

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce624-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (i.e., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

4.2 Data Memory Organization

The data memory (Figure 4-4 and Figure 4-5) is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16CE625 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In all three microcontrollers, address space F0h-FFh (Bank1) is mapped to 70-7Fh (Bank0) as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 96×8 in the PIC16CE623/624 and 128 x 8 in the PIC16CE625. Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

5.3 <u>I/O Programming Considerations</u>

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read modify write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (i.e., ${\tt BCF}\,,\,\,{\tt BSF},\, etc.)$ on an I/O port.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ; ; PORTB<7:6> have external pull-up and are not ; connected to other circuitry ; PORT latch PORT pins ; ; BCF PORTB. 7 ; 01pp pppp 11pp pppp BCF PORTB, 6 ; 10pp pppp 11pp pppp BSF STATUS, RPO ; BCF TRISB, 7 ; 10pp pppp 11pp pppp BCF TRISB, 6 ; 10pp pppp 10pp pppp ; ; Note that the user may have expected the pin

; values to be 00pp pppp. The 2nd BCF caused ; RB7 to be latched as the pin value (High).

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with an NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION

6.0 EEPROM PERIPHERAL OPERATION

The PIC16CE623/624/625 each have 128 bytes of EEPROM data memory. The EEPROM data memory supports a bi-directional, 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), and are mapped to bit1 and bit2, respectively, of the EEINTF register (SFR 90h). In addition, the power to the EEPROM can be controlled using bit0 (EEVDD) of the EEINTF register. For most applications, all that is required is calls to the following functions:

;	Byte_Write: Byte write routine
;	Inputs: EEPROM Address EEADDR
;	EEPROM Data EEDATA
;	Outputs: Return 01 in W if OK, else
;	return 00 in W
;	
;	Read_Current: Read EEPROM at address
cι	irrently held by EE device.
;	Inputs: NONE
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK, else
;	return 00 in W
;	
;	Read_Random: Read EEPROM byte at supplied
;	address
;	Inputs: EEPROM Address EEADDR
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK,
;	else return 00 in W

The code for these functions is available on our web site (www.microchip.com). The code will be accessed by either including the source code FL62XINC.ASM or by linking FLASH62X.ASM. FLASH62.IMC provides external definition to the calling program.

6.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the memory.

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

6.0.2 SERIAL CLOCK

This SCL input is used to synchronize the data transfer to and from the memory.

6.0.3 EEINTF REGISTER

The EEINTF register (SFR 90h) controls the access to the EEPROM. Register 6-1 details the function of each bit. User code must generate the clock and data signals.

REGISTER 6-1: EEINTF REGISTER (ADDRESS 90h)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1			
	—	_	_	_	EESCL	EESDA	EEVDD	R = Readable bit		
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7-3:	Unimplen	nented: F	lead as '0'							
bit 2:	EESCL : C 1 = Clock 0 = Clock	Clock line t high low	o the EEF	ROM						
bit 1:	EESDA : Data line to EEPROM 1 = Data line is high (pin is tri-stated, line is pulled high by a pull-up resistor) 0 = Data line is low									
bit 0:	EEVDD : \ 1 = VDD is 0 = VDD is	/DD contro turned or turned of	l bit for Ef n to EEPF f to EEPF	EPROM OM OM (all pi	ins are tri-si	tated and t	he EEPRC	0M is powered down)		
Note:	EESDA, E	ESCL an	dEEVDD	will read '()' if EEVDD	is turned c	off.			

6.3 Write Operations

BYTE WRITE 6.3.1

Following the start signal from the processor, the device code (4 bits), the don't care bits (3 bits), and the R/W bit, which is a logic low, is placed onto the bus by the processor. This indicates to the EEPROM that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the processor is the word address and will be written into the address pointer of the EEPROM. After receiving another acknowledge signal from the EEPROM, the processor will transmit the data word to be written into the addressed memory location. The EEPROM acknowledges again and the processor generates a stop condition. This initiates the internal write cycle, and during this time, the EEPROM will not generate acknowledge signals (Figure 6-5).

6.3.2 PAGE WRITE

The write control byte, word address and the first data byte are transmitted to the EEPROM in the same way as in a byte write. But instead of generating a stop condition, the processor transmits up to eight data bytes to the EEPROM, which are temporarily stored in the onchip page buffer and will be written into the memory after the processor has transmitted a stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order five bits of the word address remains constant. If the processor should transmit more than eight words prior to generating the stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the stop condition is received, an internal write cycle will begin (Figure 6-6).

6.4 Acknowledge Polling

Since the EEPROM will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the processor, the EEPROM initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the processor sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the processor can then proceed with the next read or write command. See Figure 6-4 for flow diagram.

FIGURE 6-4: ACKNOWLEDGE POLLING FLOW

FIGURE 6-5:

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

1.BCF	STATUS, RPO	;Skip if already in
		; Bank 0
2.CLRWDT		;Clear WDT
3.CLRF	TMR0	;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	; are required only if
		; desired PS<2:0> are
7.CLRWDT		; 000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	; desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION_REG	
BCF	STATUS, RPO	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other Resets
01h	TMR0	Timer0	module reg	ister						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged.

Note: Shaded bits are not used by TMR0 module.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other Resets
1Fh	CMCON	C2OUT	C1OUT	_	—	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	_	—	—	_	—	—	-0	-0
8Ch	PIE1	—	CMIE	_	—	—	_	—	—	-0	-0
85h	TRISA		_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
Logond	_ Unimn	lomontor	h rood oo	"0"	llakaowa		hongod				

TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: - = Unimplemented, read as "0", x = Unknown, u = unchanged

10.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 10-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 10-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 10-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 10-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

10.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-5 shows how the R/C combination is connected to the PIC16CE62X. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 14.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 14.0 for variation of oscillator frequency due to VDD for given Rext/Cext values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 10-5: RC OSCILLATOR MODE

DS40182D-page 52

10.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.8 for details on SLEEP and Figure 10-19 for timing of wake-up from SLEEP through RB0/INT interrupt.

10.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

10.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

10.5.4 COMPARATOR INTERRUPT

See Section 8.6 for complete description of comparator interrupts.

FIGURE 10-16: INT PIN INTERRUPT TIMING

10.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit in the STATUS register is cleared, the \overline{TO} bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin, and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR
	pin low.

10.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device reset. The two latter events are considered a continuation of program execution. The \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device reset. \overline{PD} bit, which is set on power-up is cleared when SLEEP is invoked. \overline{TO} bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

If the global interrupts are disabled (GIE is					
cleared), but any interrupt source has both					
its interrupt enable bit and the correspond-					
ing interrupt flag bits set, the device will					
immediately wake-up from sleep. The					
sleep instruction is completely executed.					

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

; a1 a2 a3 a4 ; a1 a2 a3 a osc1////////////////////////////////////	4 Q1	a1 a2 a3 a4	a1 a2 a3 a4	; a1 a2 a3 a4 /~	; a1 a2 a3 a4; ////////////////////////////////////
CLKOUT(4)	Tost(2)		\/	<u>\</u> /	\ł
INT pin INTF flag (INTCON<1>) GIE bit (INTCON<7>)	Processor in SLEEP		Interrupt Latency		
INSTRUCTION FLOW			I I	I I	
PC PC PC+1	PC+2	X PC+2	X PC + 2	X 0004h	X 0005h
$\begin{array}{l} \mbox{Instruction} \\ \mbox{fetched} \end{array} \left\{ \begin{array}{l} \mbox{Inst(PC)} = \mbox{SLEEP} & \mbox{Inst(PC + 1)} \end{array} \right.$		Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC - 1) SLEEP	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 10-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay does not occur for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

11.0 INSTRUCTION SET SUMMARY

Each PIC16CE62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CE62X instruction set summary in Table 11-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 11-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 11-1 lists the instructions recognized by the MPASM assembler.

Figure 11-1 shows the three general formats that the instructions can have.

