

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16ce625t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Memory Organization

The data memory (Figure 4-4 and Figure 4-5) is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16CE625 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In all three microcontrollers, address space F0h-FFh (Bank1) is mapped to 70-7Fh (Bank0) as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 96×8 in the PIC16CE623/624 and 128 x 8 in the PIC16CE625. Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

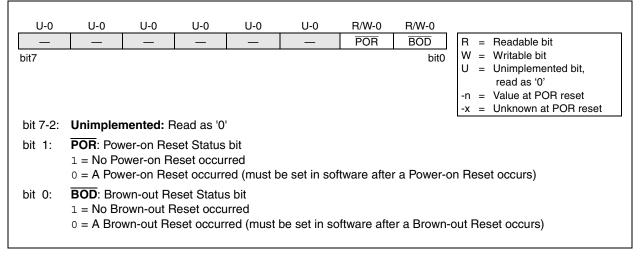
PIC16CE62X

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT (PSA = 1).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

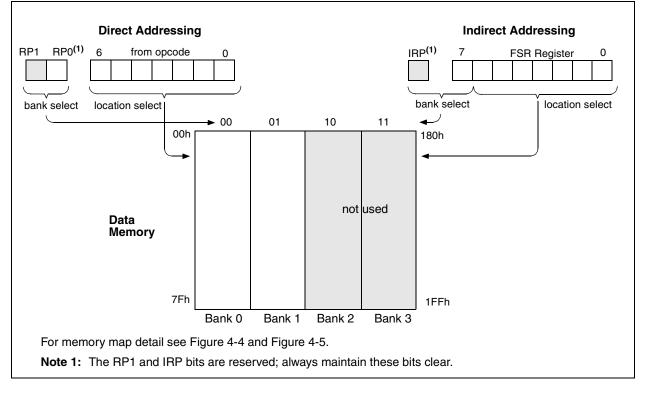

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset		
bit 7:	RBPU : PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values									
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	ot on rising	g edge o	f RB0/INT						
bit 5:	TOCS : TMF 1 = Transiti 0 = Interna	ion on RA	4/T0CKI	pin	(OUT)					
bit 4:	T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin									
bit 3:	PSA : Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module									
bit 2-0:	PS<2:0> : F	Prescaler I	Rate Sele	ect bits						
	Bit Value	TMR0 Ra	te WD1	Γ Rate						
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 3 1 :	2 4						

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)


4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16CE62X. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

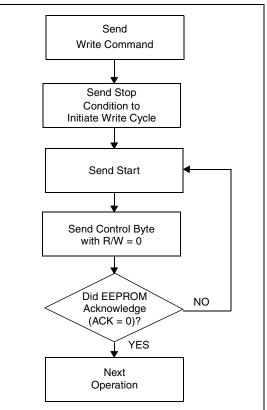
EXAMPLE 4-1:		INDIRECT ADDRESSING			
	movlw		;initialize pointer		
	movwf	FSR	;to RAM		
NEXT	clrf	INDF	clear INDF register;		
	incf	FSR	;inc pointer		
	btfss	FSR,4	;all done?		
	goto	NEXT	;no clear next		
			;yes continue		
CONTINUE:					

FIGURE 4-7: DIRECT/INDIRECT ADDRESSING PIC16CE62X

6.3 Write Operations

BYTE WRITE 6.3.1

Following the start signal from the processor, the device code (4 bits), the don't care bits (3 bits), and the R/W bit, which is a logic low, is placed onto the bus by the processor. This indicates to the EEPROM that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the processor is the word address and will be written into the address pointer of the EEPROM. After receiving another acknowledge signal from the EEPROM, the processor will transmit the data word to be written into the addressed memory location. The EEPROM acknowledges again and the processor generates a stop condition. This initiates the internal write cycle, and during this time, the EEPROM will not generate acknowledge signals (Figure 6-5).


