

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	·
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce625-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	3
2.0	PIC16CE62X Device Varieties	5
3.0	Architectural Overview	7
4.0	Memory Organization	11
5.0	I/O Ports	23
6.0	EEPROM Peripheral Operation	29
7.0	Timer0 Module	35
8.0	Comparator Module	41
9.0	Voltage Reference Module	47
10.0	Special Features of the CPU	49
11.0	Instruction Set Summary	65
12.0	Development Support	77
13.0	Electrical Specifications	83
14.0	Packaging Information	97
Appe	ndix A: Code for Accessing EEPROM Data Memory	103
Index		105
On Li	ne Support	107
Read	er Response	108
PIC1	6CE62X Product Identification System	109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The special registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	Addressing this location uses contents of FSR to address data memory (not a physical register)							xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 M	odule's Reg	jister						xxxx xxxx	uuuu uuuu
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address p	ointer					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	Unimplemented									_	-
08h	Unimplemented									-	-
09h	Unimplemented									-	-
0Ah	PCLATH	—	—	—	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	_	—	-0	- 0
0Dh-1Eh	Unimplemented									-	-
1Fh	CMCON	C2OUT	C10UT		—	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	XXXX XXXX
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address p	ointer					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	Unimplemented									_	-
88h	Unimplemented									_	_
89h	Unimplemented									_	_
8Ah	PCLATH	—	—	_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	CMIE	_	_	—	_	_	_	-0	- 0
8Dh	Unimplemented									_	_
8Eh	PCON	—	_	_	_	—	_	POR	BOD	0x	uq
8Fh-9Eh	Unimplemented									-	_
90h	EEINTF	_	—	—	—	_	EESCL	EESDA	EEVDD	111	111
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16CE62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

Note 2: IRP & RPI bits are reserved; always maintain these bits clear.

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4: PIE1 REGISTER (ADDRESS 8CH)

4.2.2.5 PIR1 REGISTER

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

9.0 VOLTAGE REFERENCE MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 9-1. The block diagram is given in Figure 9-1.

9.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 13-1). Example 9-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VREN	VROE	Vrr	—	Vr3	VR2	VR1	VR0	R = Readable bit
bit7		-			-		bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	VREN: VREF 1 = VR 0 = VR	Enable EF circuit p EF circuit p	owerec	l on I down, no	IDD drain			
bit 6:	VROE: VREE 1 = VR 0 = VR	= Output E EF is outpu EF is disco	nable ut on RA onnecte	A2 pin d from RA2	2 pin			
bit 5:	VRR: VREF 1 = LO 0 = Hig	Range sel w Range gh Range	ection					
bit 4:	Unimplem	ented: Rea	ad as '0	li.				
bit 3-0:	VR<3:0>: V when V when V	/REF value /RR = 1: VI /RR = 0: VI	selectio REF = (\ REF = 1/	on 0 ≤ Vr [3 /r<3:0>/ 24 /4 * Vdd +	3:0] ≤ 15 4) * VDD (VR<3:0>/ 3	32) * Vdd		

REGISTER 9-1: VRCON REGISTER (ADDRESS 9Fh)

FIGURE 9-1: VOLTAGE REFERENCE BLOCK DIAGRAM

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CE62X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 10-1). The PIC16CE62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 10-2).

FIGURE 10-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 10-1 and Table 10-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 10-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1: CERAMIC RESONATORS, PIC16CE62X

Ranges Tested: OSC2 Mode Freq OSC1 XT 455 kHz 68 - 100 pF 68 - 100 pF 15 - 68 pF 15 - 68 pF 2.0 MHz 4.0 MHz 15 - 68 pF 15 - 68 pF HS 10 - 68 pF 10 - 68 pF 8.0 MHz 16.0 MHz 10 - 22 pF 10 - 22 pF

These values are for design guidance only. See notes at bottom of page.

TABLE 10-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16CE62X

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

- 1. Recommended values of C1 and C2 are identical to the ranges tested table.
- 2. Higher capacitance increases the stability of oscillator, but also increases the start-up time.
- 3. Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.

© 1998-2013 Microchip Technology Inc.