Note:	То	maintain	upward	compatibility	with
	futu	ire PIC [®] M	ICU produ	ucts, <u>do not us</u>	<u>e</u> the
	OP	TION and 1	TRIS inst	ructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

 <sup>13
 11
 10
 0</sup> OPCODE
 k (literal)
 k
 11-bit immediate value

^{© 1998-2013} Microchip Technology Inc.

11.1 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[label] l	ADDLW	k		
Operands:	$0 \le k \le 2$	55			
Operation:	(W) + k –	→ (W)			
Status Affected:	C, DC, Z				
Encoding:	11	111x	kkkk	kkkk	
Description:	The conte added to the result is pl	nts of the he eight b aced in th	W register it literal 'k' ie W regist	r are and the er.	
Words:	1				
Cycles:	1				
Example	ADDLW	0x15			
	Before In After Inst	struction W = ruction	0x10		
		vv =	UX25		

ANDLW	AND Lite	eral with	w	
Syntax:	[label] A	ANDLW	k	
Operands:	$0 \le k \le 2\xi$	55		
Operation:	(W) .AND). (k) \rightarrow ((W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conter AND'ed wi result is pl	nts of W r th the eig aced in th	egister are ht bit literal ne W regist	e I 'k'. The ter.
Words:	1			
Cycles:	1			
Example	ANDLW	0x5F		
	Before In After Inst	struction W = ruction W =	0xA3 0x03	

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(W) + (f) \to (dest)$				
Status Affected:	C, DC, Z				
Encoding:	00 0111 dfff ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ADDWF FSR, 0				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2				

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0101 dfff ffff
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ANDWF FSR, 1
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	IORWF RESULT, 0
	Before Instruction RESULT = 0x13 W = 0x91
	After Instruction
	RESULT = 0x13
	VV = 0x93 $Z = 1$

MOVF	Move f				
Syntax:	[label] MOVF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1000 dfff ffff				
	to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.				
Words:	1				
Cycles:	1				
Example	MOVF FSR, 0				
	After Instruction W = value in FSR register Z = 1				

MOVLW	Move Lit	Move Literal to W				
Syntax:	[label]	MOVLW	/ k			
Operands:	$0 \le k \le 2$	55				
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Encoding:	11	00xx	kkkk	kkkk		
Description:	The eight register. T as 0's.	bit literal ' he don't c	k' is loaded ares will as	d into W ssemble		
Words:	1					
Cycles:	1					
Example	MOVLW	0x5A				
	After Inst	ruction W =	0x5A			

MOVWF	Move W	to f			
Syntax:	[label]	MOVW	= f		
Operands:	$0 \le f \le 12$	7			
Operation:	$(W) \to (f)$				
Status Affected:	None				
Encoding:	0 0	0000	1ff	f	ffff
Description:	Move data 'f'.	from W r	egiste	er to r	register
Words:	1				
Cycles:	1				
Example	MOVWF	OPT	TION		
	Before In:	struction OPTION W ruction OPTION W	= = =	0xFF 0x4F 0x4F 0x4F 0x4F	- - -

RETURN	Return from Subroutine	RRF	Rotate Right f through Carry
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d
Operands:	None	Operands:	$0 \leq f \leq 127$
Operation:	$TOS \rightarrow PC$		$d \in [0,1]$
Status Affected:	None	Operation:	See description below
Encoding:	00 0000 0000 1000	Status Affected:	С
Description:	Return from subroutine. The stack is	Encoding:	00 1100 dfff ffff
Words:	POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction. 1	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'
Cycles:	2		
Example	RETURN		
	After Interrupt	Words:	1
	PC = TOS	Cycles:	1
		Example	RRF REG1,0
			Before Instruction
			REG1 = 1110 0110 C = 0
			After Instruction
			$\begin{array}{rcl} \mathbf{REG1} &=& 1110 & 0110 \\ \mathbf{W} &=& 0111 & 0011 \end{array}$
			C = 0