6.3.2 PAGE WRITE

The write control byte, word address and the first data byte are transmitted to the EEPROM in the same way as in a byte write. But instead of generating a stop condition, the processor transmits up to eight data bytes to the EEPROM, which are temporarily stored in the onchip page buffer and will be written into the memory after the processor has transmitted a stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order five bits of the word address remains constant. If the processor should transmit more than eight words prior to generating the stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the stop condition is received, an internal write cycle will begin (Figure 6-6).

6.4 Acknowledge Polling

Since the EEPROM will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the processor, the EEPROM initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the processor sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the processor can then proceed with the next read or write command. See Figure 6-4 for flow diagram.

FIGURE 6-4: ACKNOWLEDGE POLLING FLOW

FIGURE 6-5:

8.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be reset by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

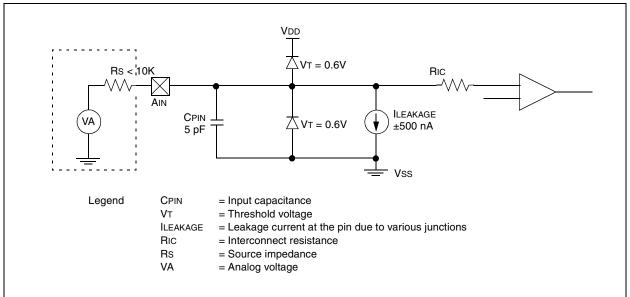
Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<6>) interrupt flag may not get set.

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

8.7 <u>Comparator Operation During SLEEP</u>


When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher sleep currents than shown in the power down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering sleep. If the device wakes-up from sleep, the contents of the CMCON register are not affected.

8.8 Effects of a RESET

A device reset forces the CMCON register to its reset state. This forces the comparator module to be in the comparator reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at reset time. The comparators will be powered-down during the reset interval.

8.9 <u>Analog Input Connection</u> <u>Considerations</u>

A simplified circuit for an analog input is shown in Figure 8-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 8-4: ANALOG INPUT MODEL

10.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 10-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 10-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

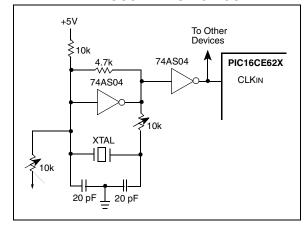
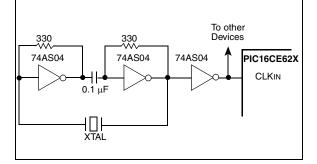
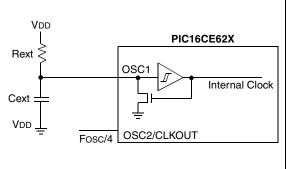



Figure 10-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 10-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

10.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-5 shows how the R/C combination is connected to the PIC16CE62X. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

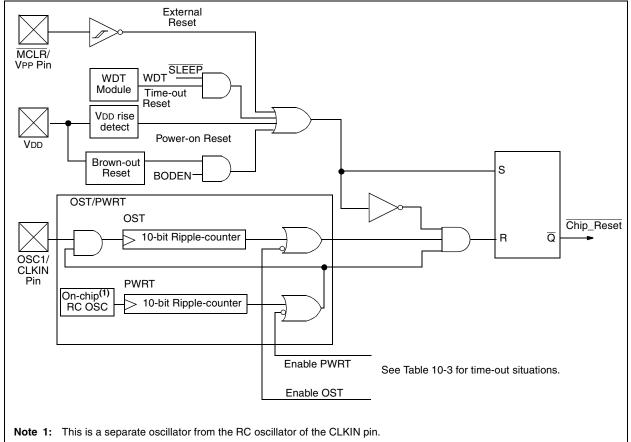
See Section 14.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 14.0 for variation of oscillator frequency due to VDD for given Rext/Cext values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

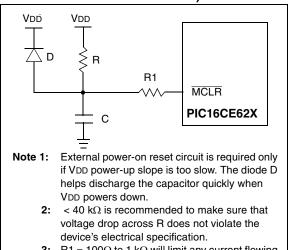
FIGURE 10-5: RC OSCILLATOR MODE

10.3 <u>Reset</u>


The PIC16CE62X differentiates between various kinds of reset:

- a) Power-on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOD)

Some registers are not affected in any reset condition. Their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on reset, MCLR reset, WDT reset and MCLR reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different reset situations as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.


