

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	- ·
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	- ·
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce625-20e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CE62X are 18 and 20-Pin EPROM-based members of the versatile PIC[®] family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with EEPROM data memory.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16CE62X family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CE62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16CE623 and PIC16CE624 have 96 bytes of RAM. The PIC16CE625 has 128 bytes of RAM. Each microcontroller contains a 128x8 EEPROM memory array for storing non-volatile information, such as calibration data or security codes. This memory has an endurance of 1,000,000 erase/write cycles and a retention of 40 plus years.

Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16CE62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low-cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16CE62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and reset. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development, while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16CE62X mid-range microcontroller families.

A simplified block diagram of the PIC16CE62X is shown in Figure 3-1.

The PIC16CE62X series fits perfectly in applications ranging from multi-pocket battery chargers to low-power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high-performance, ease of use and I/O flexibility make the PIC16CE62X very versatile.

1.1 <u>Development Support</u>

The PIC16CE62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler is also available.

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (i.e., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION

4.1 <u>Program Memory Organization</u>

The PIC16CE62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16CE623, 1K x 14 (0000h - 03FFh) for the PIC16CE624 and 2K x 14 (0000h - 07FFh) for the PIC16CE625 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16CE623) or 1K x 14 space (PIC16CE624) or 2K x 14 space (PIC16CE625). The reset vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE623

FIGURE 4-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE624

FIGURE 4-3: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE625

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16CE623/624

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h		EEINTF	90h
11h		_	91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
			7.011
	General		
	Purpose Register		
	riogiotor		
			FEb
		Accesses	
7Eb		/UN-/FN	FFh
7 - 11 -	Bank 0	Bank 1	
Unimp Note 1:	blemented data me Not a physical regis	mory locations, re ster.	ad as '0'.

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16CE625

File Address	6		File Address	
00h	INDE(1)		80h	
01h	TMB0	OPTION	81h	
02h	PCI	PCI	- 82h	
02h	STATUS	STATUS	- 83h	
04h	FSB	FSB	84h	
05h	PORTA	TRISA	- 0-11 85h	
05h		TRISA	0011	
0011 07h	ТОПТВ	THISD	87h	
0711			- 0711 - 09h	
001			90h	
0.00			0.00	
0Bn			8BN	
	PIRI	PIET		
		DOON	8Dn	
0En		PCON	8En	
0⊢h			8Fh	
10h		EEINTE	90h	
11h			91h	
12h			92h	
13h			93h	
14h			94h	
15h			95h	
16h			96h	
17h			97h	
18h			98h	
19h			99h	
1Ah			9Ah	
1Bh			9Bh	
1Ch			9Ch	
1Dh			9Dh	
1Eh			9Eh	
1Fh	CMCON	VRCON	9Fh	
20h			A0h	
	General	General		
	Register	Register		
			BFh	
			C0h	
		•	F0h	
		ACCESSES		
756		7011-7711	FEh	
7 - 11 -	Bank 0	Bank 1	<u> </u>	
	lomontad data	monulocotions		
	Not a physical region	mory locations, fo	eau as 'U'.	
Note 1. Not a physical register.				

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the status register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any status bit. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

Note 1:	The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16CE62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
Note 2:	The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	R = Readable bit W = Writable bit
								U = Unimplemented bit, read as '0'
								-n = Value at POR reset -x = Unknown at POR reset
bit 7:	IRP: The IF	RP bit is r	eserved or	the PIC1	6CE62X, a	lways mair	ntain this bit	t clear.
bit 6:5	RP<1:O>: 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	Register 3 (180h - 2 (100h - 1 (80h - 1 0 (00h - 1 is 128 by	Bank Sele 1FFh) 17Fh) FFh) 7Fh) rtes. The R	ct bits (use P1 bit is re	ed for direc	t addressin ways maint	g) tain this bit d	clear.
bit 4:	TO : Time-o 1 = After po 0 = A WDT	out bit ower-up, ⁻ time-out	CLRWDT in	struction, o	or sleep ii	nstruction		
bit 3:	PD : Power- 1 = After po 0 = By exe	-down bit ower-up c cution of	or by the CI the SLEEP	LRWDT instruction	truction			
bit 2:	Z : Zero bit 1 = The res 0 = The res	sult of an sult of an	arithmetic arithmetic	or logic op or logic op	peration is a	zero not zero		
bit 1:	DC : Digit c 1 = A carry 0 = No carr	arry/borro v-out from ry-out fro	bw bit (ADD the 4th low m the 4th l	WF, ADDLW w order bit ow order b	of the result of the result	SUBWF instr ult occurred sult	uctions) (for I	or borrow the polarity is reversed)
bit 0:	C: Carry/bc 1 = A carry 0 = No carr Note: For b second ope the source	orrow bit -out from ry-out from porrow the erand. Fo register.	(ADDWF, AD the most s m the mos e polarity is r rotate (RH	DLW, SUB: significant t significan s reversed RF, RLF) in	LW, SUBWF bit of the ro t bit of the . A subtrac structions,	instructior esult occurr result occu tion is exec this bit is lo	ns) red urred suted by add baded with e	ding the two's complement of the either the high or low order bit of

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

4.3 PCL and PCLATH

The program counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-6 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CE62X family has an 8 level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instruction/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CE62X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 10-1). The PIC16CE62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 10-2).

FIGURE 10-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 10-1 and Table 10-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 10-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1: CERAMIC RESONATORS, PIC16CE62X

Ranges Tested: OSC2 Mode Freq OSC1 XT 455 kHz 68 - 100 pF 68 - 100 pF 15 - 68 pF 15 - 68 pF 2.0 MHz 4.0 MHz 15 - 68 pF 15 - 68 pF HS 10 - 68 pF 10 - 68 pF 8.0 MHz 16.0 MHz 10 - 22 pF 10 - 22 pF

These values are for design guidance only. See notes at bottom of page.

TABLE 10-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16CE62X

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

- 1. Recommended values of C1 and C2 are identical to the ranges tested table.
- 2. Higher capacitance increases the stability of oscillator, but also increases the start-up time.
- 3. Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.

© 1998-2013 Microchip Technology Inc.

10.4.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired, then OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figure 10-8, Figure 10-9 and Figure 10-10 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 10-9). This is useful for testing purposes or to synchronize more than one $\text{PIC}^{\textcircled{B}}$ device operating in parallel.

Table 10-5 shows the reset conditions for some special registers, while Table 10-6 shows the reset conditions for all the registers.

10.4.6 POWER CONTROL (PCON)/STATUS REGISTER

The power control/status register, PCON (address 8Eh) has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on power-on-reset. It must then be set by the user and checked on subsequent resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on-reset). It is a '0' on power-on-reset and unaffected otherwise. The user must write a '1' to this bit following a power-on-reset. On a subsequent reset, if POR is '0', it will indicate that a power-on-reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Beset	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	brown-out neset		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	—	72 ms	—	

TABLE 10-3: TIME-OUT IN VARIOUS SITUATIONS

POR	BOR	то	PD	
0	Х	1	1	Power-on-reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR

Brown-out Reset

WDT Wake-up

MCLR reset during normal operation

MCLR reset during SLEEP

TABLE 10-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

Х

u

0

u

Ο

Legend: x = unknown, u = unchanged

0

1

1

1

1

Х

0

0

u

1

1

1

1

1

1

FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 10-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

^{© 1998-2013} Microchip Technology Inc.

10.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e. W register and STATUS register). This will have to be implemented in software.

Example 10-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x70 in Bank 0 and it must also be defined at 0xF0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 10-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 10-1: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, ;could be in either bank				
SWAPF	STATUS,W	;swap status to be saved into $\ensuremath{\mathtt{W}}$				
BCF	STATUS, RPO	;change to bank 0 regardless ;of current bank				
MOVWF	STATUS_TEMP	;save status to bank 0 ;register				
:						
:	(ISR)					
:						
SWAPF	STATUS_TEMP,W	;swap STATUS_TEMP register ;into W, sets bank to original ;state				
MOVWF	STATUS	;move W into STATUS register				
SWAPF	W_TEMP,F	;swap W_TEMP				
SWAPF	W_TEMP,W	;swap W_TEMP into W				

10.7 <u>Watchdog Timer (WDT)</u>

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device have been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 10.1).

10.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

10.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

TABLE 11-2: PIC16CE62X INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	•	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00 0000 0110 0100					
	Watchdog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.					
Words:	1					
Cycles:	1					
Example	CLRWDT					
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler= 0 TO = 1 PD = 1					
COMF	Complement f					
Syntax:	[label] COME fd					

COMI	oomplement				
Syntax:	[label] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1001 dfff ffff				
Description:	complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	COMF REG1,0				
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC				

DECF	Decrement f			
Syntax:	[label] DECF f,d			
Operands:	$0 \le f \le 127$ d $\in [0,1]$			
Operation:	(f) - 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0011 d	lfff ffff		
Description:	Decrement register 'f'. result is stored in the V is 1, the result is stored ter 'f'.	If 'd' is 0, the <i>N</i> register. If 'd' d back in regis-		
Words:	1			
Cycles:	1			
Example	DECF CNT, 1			
	Before Instruction CNT = Z = After Instruction CNT = Z =	0x01 0 0x00 1		