RLF	Rotate	Left f thi	rough	o Carr	у		
Syntax:	[label]	RLF	f,d				
Operands:	0 ≤ f ≤ 1 d ∈ [0,1	27]					
Operation:	See des	scription	below	1			
Status Affected:	С	С					
Encoding:	0 0	1101	df	ff	ffff		
	one bit to Flag. If 'c the W res stored ba	The contents of register 1' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1						
Cycles:	1						
Example	RLF	RE	G1,0				
	Before I	nstructio	n				
		REG1	=	1110	0110		
	A ft a r l la r	C	=	0			
	Alterins			1110	0110		
		W	=	1100	1100		
		C	=	1	1100		

SLEEP

Syntax:	[label]	SLEEP)	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow V \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	VDT, T presca	ıler,	
Status Affected:	TO, PD			
Encoding:	0 0	0000	0110	0011
Description:	The power cleared. T set. Watch prescaler The proce mode with See Secti	r-down st ime-out s hdog Time are cleare essor is pu n the oscil on 10.8 fc	atus bit, F status bit, er and its ed. ut into SLI lator stop or more de	PD is TO is SEP ped. etails.
Words:	1			
Cycles:	1			
Example:	SLEEP			

NOTES:

FIGURE 13-6: CLKOUT AND I/O TIMING

Parameter #	Sym	Characteristic	Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	75	200	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	75	200	ns
12*	TckR	CLKOUT rise time ⁽¹⁾	—	35	100	ns
13*	TckF	CLKOUT fall time ⁽¹⁾	—	35	100	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid ⁽¹⁾	—	_	20	ns
15*	TioV2ckH	Port in valid before CLKOUT ↑ ⁽¹⁾	Tosc +200 ns		-	ns
16*	TckH2iol	Port in hold after CLKOUT \uparrow ⁽¹⁾	0		-	ns
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	50	150	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	_	_	ns
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	_	_	ns
20*	TioR	Port output rise time	—	10	40	ns
21*	TioF	Port output fall time	—	10	40	ns
22*	Tinp	RB0/INT pin high or low time	25	_		ns
23	Trbp	RB<7:4> change interrupt high or low time	TCY	_	_	ns

TABLE 13-4: CLKOUT AND I/O TIMING REQUIREMEN
--

* These parameters are characterized but not tested

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	2000	_		ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period		1024 Tosc		_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
34	Tioz	I/O hi-impedance from MCLR low			2.0	μs	
35	TBOR	Brown-out Reset Pulse Width	100*	_		μs	$3.7V \leq V\text{DD} \leq 4.3V$

These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

13.6 EEPROM Timing

Parameter	Symbol	STANDARD MODE		Vcc = 4.5 - 5.5V FAST MODE		Units	Remarks
		Min.	Max.	Min.	Max.		
Clock frequency	FCLK		100		400	kHz	
Clock high time	Thigh	4000	—	600	_	ns	
Clock low time	TLOW	4700	—	1300	—	ns	
SDA and SCL rise time	TR	_	1000	—	300	ns	(Note 1)
SDA and SCL fall time	TF	_	300	_	300	ns	(Note 1)
START condition hold time	THD:STA	4000	—	600	—	ns	After this period the first clock pulse is generated
START condition setup time	TSU:STA	4700	—	600	—	ns	Only relevant for repeated START condition
Data input hold time	THD:DAT	0		0	—	ns	(Note 2)
Data input setup time	TSU:DAT	250	—	100	_	ns	
STOP condition setup time	Tsu:sto	4000	—	600	_	ns	
Output valid from clock	ΤΑΑ	_	3500	_	900	ns	(Note 2)
Bus free time	TBUF	4700		1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from VIH minimum to VI∟ maximum	TOF	—	250	20 + 0.1 CB	250	ns	(Note 1), $CB \le 100 \text{ pF}$
Input filter spike suppression (SDA and SCL pins)	TSP	—	50	_	50	ns	(Note 3)
Write cycle time	Twr	—	10	_	10	ms	Byte or Page mode
Endurance	_	10M 1M	-	10M 1M	—	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)

TABLE 13-7: AC CHARACTERISTICS

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.