A simplified block diagram of the on-chip reset circuit is shown in Figure 10-6.

The $\overline{\text{MCLR}}$ reset path has a noise filter to detect and ignore small pulses. See Table 13-5 for pulse width specification.

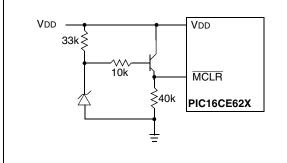

FIGURE 10-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 10-11: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

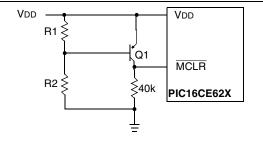

3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 10-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - 2: Internal Brown-out Reset circuitry should be disabled when using this circuit.

FIGURE 10-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \times \frac{R1}{R1 + R2} = 0.7 V$$

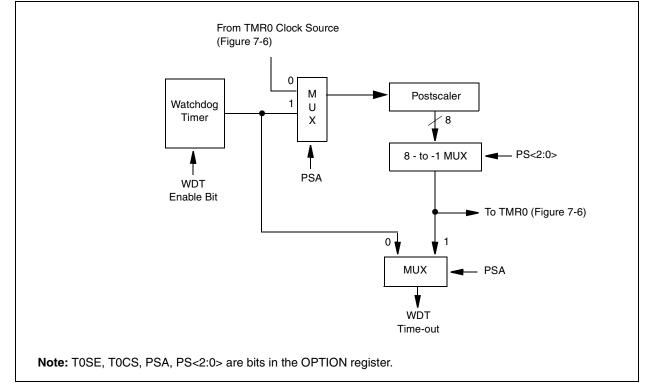

- **2:** Internal brown-out detection should be disabled when using this circuit.
- **3:** Resistors should be adjusted for the characteristics of the transistor.

FIGURE 10-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

FIGURE 10-17: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 10-18: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BOREN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: - = Unimplemented location, read as "0", + = Reserved for future use

Note: Shaded cells are not used by the Watchdog Timer.

PIC16CE62X

BTFSS	Bit Test f, Skip if Set				
Syntax:	[<i>label</i>] B	TFSS f,b)		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b < 7 \end{array}$	7			
Operation:	skip if (f<	b>) = 1			
Status Affected:	None				
Encoding:	01	11bb	bfff	ffff	
Description:	instruction If bit 'b' is ' fetched du execution, executed i	register 'f' is is skipped. 1', then the ring the cur is discarde nstead, ma instruction.	next instru rrent instru d and a No	uction Iction DP is	
Words:	1				
Cycles:	1(2)				
Example	HERE FALSE TRUE		FLAG, 1 PROCESS_	_CODE	
	Before In	struction			
	After Inst	ruction if FLAG<1> PC = a if FLAG<1>	= 0, address F		

CLRF	Clear f				
Syntax:	[label] (CLRF f			
Operands:	$0 \le f \le 12$	27			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0 0	0001	lfff	ffff	
Description:	The conte and the Z	0	ster 'f' ar	e cleared	
Words:	1				
Cycles:	1				
Example	CLRF	FLAC	G_REG		
	Before In	struction			
		FLAG_RE	EG =	0x5A	
	After Inst	ruction Flag Re	EG =	0x00	
		Z	=	1	

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 2047$			
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>			
Status Affected:	None			
Encoding:	10 0kkk kkkk kkkk			
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.			
Words:	1			
Cycles:	2			
Example	HERE CALL THERE			
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			

Clear W				
[label]	CLRW			
None				
$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Z				
00	0001	0000	0011	
W register set.	is cleare	d. Zero bit	(Z) is	
1				
1				
CLRW				
Before In	structior	l		
After Inst	ruction W =	0x5A 0x00 1		
	$[label]$ None $00h \rightarrow (V \\ 1 \rightarrow Z$ Z 00 W register set. 1 $CLRW$ Before In After Inst	$[label] CLRW$ None $00h \rightarrow (W)$ $1 \rightarrow Z$ Z $00 0001$ W register is cleared set. 1 $CLRW$ Before Instruction $W =$ After Instruction $W =$	$[label] CLRW$ None $00h \rightarrow (W)$ $1 \rightarrow Z$ Z $00 0001 0000$ W register is cleared. Zero bit set. 1 1 $CLRW$ Before Instruction $W = 0x5A$ After Instruction $W = 0x00$	

 \odot 1998-2013 Microchip Technology Inc.

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None	Status Affected:	None
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff
Description: Words: Cycles:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. 1	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.
Example	GOTO THERE	Words:	1
After Instruction PC = Address THERE		Cycles:	1(2)
	FC = Addless There	Example	HERE INCFSZ CNT, 1 GOTO LOOP
			CONTINUE • •
			•

 $\begin{array}{rcl} Before \ Instruction \\ PC &= & address \ HERE \\ After \ Instruction \\ CNT &= & CNT + 1 \\ if \ CNT = & 0, \\ PC &= & address \ CONTINUE \\ if \ CNT \neq & 0, \\ PC &= & address \ HERE \ +1 \\ \end{array}$

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 1010 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	INCF CNT, 1
	Before Instruction $CNT = 0xFF$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f		
Syntax:	[label] SUBLW k	Syntax:	[label] SUBWF f,d		
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$		
Operation:	$k - (W) \rightarrow (W) \qquad \qquad d \in [0,1]$				
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)		
Affected:		Status	C, DC, Z		
Encoding:	11 110x kkkk kkkk	Affected:			
Description:	The W register is subtracted (2's com-	Encoding:	00 0010 dfff ffff		
	plement method) from the eight bit literal 'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the		
Words:	1		result is stored in the W register. If 'd' is 1,		
Cycles:	1		the result is stored back in register 'f'.		
Example 1:	SUBLW 0x02	Words:	1		
	Before Instruction	Cycles:	1		
		Example 1:	SUBWF REG1,1		
	W = 1 $C = ?$		Before Instruction		
	After Instruction		REG1 = 3		
	W = 1		W = 2 $C = ?$		
	C = 1; result is positive		After Instruction		
Example 2:	Before Instruction		REG1 = 1		
	W = 2		W = 2		
	C = ?	Example 2:	C = 1; result is positive		
	After Instruction		Before Instruction		
	W = 0 C = 1; result is zero		REG1 = 2 W = 2		
Example 3:	Before Instruction		C = ?		
	W = 3		After Instruction		
	C = ?		REG1 = 0		
	After Instruction		W = 2		
	W = 0xFF	Evenuela Or	C = 1; result is zero		
	C = 0; result is nega- tive	Example 3:	Before Instruction		
			REG1 = 1 W = 2		
			C = ?		
			After Instruction		
			REG1 = 0xFF		
			W = 2 C = 0; result is negative		

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

PIC16CE62X

and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

12.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

12.18 <u>KEELOQ Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

13.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to VSS	0 to +7.0V
Voltage on RA4 with respect to Vss	8.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (VI <0 or VI> VDD)	±20 mA
Output Clamp Current, IOK (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) = 100 + \sum IOH}	$x \text{ IOH} + \sum (\text{VOI } x \text{ IOL})$

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100³/₄ should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.3 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended) PIC16LCE62X (Commercial, Industrial)