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0			
Status Affected:	None			
Encoding:	00 1011 dfff ffff			
Description:	decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •			
	$\begin{array}{rcl} Before \ Instruction \\ PC &= & address \ {\tt HERE} \\ After \ Instruction \\ CNT &= & CNT - 1 \\ if \ CNT &= & 0, \\ PC &= & address \ {\tt CONTINUE} \\ if \ CNT \neq & 0, \\ PC &= & address \ {\tt HERE+1} \\ \end{array}$			

RETURN	Return from Subroutine	RRF	Rotate Right f through Carry			
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d			
Operands:	None	Operands:	$0 \leq f \leq 127$			
Operation:	$TOS \rightarrow PC$		$d \in [0,1]$			
Status Affected:	None	Operation:	See description below			
Encoding:	00 0000 0000 1000	Status Affected:	С			
Description:	Return from subroutine. The stack is	Encoding:	00 1100 dfff ffff			
Words:	POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction. 1	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.			
Cycles:	2 RETURN					
Example						
After Interrupt		Words: 1				
	PC = TOS	Cycles:	1			
		Example	RRF REG1,0			
			Before Instruction			
			REGI = 1110 0110 C = 0			
			After Instruction			
			$\begin{array}{rcl} \text{REG1} &= & 1110 & 0110 \\ \text{W} &= & 0111 & 0011 \\ \end{array}$			
			$\mathbf{C} = 0$			

RLF	Rotate	Left f thr	rougł	n Carr	у
Syntax:	[label]	RLF	f,d		
Operands:	0 ≤ f ≤ 1 d ∈ [0,1]	27]			
Operation:	See des	See description below			
Status Affected:	С				
Encoding:	0 0	1101	df	ff	ffff
	one bit to Flag. If 'd the W reg stored ba	the left the	rough result l' is 1, ster 'f' Regis	the C is plac the res ter f	Carry ced in sult is
Words:	1				
Cycles:	1				
Example	RLF	RE	G1,0		
	Before Instruction				
		REG1	=	1110	0110
	Afterlag	C	=	0	
	Alter Ins	BEG1	_	1110	0110
		W	-	1100	1100
		C	=	1	

SLEEP

Syntax:	[label]	SLEEF)	
Operands:	None			
Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler, 1 \rightarrow TO, 0 \rightarrow PD			
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0011
Description:	The power cleared. T set. Watch prescaler The proce mode with See Secti	r-down st ime-out s hdog Time are clear essor is pu n the oscil on 10.8 fc	atus bit, F status bit, er and its ed. ut into SLI lator stop or more de	PD is TO is SEP ped. etails.
Words:	1			
Cycles:	1			
Example:	SLEEP			

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

FIGURE 13-6: CLKOUT AND I/O TIMING

Parameter #	Sym	Characteristic	Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	75	200	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	75	200	ns
12*	TckR	CLKOUT rise time ⁽¹⁾	—	35	100	ns
13*	TckF	CLKOUT fall time ⁽¹⁾	—	35	100	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid ⁽¹⁾	—	_	20	ns
15*	TioV2ckH	Port in valid before CLKOUT ↑ ⁽¹⁾	Tosc +200 ns		-	ns
16*	TckH2iol	Port in hold after CLKOUT \uparrow ⁽¹⁾	0		-	ns
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	50	150	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	_	_	ns
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	_	_	ns
20*	TioR	Port output rise time	—	10	40	ns
21*	TioF	Port output fall time	—	10	40	ns
22*	Tinp	RB0/INT pin high or low time	25	_		ns
23	Trbp	RB<7:4> change interrupt high or low time	TCY	_	_	ns

TABLE 13-4: CLKOUT AND I/O TIMING REQUIREMEN
--

* These parameters are characterized but not tested

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

NOTES:

PIC16XXXXX FAMILY

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
Eror	n: Nome				
FIU					
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Арр	lication (optional):				
Wou	uld you like a reply? Y N				
Dev	ice: PIC16xxxxxx family	Literature Number: DS40182D			
Que	estions:				
1.	What are the best features of this document?				
_					
2.	How does this document meet your hardware and s	ottware development needs?			
3.	3. Do you find the organization of this document easy to follow? If not, why?				
4.	What additions to the document do you think would	enhance the structure and subject?			
5.	. What deletions from the document could be made without affecting the overall usefulness?				
6.	. Is there any incorrect or misleading information (what and where)?				
7.	How would you improve this document?				