

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce625-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CE62X are 18 and 20-Pin EPROM-based members of the versatile PIC[®] family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with EEPROM data memory.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16CE62X family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CE62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

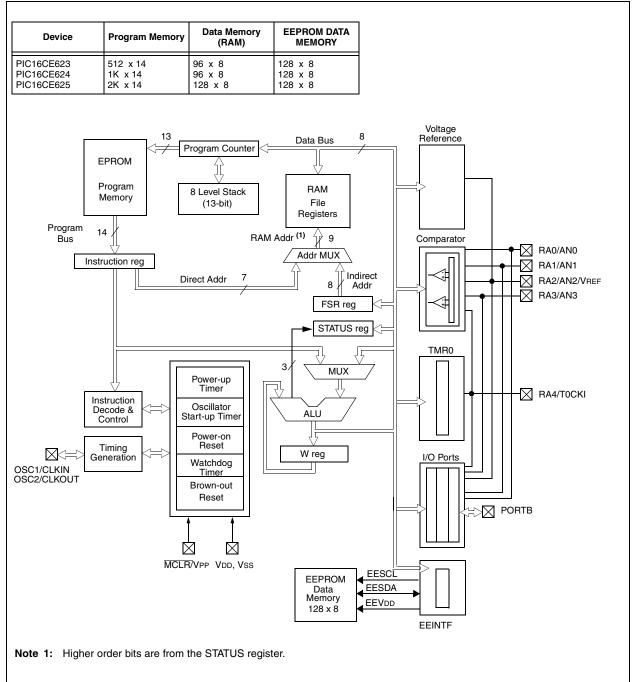
The PIC16CE623 and PIC16CE624 have 96 bytes of RAM. The PIC16CE625 has 128 bytes of RAM. Each microcontroller contains a 128x8 EEPROM memory array for storing non-volatile information, such as calibration data or security codes. This memory has an endurance of 1,000,000 erase/write cycles and a retention of 40 plus years.

Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16CE62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low-cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16CE62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and reset. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development, while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16CE62X mid-range microcontroller families.


A simplified block diagram of the PIC16CE62X is shown in Figure 3-1.

The PIC16CE62X series fits perfectly in applications ranging from multi-pocket battery chargers to low-power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high-performance, ease of use and I/O flexibility make the PIC16CE62X very versatile.

1.1 <u>Development Support</u>

The PIC16CE62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler is also available.

FIGURE 3-1: BLOCK DIAGRAM

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The special registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	Addressing this location uses contents of FSR to address data memory (not a physic register)							xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 M	odule's Reg	jister						xxxx xxxx	uuuu uuuu
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address p	ointer		I		I	xxxx xxxx	uuuu uuuu
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	Unimplemented		1		1		1		1	-	-
08h	Unimplemented									-	_
09h	Unimplemented									-	_
0Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
0Dh-1Eh	Unimplemented									—	_
1Fh	CMCON	C2OUT	C10UT	_		CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte	1		1	0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address p	ointer		1		1	xxxx xxxx	uuuu uuuu
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	Unimplemented									-	-
88h	Unimplemented									-	-
89h	Unimplemented									-	-
8Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	CMIE	_	—	_	—	_	—	-0	-0
8Dh	Unimplemented									-	-
8Eh	PCON	—	—	—	_	—	—	POR	BOD	0x	uq
8Fh-9Eh	Unimplemented									-	-
90h	EEINTF	—	—	—	_	—	EESCL	EESDA	EEVDD	111	111
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16CE62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

Note 2: IRP & RPI bits are reserved; always maintain these bits clear.

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT (PSA = 1).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit	
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset	
bit 7:									
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	ot on rising	g edge o	f RB0/INT					
bit 5:	1 = Transiti	T0CS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)							
bit 4:	T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin								
bit 3:	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module								
bit 2-0:	PS<2:0> : F	Prescaler I	Rate Sele	ect bits					
	Bit Value	TMR0 Ra	te WD1	Γ Rate					
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128								

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset	
bit 7:									
bit 6:	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts 								
bit 5:	T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt								
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt								
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt								
bit 2:	TOIF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow								
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur								
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = When at least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state								

6.1 Bus Characteristics

In this section, the term "processor" refers to the portion of the PIC16CE62X that interfaces to the EEPROM through software manipulating the EEINTF register. The following **bus protocol** is to be used with the EEPROM data memory.

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted by the EEPROM as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 6-1).

6.1.1 BUS NOT BUSY (A)

Both data and clock lines remain HIGH.

6.1.2 START DATA TRANSFER (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

6.1.3 STOP DATA TRANSFER (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

6.1.4 DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the processor and is theoretically unlimited, although only the last sixteen will be stored when doing a write operation. When an overwrite does occur, it will replace data in a first-in, first-out fashion.