			Standard Opera	ting (Conditions (u	Inles	s otherwise stated)				
							+85°C for industrial and				
DC CH	IARAC	TERISTICS			0°C ≤	TA≤	+70°C for commercial and				
				-40° C \leq TA \leq +125°C for extended							
	Operating voltage VDD range as described in DC spec Table 13-1										
Parm	Sym	Characteristic	Min	Typ†	Max	Unit	Conditions				
No.											
	Vi∟	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	_	0.8V	V	VDD = 4.5V to 5.5V, Otherwise				
					0.15VDD						
D031		with Schmitt Trigger input	Vss		0.2VDD	V					
D032		MCLR, RA4/T0CKI,OSC1 (in RC	Vss	-	0.2VDD	V	Note1				
		mode)									
D033		OSC1 (in XT and HS)	Vss	-	0.3Vdd	V					
		OSC1 (in LP)	Vss	-	0.6VDD - 1.0	V					
	VIH	Input High Voltage									
		I/O ports									
D040		with TTL buffer	2.0V	-	VDD	V	VDD = 4.5V to 5.5V, Otherwise				
D 044			.25VDD + 0.8V		VDD						
D041		with Schmitt Trigger input	0.8VDD		VDD	.,					
D042		MCLR RA4/T0CKI	0.8VDD	-	VDD	V					
D043 D043A		OSC1 (XT, HS and LP)	0.7Vdd 0.9Vdd	-	Vdd	V	Note1				
D043A	IPURB	OSC1 (in RC mode) PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS				
0070	IPUND	Input Leakage Current	50	200	400	μΑ	VDD = 5.0V, VPIN = V35				
	lı∟	(Notes 2, 3)									
		I/O ports (Except PORTA)			±1.0	uА	VSS \leq VPIN \leq VDD, pin at hi-impedance				
D060		PORTA	_	_	±0.5	μA					
D061		RA4/T0CKI	_	_	±1.0	μA					
D063		OSC1, MCLR	_	_	±5.0	μA					
						1.	configuration				
	Vol	Output Low Voltage									
D080		I/O ports	_	-	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C				
		-	_	-	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C				
D083		OSC2/CLKOUT (RC only)	_	-	0.6	V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C				
			-	-	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C				
	Voh	Output High Voltage (Note 3)				1					
D090		I/O ports (Except RA4)	VDD-0.7	-	_	V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C				
			VDD-0.7	-	-	V	IOH=-2.5 mA, VDD=4.5V, +125°С				
D092		OSC2/CLKOUT (RC only)	VDD-0.7	-	-	V	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C				
			VDD-0.7	-	-	V	IOH=-1.0 mA, VDD=4.5V, +125°С				
*D150	Vod	Open-Drain High Voltage			8.5	V	RA4 pin				
		Capacitive Loading Specs on									
		Output Pins									
D100		OSC2 pin			15	pF	In XT, HS and LP modes when external				
	2						clock used to drive OSC1.				
D101	Cio	All I/O pins/OSC2 (in RC mode) These parameters are characte			50	pF					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16CE62X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

TABLE 13-1: COMPARATOR SPECIFICATIONS

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D300	Input offset voltage	VIOFF		± 5.0	± 10	mV	
D301	Input common mode voltage	VICM	0		Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
300	Response Time ⁽¹⁾	TRESP		150*	400*	ns	PIC16CE62X
301	Comparator Mode Change to Output Valid	Тмс2ov			10*	μS	

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. .

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 13-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.

Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D310	Resolution	VRES	VDD/24		Vdd/32	LSB	
D311	Absolute Accuracy	Vraa			<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
D312	Unit Resistor Value (R)	VRur		2K*		Ω	Figure 9-1
310	Settling Time ⁽¹⁾	TSET			10*	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

APPENDIX A: CODE FOR ACCESSING EEPROM DATA MEMORY

Please check our web site at www.microchip.com for code availability.

APPENDIX B:REVISION HISTORY

Revision D (January 2013)

Added a note to each package outline drawing.

NOTES: