

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce623-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CE62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CE62X uses a Harvard architecture in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single-cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM) and non-volatile memory (EEPROM) for each PIC16CE62X device.

Device	Program Memory	RAM Data Memory	EEPROM Data Memory
PIC16CE623	512x14	96x8	128x8
PIC16CE624	1Kx14	96x8	128x8
PIC16CE625	2Kx14	128x8	128x8

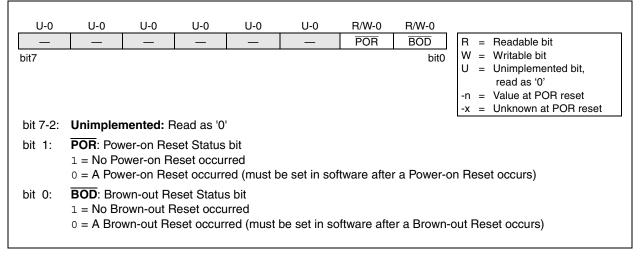
The PIC16CE62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CE62X family has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CE62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16CE62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

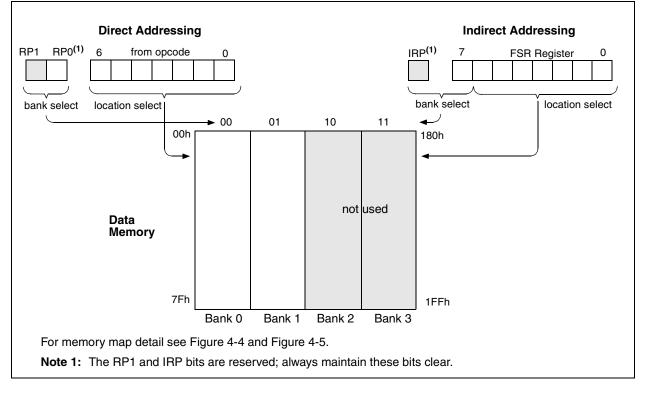

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)


4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16CE62X. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPL	E 4-1:	INDIRECT ADDRESSING			
	movlw	0x20	;initialize pointer		
	movwf	FSR	;to RAM		
NEXT	clrf	INDF	;clear INDF register		
	incf	FSR	;inc pointer		
	btfss	FSR,4	;all done?		
	goto	NEXT	;no clear next		
			;yes continue		
CONTINUE:					

FIGURE 4-7: DIRECT/INDIRECT ADDRESSING PIC16CE62X

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other Resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note: Shaded bits are not used by PORTB.

8.1 <u>Comparator Configuration</u>

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 8-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 13-1.

Note: Comparator interrupts should be disabled during a comparator mode change, otherwise a false interrupt may occur.

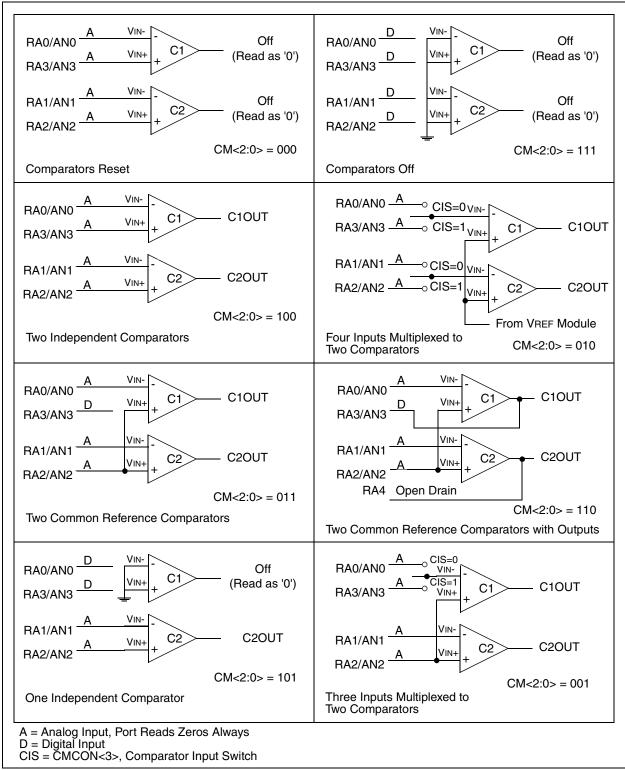
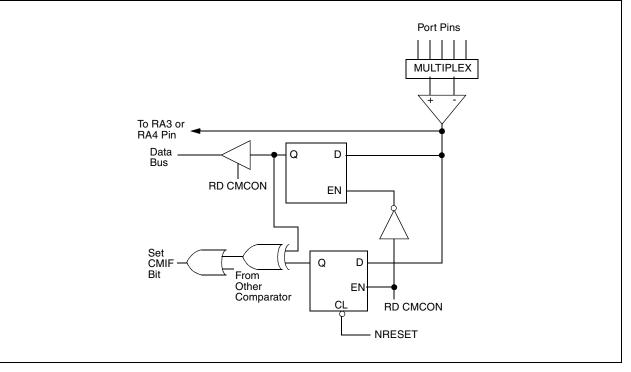


FIGURE 8-1: COMPARATOR I/O OPERATING MODES

8.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs, otherwise the maximum delay of the comparators should be used (Table 13-1).


8.5 <u>Comparator Outputs</u>

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 8-3 shows the comparator output block diagram.

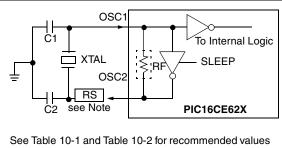
The TRISA bits will still function as an output enable/disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 8-3: COMPARATOR OUTPUT BLOCK DIAGRAM

10.2 Oscillator Configurations

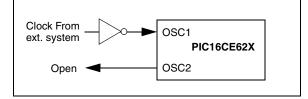
10.2.1 OSCILLATOR TYPES


The PIC16CE62X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 10-1). The PIC16CE62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 10-2).


FIGURE 10-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 10-1 and Table 10-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 10-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1: CERAMIC RESONATORS, PIC16CE62X

Ranges Tested: OSC2 Mode Freq OSC1 XT 455 kHz 68 - 100 pF 68 - 100 pF 15 - 68 pF 15 - 68 pF 2.0 MHz 4.0 MHz 15 - 68 pF 15 - 68 pF HS 10 - 68 pF 10 - 68 pF 8.0 MHz 16.0 MHz 10 - 22 pF 10 - 22 pF

These values are for design guidance only. See notes at bottom of page.

TABLE 10-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16CE62X

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

- 1. Recommended values of C1 and C2 are identical to the ranges tested table.
- 2. Higher capacitance increases the stability of oscillator, but also increases the start-up time.
- 3. Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.

© 1998-2013 Microchip Technology Inc.

11.1 Instruction Descriptions

ADDLW	Add Lite	ral and V	w	
Syntax:	[label] A	ADDLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conter added to th result is pla	ne eight b	it literal 'k'	and the
Words:	1			
Cycles:	1			
Example	ADDLW	0x15		
	After Inst	W =	0x10 0x25	

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3 After Instruction W = 0x03

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ADDWF FSR, 0
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02				

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	0 0	0000	0xx0	0000		
Description:	No operati	ion.				
Words:	1					
Cycles:	1					
Example	NOP					

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$						
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETFIE						
		rrupt PC = GIE =	TOS 1				

OPTION	Load Op	tion Reg	gister			
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow O$	PTION				
Status Affected:	None					
Encoding:	0 0	0000	0110	0010		
Description: Words:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.					
Cycles:	1					
Example						
	To maintain upward compatibility with future PIC [®] MCU products, do not use this instruction.					

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE ;W contains table ;offset value • ;W now has table value
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • RETLW kn ; End of table
	Before Instruction
	W = 0x07 After Instruction
	W = value of k8

SWAPF	Swap Nibbles in f	XORLW	Exclusive OR Literal with W		
Syntax:	[label] SWAPF f,d	Syntax:	[label] XORLW k		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	0 ≤ k ≤ 255		
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$	Operation: Status Affected:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	None	Encoding:	11 1010 kkkk kkkk		
Encoding:	00 1110 dfff ffff	Description:	The contents of the W register are		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.	Words:	XOR'ed with the eight bit literal 'k'. The result is placed in the W register. 1		
Words:	1	Cycles:	1		
Cycles:	1	Example:	XORLW 0xAF		
Example	SWAPF REG, 0		Before Instruction		
·	Before Instruction		W = 0xB5		
	REG1 = 0xA5		After Instruction		
	After Instruction		W = 0x1A		
	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$				

TRIS	Load TR	Load TRIS Register				
Syntax:	[label]	TRIS	f			
Operands:	$5 \leq f \leq 7$					
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;			
Status Affected:	None					
Encoding:	0 0	0000	0110	Offf		
Description: Words: Cycles:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. 1					
Example						
	To maintain upward compatibility					
	with future PIC [®] MCU products, do not use this instruction.					

XORWF	Exclusive OR W with f						
Syntax:	[label]	XORWF	f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) .XOF	R. (f) \rightarrow (6)	dest)				
Status Affected:	Z						
Encoding:	0 0	0110	dfff	f fff			
Description:		with regis s stored ir	ster 'f'. n the V				
Words:	1						
Cycles:	1						
Example	XORWF	REG	1				
	Before In	struction					
		REG W	= =	0xAF 0xB5			
	After Inst	ruction					
		REG W	= =	0x1A 0xB5			

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

13.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to VSS	0 to +7.0V
Voltage on RA4 with respect to Vss	8.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, IOK (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - \sum IOH} + \sum {(VDD-VOH) = 2000 x {IDD - } \sum	$x \text{ IOH} + \sum (\text{VOI } x \text{ IOL})$

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100³/₄ should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.2 DC CHARACTERISTICS: F

PIC16LCE62X-04 (Commercial, Industrial)

DC CHARACTERISTICS				rd Opera		-4	ns (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	-	1.1	mA	FOSC = 4 MHz, $VDD = 2.5V$, WDT disabled,
			-	35	70	μA	XT osc mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	_	-	2.0	μA	VDD = 2.5V
			-	-	2.2	μA	VDD = 3.0V*
			-	-	9.0	μA	VDD = 5.5V
			-	-	15	μA	VDD = 5.5V Extended
D022	Δ IWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD=4.0V
D022A	Δ IBOR	Brown-out Reset Current	_	75	12 125	μ Α μΑ	$(125^{\circ}C)$ BOD enabled, VDD = 5.0V
D023		(Note 5) Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	Δ IEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta IEE \ Read$	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	VCC = 3.0V, EE VDD = VCC
	ΔIEE	Standby Current	-		100	μA	VCC = 3.0V, EE VDD = VCC
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency		—	4	MHz	All temperatures
		XT Oscillator Operating Frequency	0	—	4 20	MHz	All temperatures
		HS Oscillator Operating Frequency	-	_	20	MHz	All temperatures

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

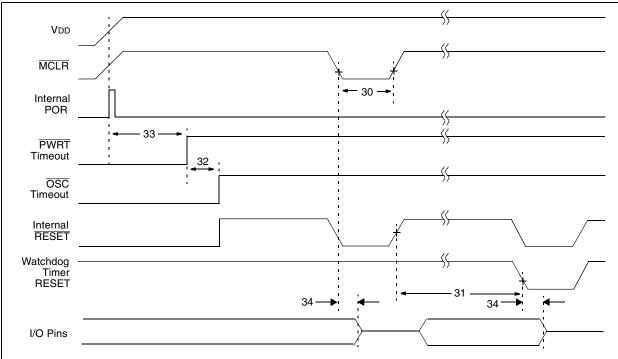
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

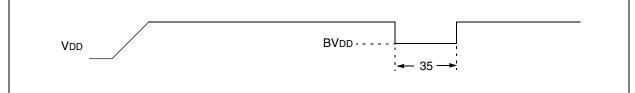
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.


3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

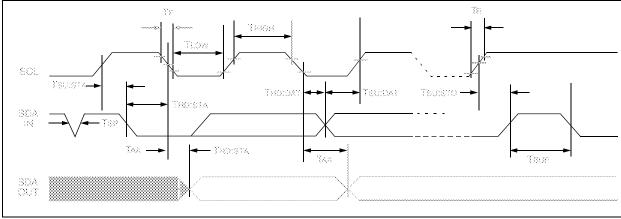
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kΩ.


5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 13-8: BROWN-OUT RESET TIMING


TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	_	_	ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
34	Tioz	I/O hi-impedance from MCLR low		—	2.0	μS	
35	TBOR	Brown-out Reset Pulse Width	100*	—		μs	$3.7V \leq V\text{DD} \leq 4.3V$

These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

13.6 EEPROM Timing

Parameter	Symbol	STANE MOI		Vcc = 4.5 FAST N		Units	Remarks
		Min.	Max.	Min.	Max.		
Clock frequency	FCLK	_	100		400	kHz	
Clock high time	THIGH	4000	_	600	_	ns	
Clock low time	TLOW	4700	_	1300	—	ns	
SDA and SCL rise time	TR	_	1000	_	300	ns	(Note 1)
SDA and SCL fall time	TF	_	300	_	300	ns	(Note 1)
START condition hold time	THD:STA	4000	—	600	—	ns	After this period the first clock pulse is generated
START condition setup time	TSU:STA	4700	—	600	—	ns	Only relevant for repeated START condition
Data input hold time	THD:DAT	0		0		ns	(Note 2)
Data input setup time	TSU:DAT	250	_	100	_	ns	
STOP condition setup time	Tsu:sto	4000	_	600	_	ns	
Output valid from clock	TAA	—	3500	—	900	ns	(Note 2)
Bus free time	TBUF	4700	_	1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from VIH minimum to VIL maximum	TOF	—	250	20 + 0.1 CB	250	ns	(Note 1), $CB \le 100 \text{ pF}$
Input filter spike suppression (SDA and SCL pins)	TSP	_	50	_	50	ns	(Note 3)
Write cycle time	Twr	_	10		10	ms	Byte or Page mode
Endurance		10M 1M	—	10M 1M	_	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)

TABLE 13-7: AC CHARACTERISTICS

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.

NOTES:

INDEX

Α	
ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	7
Assembler	
MPASM Assembler	77
в	

В

BCF Instruction	
Block Diagram	
TIMER0	35
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	
BSF Instruction	68
BTFSC Instruction	
BTFSS Instruction	
С	

CALL Instruction	
Clocking Scheme/Instruction Cycle	10
CLRF Instruction	
CLRW Instruction	69
CLRWDT Instruction	70
CMCON Register	41
Code Protection	
COMF Instruction	70
Comparator Configuration	42
Comparator Interrupts	45
Comparator Module	41
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	47
Crystal Operation	51
_	

D

Data Memory Organization	12
DECF Instruction	
DECFSZ Instruction	70
Development Support	77
E	

Е

EEPROM Peripheral Operation	29
Errata	2
External Crystal Oscillator Circuit	52

G

General purpose Register File	12
GOTO Instruction	71

L

I/O Ports	23
I/O Programming Considerations	
ID Locations	64
INCF Instruction	
INCFSZ Instruction	71
In-Circuit Serial Programming	64
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	10
Instruction Set	
ADDLW	67
ADDWF	67
ANDLW	
ANDWF	67
BCF	
BSF	
-	

BTFSC	68
BTFSS	69
CALL	
CLRF	
CLRW	
COMF	
DECF	
DECFSZ	70
GOTO	
INCFSZIORLW	
IORWF	
MOVF	
MOVLW	72
MOVWF	72
NOP	-
OPTION	
RETFIE RETLW	
RETURN	-
RLF	
RRF	
SLEEP	74
SUBLW	
SUBWF SWAPF	-
TRIS	
XORLW	
XORUW	76
XORWF Instruction Set Summary	65
XORWF Instruction Set Summary INT Interrupt	65 60
XORWF Instruction Set Summary INT Interrupt INTCON Register	65 60 17
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts	65 60 17 59
XORWF Instruction Set Summary INT Interrupt INTCON Register	65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction	65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K	65 60 17 59 71 72
XORWF	65 60 17 59 71 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	65 60 17 59 71 72 80
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction	65 60 17 59 71 72 80 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	 65 60 17 59 71 72 80 72 72 72
XORWF	 65 60 17 59 71 72 80 72 72 72 72 72 72 72 72
XORWF	 65 60 17 59 71 72 80 72 72 72 72 72 72 72 72
XORWF	65 60 17 59 71 72 80 72 72 72 72 77
XORWF	65 60 17 59 71 72 80 72 72 72 72 77
XORWF	65 60 17 59 71 72 80 72 72 72 77 73
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction MOVLW Instruction MOVLW Instruction MOVLW Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction	65 60 17 59 71 72 80 72 72 72 77 73 . 5
XORWF	65 60 17 59 71 72 80 72 72 72 72 73 . 5 73 16
XORWF	65 60 17 59 71 72 80 72 72 72 72 73 . 5 73 16 51
XORWF	65 60 17 59 71 72 80 72 72 72 72 73 . 5 73 16 51
XORWF	65 60 17 59 71 72 80 72 72 72 77 73 . 5 73 16 51 54
XORWF	65 60 17 59 71 72 80 72 72 72 77 73 .5 73 16 51 54 01
XORWF	65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54 01 97
XORWF	65 60 17 59 71 72 80 72 72 72 77 73 . 5 73 16 51 54 01 97 20
XORWF	65 60 17 59 71 80 72 72 72 77 73 .5 73 16 54 01 97 20 19
XORWF	65 60 17 59 712 80 72 72 72 72 73 .5 73 16 51 54 01 97 20 19 79

PICSTART® Plus Entry Level Development System 79 PIE1 Register 18 PIR1 Register 18

PIC16XXXXX FAMILY

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:		Total Pages Sent	
	n: Name		
FIU			
	Company Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Арр	lication (optional):		
Wo	uld you like a reply?YN		
	ice: PIC16xxxxxx family	Literature Number: DS40182D	
Que	estions:		
1.	What are the best features of this document?		
_			
2.	2. How does this document meet your hardware and software development needs?		
3.	. Do you find the organization of this document easy to follow? If not, why?		
4.	What additions to the document do you think would	enhance the structure and subject?	
5.	What deletions from the document could be made w	vithout affecting the overall usefulness?	
6.	Is there any incorrect or misleading information (what	at and where)?	
7.	How would you improve this document?		

PIC16CE62X PRODUCT IDENTIFICATION SYSTEM

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NOXX X /XX XXX		
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	
Package:	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP (209 mil)	
	JW* = Windowed CERDIP Example a) PIC10	6CE623-04/P301 =
Range:	$ \begin{array}{rcl} & = & -40^{\circ} {\rm C} \ {\rm to} \ +85^{\circ} {\rm C} & & {\rm age, 4} \\ {\rm E} & = & -40^{\circ} {\rm C} \ {\rm to} \ +125^{\circ} {\rm C} & & {\rm D} \\ {\rm b} & {\rm PIC16} \end{array} $	nercial temp., PDIP pack- 4 MHz, normal VDD limits, pattern #301. 6CE623-04I/SO =
Frequency Range:		trial temp., SOIC pack- 4MHz, industrial VDD lim-
Device:	PIC16CE62X :VDD range 3.0V to 5.5V PIC16CE62XT:VDD range 3.0V to 5.5V (Tape and R	eel)

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)