6.1.5 ACKNOWLEDGE

The EEPROM will generate an acknowledge after the reception of each byte. The processor must generate an extra clock pulse which is associated with this acknowledge bit.

Note:	Acknowledge bits are not generated if an
	internal programming cycle is in progress.

When the EEPROM acknowledges, it pulls down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. The processor must signal an end of data to the EEPROM by not generating an acknowledge bit on the last byte that has been clocked out of the EEPROM. In this case, the EEPROM must leave the data line HIGH to enable the processor to generate the STOP condition (Figure 6-2).

NOTES:

EXAMPLE 9-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x07	;	RA3-RA0 are
MOVWF	TRISA	;	outputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank 0
CALL	DELAY10	;	10µs delay

9.2 <u>Voltage Reference Accuracy/Error</u>

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 9-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The absolute accuracy of the Voltage Reference can be found in Table 13-2.

9.3 Operation During Sleep

When the device wakes up from sleep through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.

9.4 Effects of a Reset

A device reset disables the Voltage Reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

9.5 <u>Connection Considerations</u>

The Voltage Reference Module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 9-2 shows an example buffering technique.

VREF Nodule Voltage Reference Output Impedance

FIGURE 9-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.

TABLE 9-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR / BOD	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: - = Unimplemented, read as "0"

CLRWDT	Clear Watchdog Timer						
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00 0000 0110 0100						
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.						
Words:	1						
Cycles:	1						
Example	CLRWDT						
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1						
COMF	Complement f						
Syntax:	[label] COMF f,d						

COME	Complement
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1,0
	Before InstructionREG1= $0x13$ After InstructionREG1= $0x13$ W= $0xEC$

Decrement f					
[label] DECF f,d					
$0 \leq f \leq 127$					
d ∈ [0,1]					
(f) - 1 \rightarrow (dest)					
Z					
00 0011 dfff ffff					
Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in regis- ter 'f'.					
1					
1					
DECF CNT, 1					
Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1					
Decrement f, Skip if 0					
[<i>label</i>] DECFSZ f,d					
$0 \leq f \leq 127$					
d ∈ [0,1]					

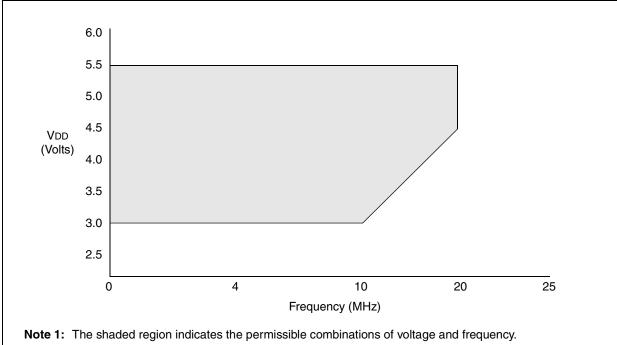
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0					
Status Affected:	None					
Encoding:	00	1011	dfff	ffff		
Description:	The contendecrement placed in t result is placed if the result which is all A NOP is e two-cycle if	ted. If 'd' i he W reg aced back It is 0, the ready feto xecuted in	s 0, the re ister. If 'd' i k in registe next instru- ched, is dis nstead ma	sult is is 1, the er 'f'. uction, scarded.		
Words:	1					
Cycles:	1(2)					
Example	HERE CONTINU	DECF GOTO JE •	SZ CNI LOC			
	Before In PC After Inst CNT if CNT PC if CNT PC	= ado ruction = CN = 0, = ado ≠ 0,	iress HERE T - 1 iress CONT			

IORWF	Inclusive OR W with f					
Syntax:	[label] IORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0100 dfff ffff					
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example	IORWF RESULT, 0					
	$\begin{array}{rcl} Before \ Instruction \\ RESULT &= & 0x13 \\ W &= & 0x91 \\ After \ Instruction \\ RESULT &= & 0x13 \\ W &= & 0x93 \\ Z &= & 1 \end{array}$					

MOVF	Move f							
Syntax:	[label] MOVF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	(f) \rightarrow (dest)							
Status Affected:	Z							
Encoding:	00 1000 dfff ffff							
	to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.							
Words:	1							
Cycles:	1							
Example	MOVF FSR, 0							
	After Instruction W = value in FSR register Z = 1							

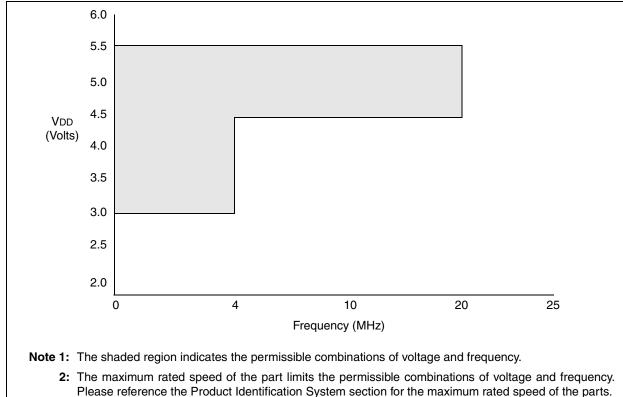
MOVLW	Move Literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Encoding:	11 00xx kkkk kkkk							
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.							
Words:	1							
Cycles:	1							
Example	MOVLW 0x5A							
	After Instruction W = 0x5A							

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	$\begin{array}{rcl} \text{Before Instruction} & & \\ & \text{OPTION} & = & 0xFF \\ W & = & 0x4F \\ \text{After Instruction} & & \\ & \text{OPTION} & = & 0x4F \\ W & = & 0x4F \end{array}$


RETURN	Return from Subroutine	RRF	Rotate Right f through Carry				
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d				
Operands:	None	Operands:	$0 \le f \le 127$				
Operation:	$TOS \rightarrow PC$		$d \in [0,1]$				
Status Affected:	None	Operation:	See description below				
Encoding:	00 0000 0000 1000	Status Affected:	С				
Description:	Return from subroutine. The stack is	Encoding:	00 1100 dfff ffff				
	POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is				
Words:	1		placed back in register 'f'.				
Cycles: Example	2 RETURN		C Register f				
	After Interrupt	Words:	1				
	PC = TOS	Cycles:	1				
		Example	RRF REG1,0				
			Before Instruction REG1 = 1110 0110 C = 0 0 After Instruction REG1 = 1110 0110 W = 0111 0011 C = 0 0				

RLF	Rotate Left f t	hrough Carry	
Syntax:	[label] RLF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	See description	n below	
Status Affected:	С		
Encoding:	00 110	1 dfff ff	ff
Description:	one bit to the left Flag. If 'd' is 0, th	register 'f' are rota t through the Carry ne result is placed f 'd' is 1, the result egister 'f'. Register f	/ in
Words:	1		
Cycles:	1		
Example	RLF	REG1,0	

SLEEP


02221							
Syntax:	[label] SLEEP						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00 0000 0110 0011						
Description:	The power-down status bit, \overrightarrow{PD} is cleared. Time-out status bit, \overrightarrow{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.8 for more details.						
Words:	1						
Cycles:	1						
Example:	SLEEP						

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial an 0°C0°C \leq TA \leq +70°C for commercial -40° C \leq TA \leq +125°C for extended					
Param No.	Sym	Characteristic		Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode, (Note 4)
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode, (Note 6)
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS osc mode
			-	4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WDT disabled*, HS osc mode
			-	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V
			-	-	5.0	μA	$VDD = 4.5V^*$
			_	-	9.0 15	μΑ μΑ	VDD = 5.5V VDD = 5.5V Extended
D022	ΔIWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD = 4.0V
					12	μΑ	(125°C)
D022A	Δ IBOR	Brown-out Reset Current (Note 5)	-	75	125	μA	$\overline{\text{BOD}}$ enabled, VDD = 5.0V
D023	∆ICOMP	Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	ΔIEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	∆IEE Read	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	$V_{CC} = 3.0V, EE V_{DD} = V_{CC}$
4.4	ΔIEE	Standby Current	-		100	μΑ	Vcc = 3.0V, EE VDD = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures
		RC Oscillator Operating Frequency XT Oscillator Operating Frequency	0 0	_	4	MHz MHz	All temperatures All temperatures
		HS Oscillator Operating Frequency	0		4 20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

13.2 DC CHARACTERISTICS: F

PIC16LCE62X-04 (Commercial, Industrial)

DC CHARACTERISTICS			$\begin{array}{l lllllllllllllllllllllllllllllllllll$				
Param No.			Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	-	1.1	mA	FOSC = 4 MHz, $VDD = 2.5V$, WDT disabled,
			-	35	70	μA	XT osc mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	_	-	2.0	μA	VDD = 2.5V
			-	-	2.2	μA	VDD = 3.0V*
			-	-	9.0	μA	VDD = 5.5V
			-	-	15	μA	VDD = 5.5V Extended
D022	Δ IWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD=4.0V
D022A	Δ IBOR	Brown-out Reset Current	_	75	12 125	μ Α μΑ	$(125^{\circ}C)$ BOD enabled, VDD = 5.0V
D023		(Note 5) Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	Δ IEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta IEE \ Read$	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	VCC = 3.0V, EE VDD = VCC
	ΔIEE	Standby Current	-		100	μA	VCC = 3.0V, EE VDD = VCC
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency		—	4	MHz	All temperatures
		XT Oscillator Operating Frequency	0	—	4 20	MHz	All temperatures
		HS Oscillator Operating Frequency	-	_	20	MHz	All temperatures

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

13.3 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended) PIC16LCE62X (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated)								
							+85°C for industrial and				
DC CHARACTERISTICS			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and								
							+125°C for extended				
			Operating voltage VDD range as described in DC spec Table 13-1								
Parm	Sym	Characteristic	Min	Typ†	Max	Unit	Conditions				
No.											
	Vi∟	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	_	0.8V	v	VDD = 4.5V to 5.5V, Otherwise				
					0.15VDD						
D031		with Schmitt Trigger input	Vss		0.2VDD	V					
D032		MCLR, RA4/T0CKI,OSC1 (in RC	Vss	-	0.2VDD	V	Note1				
		mode)									
D033		OSC1 (in XT and HS)	Vss	-	0.3Vdd	V					
		OSC1 (in LP)	Vss	-	0.6VDD - 1.0	V					
	VIH	Input High Voltage									
		I/O ports									
D040		with TTL buffer	2.0V	-	VDD	V	VDD = 4.5V to 5.5V, Otherwise				
D 044			.25VDD + 0.8V		VDD						
D041		with Schmitt Trigger input	0.8VDD		VDD						
D042		MCLR RA4/T0CKI	0.8VDD	-	VDD	V					
D043 D043A		OSC1 (XT, HS and LP)	0.7Vdd 0.9Vdd	-	Vdd	V	Note1				
D043A	IPURB	OSC1 (in RC mode) PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS				
0070	IPUND	Input Leakage Current	50	200	400	μΑ	VDD = 5.0V, VPIN = V35				
	lı∟	(Notes 2, 3)									
		I/O ports (Except PORTA)			±1.0	μА	VSS \leq VPIN \leq VDD, pin at hi-impedance				
D060		PORTA	_	_	±0.5	μA					
D061		RA4/T0CKI	_	_	±1.0	μA					
D063		OSC1, MCLR	_	_	±5.0	μA					
						· ·	configuration				
	Vol	Output Low Voltage									
D080		I/O ports	_	_	0.6	v	IOL=8.5 mA, VDD=4.5V, -40° to +85°C				
		-	_	_	0.6	v	IOL=7.0 mA, VDD=4.5V, +125°C				
D083		OSC2/CLKOUT (RC only)	_	_	0.6	v	IOL=1.6 mA, VDD=4.5V, -40° to +85°C				
			-	-	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C				
	Voh	Output High Voltage (Note 3)		1		1					
D090		I/O ports (Except RA4)	VDD-0.7	-	_	v	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C				
			VDD-0.7	-	-	v	IOH=-2.5 mA, VDD=4.5V, +125°С				
D092		OSC2/CLKOUT (RC only)	VDD-0.7	-	-	v	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C				
			VDD-0.7	-	-	v	IOH=-1.0 mA, VDD=4.5V, +125°С				
*D150	Vod	Open-Drain High Voltage			8.5	V	RA4 pin				
		Capacitive Loading Specs on									
		Output Pins									
D100		OSC2 pin			15	pF	In XT, HS and LP modes when external				
	2						clock used to drive OSC1.				
D101	Cio	All I/O pins/OSC2 (in RC mode) These parameters are characte			50	pF					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16CE62X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

NOTES:

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units INCHES* MILLIMETERS			3			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
- · ·	β	0	12	15	0	12	

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

NOTES:

Port RB Interrupt	60
PORTA	
PORTB	
Power Control/Status Register (PCON)	55
Power-Down Mode (SLEEP)	63
Power-On Reset (POR)	54
Power-up Timer (PWRT)	54
Prescaler	
PRO MATE® II Universal Programmer	79
Program Memory Organization	11
•	

Q

R

53
73
73
74
74
74

S

SEEVAL® Evaluation and Programming System	80
Serialized Quick-Turnaround-Production (SQTP) Devices	s5
SLEEP Instruction	74
Software Simulator (MPLAB-SIM)	78
Special Features of the CPU	49
Special Function Registers	14
Stack	20
Status Register	15
SUBLW Instruction	75
SUBWF Instruction	75
SWAPF Instruction	76

T Timer0

Timer0
TIMER0
TIMER0 (TMR0) Interrupt35
TIMER0 (TMR0) Module
TMR0 with External Clock
Timer1
Switching Prescaler Assignment
Timing Diagrams and Specifications
TMR0 Interrupt
TRIS Instruction
TRISA23
TRISB
V
Voltage Reference Module47
VRCON Register
W
Watchdog Timer (WDT)61
WWW, On-Line Support2
x
XORLW Instruction
XORWF Instruction76

NOTES: