
COMF Instruction	
Comparator Configuration	42
Comparator Interrupts	
Comparator Module	41
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	47
Crystal Operation	51
_	

D

Data Memory Organization	12
DECF Instruction	
DECFSZ Instruction	70
Development Support	77
E	

Е

EEPROM Peripheral Operation	29
Errata	2
External Crystal Oscillator Circuit	52

G

General purpose Register File	12
GOTO Instruction	71

L

I/O Ports	23
I/O Programming Considerations	
ID Locations	64
INCF Instruction	
INCFSZ Instruction	71
In-Circuit Serial Programming	64
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	10
Instruction Set	
ADDLW	67
ADDWF	67
ANDLW	
ANDWF	67
BCF	
BSF	
-	

BTFSC	68
BTFSS	69
CALL	
CLRF	
CLRW	
COMF	
DECF	
DECFSZ	70
GOTO	
INCFSZIORLW	
IORWF	
MOVF	
MOVLW	72
MOVWF	72
NOP	-
OPTION	
RETFIE RETLW	
RETURN	-
RLF	
RRF	
SLEEP	74
SUBLW	
SUBWF SWAPF	-
TRIS	
XORLW XORWF	-
XORWF Instruction Set Summary	76 65
XORWF Instruction Set Summary INT Interrupt	76 65 60
XORWF Instruction Set Summary INT Interrupt INTCON Register	76 65 60 17
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts	76 65 60 17 59
XORWF Instruction Set Summary INT Interrupt INTCON Register	76 65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction	76 65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K	76 65 60 17 59 71 72
XORWF	76 65 60 17 59 71 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	76 65 60 17 59 71 72 80
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction	76 65 60 17 59 71 72 80 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	76 65 60 17 59 71 72 80 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77 73
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction MOVLW Instruction MOVLW Instruction MOVLW Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction	76 65 60 17 59 71 72 80 72 72 72 72 77 73
XORWF	76 65 60 17 59 71 72 80 72 72 72 77 73 . 5 73 16
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 . 5 73 16 51
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54 01
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54 01 97
XORWF	76 660 17 59 71 72 80 72 72 72 77 73 .5 73 16 51 54 01 97 20
XORWF	76 660 17 59 71 72 80 72 72 77 73 .5 73 61 51 54 01 97 20 19
XORWF	76 65 60 17 59 72 80 72 72 77 73 .5 73 61 51 97 20 19 79

PICSTART® Plus Entry Level Development System 79 PIE1 Register 18 PIR1 Register 18

PIC16XXXXX FAMILY

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	······································	Total Pages Sent
	n: Name	
FIU		
	Company Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wo	uld you like a reply?YN	
	ice: PIC16xxxxxx family	Literature Number: DS40182D
Que	estions:	
1. What are the best features of this document?		
_		
2.	low does this document meet your hardware and software development needs?	
3.	Do you find the organization of this document easy to follow? If not, why?	
4.	hat additions to the document do you think would enhance the structure and subject?	
5.	What deletions from the document could be made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading information (what and where)?	
7.	How would you improve this document?	