10.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 10-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 10-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 10-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 10-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

10.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-5 shows how the R/C combination is connected to the PIC16CE62X. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 14.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 14.0 for variation of oscillator frequency due to VDD for given Rext/Cext values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 10-5: RC OSCILLATOR MODE

DS40182D-page 52

11.1 Instruction Descriptions

ADDLW	Add Literal a	nd \	w	
Syntax:	[label] ADD	LW	k	
Operands:	$0 \le k \le 255$			
Operation:	$(W) + k \rightarrow (W)$	/)		
Status Affected:	C, DC, Z			
Encoding:	11 11	1x	kkkk	kkkk
Description:	The contents o added to the ei result is placed	f the ght b in th	W register it literal 'k' ie W regist	are and the er.
Words:	1			
Cycles:	1			
Example	ADDLW 0x	15		
	Before Instruc W After Instructi W	ction = on =	0x10 0x25	

ANDLW	AND Lite	ral with	w	
Syntax:	[label] A	ANDLW	k	
Operands:	$0 \le k \le 2\xi$	55		
Operation:	(W) .AND	0. (k) \rightarrow (W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conter AND'ed wi result is pl	nts of W r th the eig aced in th	egister are ht bit literal le W regist	e I 'k'. The ter.
Words:	1			
Cycles:	1			
Example	ANDLW	0x5F		
	Before In After Inst	struction W = ruction W =	0xA3 0x03	

ADDWF	Add W a	nd f		
Syntax:	[label] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7		
Operation:	(W) + (f) -	\rightarrow (dest)		
Status Affected:	C, DC, Z			
Encoding:	0 0	0111	dfff	ffff
Description:	Add the co with registe stored in th result is sto	ntents of er 'f'. If 'd' ne W regi pred back	the W regi is 0, the re ster. If 'd' is in register	ster sult is 1, the r 'f'.
Words:	1			
Cycles:	1			
Example	ADDWF	FSR,	0	
	Before Inst	struction W = FSR = ruction W = FSR =	0x17 0xC2 0xD9 0xC2	

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02				

BCF	Bit Clear	f						
Syntax:	[<i>label</i>] B	[<i>label</i>] BCF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$0 \rightarrow (f < b >)$							
Status Affected:	None							
Encoding:	01	00bb	bfff	ffff				
Description:	Bit 'b' in re	gister 'f' is	s cleared.					
Words:	1							
Cycles:	1							
Example	BCF	FLAG_	REG, 7					
	Before In After Inst	struction FLAG_RE ruction FLAG_RE	EG = 0xC7 EG = 0x47					

BTFSC	Bit Test, Skip if Clear								
Syntax:	[<i>label</i>] B	[label] BTFSC f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	skip if (f<	b>) = 0							
Status Affected:	None	None							
Encoding:	01	10bb	bfff	ffff					
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.								
Words:	1								
Cycles:	1(2)								
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •								
	Before In	struction							
	PC = address HERE								
	AllerInst	if FLAG<1>	= 0.						
		PC = a	address T =1,	RUE					
		PC = a	address F.	ALSE					

BSF	Bit Set f									
Syntax:	[<i>label</i>] B	[<i>label</i>]BSF f,b								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$									
Operation:	$1 \rightarrow (f < b >)$									
Status Affected:	None									
Encoding:	01	01bb	bfff	ffff						
Description:	Bit 'b' in re	gister 'f' is	s set.							
Words:	1									
Cycles:	1									
Example	BSF	FLAG_F	REG, 7							
	Before Instruction FLAG_REG = 0x0A After Instruction									
		FLAG_RE	= 0.000	4						

IORWF	Inclusive OR W with f								
Syntax:	[<i>label</i>] IORWF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$								
Operation:	(W) .OR. (f) \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 0100 dfff ffff								
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
Words:	1								
Cycles:	1								
Example	IORWF RESULT, 0								
	Before Instruction RESULT = 0x13 W = 0x91								
	After Instruction								
	RESULT = 0x13								
	VV = 0x93 $Z = 1$								

MOVF	Move f							
Syntax:	[label] MOVF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	$(f) \rightarrow (dest)$							
Status Affected:	Z							
Encoding:	00 1000 dfff ffff							
	to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.							
Words:	1							
Cycles:	1							
Example	MOVF FSR, 0							
	After Instruction W = value in FSR register Z = 1							

MOVLW	Move Literal to W								
Syntax:	[label]	MOVLW	/ k						
Operands:	$0 \le k \le 255$								
Operation:	$k \rightarrow (W)$								
Status Affected:	None								
Encoding:	11	00xx	kkkk	kkkk					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.								
Words:	1								
Cycles:	1								
Example	MOVLW	0x5A							
	After Instruction W = 0x5A								

MOVWF	Move W to f							
Syntax:	[label] MOVWF f							
Operands:	$0 \le f \le 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Encoding:	00 0000 1fff fff							
Description:	Move data 'f'.	from W r	egiste	er to r	register			
Words:	1							
Cycles:	1							
Example	MOVWF	OPT	TION					
	Before In:	struction OPTION W ruction OPTION W	= = =	0xFF 0x4F 0x4F 0x4F 0x4F	.			

SWAPF	Swap Nib	bles in	f		XORLW	Exclusiv	ve OR L	iteral wit	th W	
Syntax:	[label] SWAPF f,d			Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le f \le 127$ $d \in [0,1]$	7			Operands:	0 ≤ k ≤ 255				
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$			Status Affected:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	None				Encoding:	11	1010	kkkk	kkkk	
Encoding:	00 1110 dfff ffff			Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register. 1					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd'								Words:	
Marda	is 1, the result is placed in register 'f'.			ister 't'.	Cycles:	1				
Cycles:	1				Example:	XORLW	0xAF			
Example	SWAPF R	EG,	0			Before I	nstructio	n		
	Before Ins	truction					W =	0xB5		
		REG1	= 0x/	45		After Instruction				
	After Instru	uction					W =	0x1A		
		REG1 W	= 0x/ = 0x5	45 5A						

TRIS	Load TRIS Register						
Syntax:	[label] TRIS f						
Operands:	$5 \le f \le 7$						
Operation:	(W) \rightarrow TRIS register f;						
Status Affected:	None						
Encoding:	00 0000 0110 0fff						
Description: Words: Cycles: Example	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. 1						
	To maintain upward compatibility with future PIC [®] MCU products, do not use this instruction.						

XORWF	Exclusive OR W with f									
Syntax:	[label] XORWF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(W) .XOF	$R.\ (f)\to(c)$	dest)							
Status Affected:	Z									
Encoding:	00 0110 dfff ff									
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.									
Words:	1									
Cycles:	1									
Example	XORWF	REG 3	1							
	Before In:	struction								
		REG W	= =	0xA 0xE	AF 35					
	After Inst	ruction								
		REG W	= =	Ox1 OxE	I A 35					

and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

12.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

12.18 <u>KEELOQ Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

13.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to VDD +0.6V
Voltage on VDD with respect to Vss	0 to +7.0V
Voltage on RA4 with respect to Vss	8.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	8.5V
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	
Maximum Current into Vod pin	250 mA
Input Clamp Current, Iк (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, Iок (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VD	D-VOH) x IOH} + \sum (VOI x IOL)

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100³/₄ should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CH	ARACTER	NISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3	
D002	VDR	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details	
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details	
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared	
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*	
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode. (Note 4)	
			-	1.0	2.0	mA	FOSC = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode. (Note 6)	
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = $4.5V$, WDT disabled, HS osc mode	
			-	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*,	
			-	35	70	μA	FOSC = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode	
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V	
			-	-	5.0	μA	$VDD = 4.5V^*$	
			-	-	9.0	μA	VDD = 5.5V	
			-	-	15	μΑ	VDD = 5.5V Extended	
D022	∆Iwdt	WDT Current (Note 5)	-	6.0	10	μA	VDD = 4.0V	
Daga				75	12	μΑ	$(125^{\circ}C)$	
D022A		Brown-out Reset Current (Note 5)	-	75	125	μΑ	BOD enabled, $VDD = 5.0V$	
D023	AICOMP	Comparator Current for each	-	30	60	μΑ	VDD = 4.0V	
D023A	Δ IVREF	VREF Current (Note 5)	_	80	135	μA	VDD = 4.0V	
	∆IEE Write	Operating Current	_		3	mA	Vcc = 5.5V. SCL = 400 kHz	
	Δ IEE Read	Operating Current	_		1	mA		
	ΔIEE	Standby Current	-		30	μA	VCC = 3.0V, EE VDD = VCC	
	ΔIEE	Standby Current	-		100	μA	VCC = 3.0V, EE VDD = VCC	
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures	
		RC Oscillator Operating Frequency	0	-	4	MHz	All temperatures	
		XT Oscillator Operating Frequency	0	-	4	MHz	All temperatures	
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

13.3 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended) PIC16LCE62X (Commercial, Industrial)

			Standard Opera	ting C	Conditions (u	Inles	s otherwise stated)			
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and							
DC CH		TERISTICS	0° C \leq TA \leq +70°C for commercial and							
			$-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended							
			Operating voltage	e Vde	o range as de	scrib	ed in DC spec Table 13-1			
Parm	Sym	Characteristic	Min	Typ†	Max	Unit	Conditions			
No.										
	Vi∟	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	-	0.8V	V	VDD = 4.5V to 5.5V, Otherwise			
Dood			1/22		0.15VDD					
D031		with Schmitt Trigger input	VSS		0.2VDD	V				
D032		mode)	VSS	-	0.2VDD	V	Note1			
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V				
		OSC1 (in LP)	Vss	-	0.6Vdd - 1.0	V				
	VIH	Input High Voltage								
		I/O ports								
D040		with TTL buffer	2.0V	-	Vdd	V	VDD = 4.5V to 5.5V, Otherwise			
			.25VDD + 0.8V		Vdd					
D041		with Schmitt Trigger input	0.8VDD		Vdd					
D042		MCLR RA4/T0CKI	0.8VDD	-	Vdd	V				
D043		OSC1 (XT, HS and LP)	0.7Vdd	-	Vdd	V				
D043A		OSC1 (in RC mode)	0.9Vdd				Note1			
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
		Input Leakage Current								
	IIL	(Notes 2, 3)								
Daga		I/O ports (Except PORIA)			±1.0	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance			
D060		PORTA	-	-	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D061		RA4/IOCKI	-	-	±1.0	μA	$VSS \leq VPIN \leq VDD$			
D063		OSC1, MCLR	-	-	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc			
	Mai	Output Law Valtage					configuration			
D000	VOL				0.0					
D080		I/O ports	-	_	0.6	v	$10L=8.5 \text{ mA}, \text{ VDD}=4.5 \text{ V}, -40^{\circ} \text{ to } +85^{\circ}\text{ C}$			
D 0 0 0			-	-	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C			
D083		OSC2/CLKOUT (RC only)	-	-	0.6	V	$IOL=1.6 \text{ mA}, VDD=4.5V, -40^{\circ} \text{ to } +85^{\circ}\text{C}$			
	Mari	Output Link Valtage (Nata 0)	-	-	0.6	V	IOL=1.2 MA, VDD=4.5V, +125°C			
D000	VOH					v				
D090		I/O ports (Except RA4)		_	-	V	$10H = -3.0 \text{ mA}, \text{ VDD} = 4.5 \text{ V}, -40^{-1} \text{ 10} +85^{-1} \text{ C}$			
D000				_	-	v	10H = -2.5 IIIA, VDD = 4.5 V, +125 C			
D092		OSC2/CLKOUT (RC only)		_	_	V	IOH=-1.3 MA, VDD=4.5V, -40° to +85°C			
*D150	Von	Open-Drain High Voltage	VDD-0.7	_	- 85	V	IOH=-1.0 IIIA, VDD=4.5V, +125 C			
0100	000	Canacitive Loading Space on			0.0	v	וווק דרער			
		Output Pins								
D100	cosc	OSC2 pin			15	рF	In XT. HS and LP modes when external			
	2	r			-		clock used to drive OSC1.			
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16CE62X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820