

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce623-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CE62X are 18 and 20-Pin EPROM-based members of the versatile PIC[®] family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with EEPROM data memory.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16CE62X family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CE62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16CE623 and PIC16CE624 have 96 bytes of RAM. The PIC16CE625 has 128 bytes of RAM. Each microcontroller contains a 128x8 EEPROM memory array for storing non-volatile information, such as calibration data or security codes. This memory has an endurance of 1,000,000 erase/write cycles and a retention of 40 plus years.

Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16CE62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low-cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16CE62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and reset. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development, while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16CE62X mid-range microcontroller families.

A simplified block diagram of the PIC16CE62X is shown in Figure 3-1.

The PIC16CE62X series fits perfectly in applications ranging from multi-pocket battery chargers to low-power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high-performance, ease of use and I/O flexibility make the PIC16CE62X very versatile.

1.1 <u>Development Support</u>

The PIC16CE62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler is also available.

PIC16CE62X

TABLE 1-1: PIC16CE62X FAMILY OF DEVICES

		PIC16CE623	PIC16CE624	PIC16CE625
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Momory	EPROM Program Memory (x14 words)	512	1K	2K
Welliory	Data Memory (bytes)	96	96	128
	EEPROM Data Memory (bytes)	128	128	128
Perinherals	Timer Module(s)	TMR0	TMR0	TMR0
Feripherals	Comparators(s)	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes
	Interrupt Sources	4	4	4
	I/O Pins	13	13	13
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
Features	Brown-out Reset	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CE62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Name	DIP/ SOIC Pin #	SSOP Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	I	ST/CMOS	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	17	19	I/O	ST	Analog comparator input
RA1/AN1	18	20	I/O	ST	Analog comparator input
RA2/AN2/VREF	1	1	I/O	ST	Analog comparator input or VREF output
RA3/AN3	2	2	I/O	ST	Analog comparator input /output
RA4/T0CKI	3	3	I/O	ST	Can be selected to be the clock input to the Timer0 timer/counter or a comparator output. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	7	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	8	I/O	TTL	
RB2	8	9	I/O	TTL	
RB3	9	10	I/O	TTL	
RB4	10	11	I/O	TTL	Interrupt on change pin.
RB5	11	12	I/O	TTL	Interrupt on change pin.
RB6	12	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	5,6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15,16	Р	—	Positive supply for logic and I/O pins.
Legend:	0 = 0 	utput Not used = TTL inpu	I/C I = It	D = input/ou = Input	utput P = power ST = Schmitt Trigger input

TABLE 3-1: PIC16CE62X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. **Note 2:** This buffer is a Schmitt Trigger input when used in serial programming mode.

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	R = Readable bit
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	oal Interru les all un-r les all inte	ot Enable masked in errupts	bit terrupts				
bit 6:	PEIE: Per 1 = Enabl 0 = Disab	ipheral In les all un-r les all per	terrupt En masked pe ipheral int	able bit eripheral ir errupts	nterrupts			
bit 5:	TOIE : TMI 1 = Enabl 0 = Disab	R0 Overflo les the TM les the TM	ow Interrup 1R0 interru /IR0 interr	ot Enable I .pt upt	bit			
bit 4:	INTE: RB 1 = Enabl 0 = Disab	0/INT Exte les the RB les the RE	ernal Inter 30/INT exte 30/INT ext	rupt Enabl ərnal interr ernal inter	le bit rupt rupt			
bit 3:	RBIE : RB 1 = Enabl 0 = Disab	Port Cha les the RB les the RE	nge Intern 3 port char 3 port cha	upt Enable 1ge interru nge interrı	e bit pt ıpt			
bit 2:	TOIF : TMI 1 = TMRC 0 = TMRC	R0 Overflo) register l) register (ow Interrup has overflo did not ove	ot Flag bit owed (mus erflow	t be cleare	d in softwa	ire)	
bit 1:	INTF : RB 1 = The F 0 = The F	0/INT Exte }B0/INT ex }B0/INT ex	ernal Inter xternal inte xternal inte	rupt Flag b errupt occi errupt did i	oit urred (must not occur	be cleare	d in softwaı	are)
bit 0:	RBIF : RB 1 = When 0 = None	Port Cha at least c of the RB	nge Internone of the <a>	upt Flag bi RB<7:4> p s have cha	t bins change anged state	d state (m	ust be clea	ared in software)

5.0 I/O PORTS

The PIC16CE62X parts have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the TOCKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a hi- impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (Comparator Control Register) register and the VRCON (Voltage Reference Control Register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA<1:0> PINS

Note:	On reset, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting
		;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O
		;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

^{© 1998-2013} Microchip Technology Inc.

6.2 Device Addressing

After generating a START condition, the processor transmits a control byte consisting of a EEPROM address and a Read/Write bit that indicates what type of operation is to be performed. The EEPROM address consists of a 4-bit device code (1010) followed by three don't care bits.

The last bit of the control byte determines the operation to be performed. When set to a one, a read operation is selected, and when set to a zero, a write operation is selected. (Figure 6-3). The bus is monitored for its corresponding EEPROM address all the time. It generates an acknowledge bit if the EEPROM address was true and it is not in a programming mode.

FIGURE 6-3: CONTROL BYTE FORMAT

FIGURE 6-8: RANDOM READ

BUS ACTIVITY

. .

A C K

DATAn

DATAn + 1

DATAn + 2

N O

A C K

DATAn + X

7.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the TOCS bit (OPTION<5>). In timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

8.1 <u>Comparator Configuration</u>

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 8-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 13-1.

Note: Comparator interrupts should be disabled during a comparator mode change, otherwise a false interrupt may occur.

FIGURE 8-1: COMPARATOR I/O OPERATING MODES

10.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real time applications are what sets a microcontroller apart from other processors. The PIC16CE62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. Reset

Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-Up Timer (OST) Brown-out Reset (BOD)

- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-circuit serial programming

The PIC16CE62X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, and is designed to keep the part in reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which provides at least a 72 ms reset. With these three functions on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 10-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

^{© 1998-2013} Microchip Technology Inc.

10.9 <u>Code Protection</u>

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	evices.	

10.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Only the least significant 4 bits of the ID locations are used.

10.11 In-Circuit Serial Programming

The PIC16CE62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specifications (Literature #DS30228).

A typical in-circuit serial programming connection is shown in Figure 10-20.

FIGURE 10-20: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

11.1 Instruction Descriptions

ADDLW	Add Lite	ral and V	w	
Syntax:	[label] l	ADDLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conte added to the result is pl	nts of the he eight b aced in th	W register it literal 'k' ie W regist	r are and the er.
Words:	1			
Cycles:	1			
Example	ADDLW	0x15		
	Before In After Inst	struction W = ruction	0x10	
		vv =	UX25	

ANDLW	AND Lite	eral with	w	
Syntax:	[label] A	ANDLW	k	
Operands:	$0 \le k \le 2\xi$	55		
Operation:	(W) .AND). (k) \rightarrow ((W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conter AND'ed wi result is pl	nts of W r th the eig aced in th	egister are ht bit literal e W regist	e I 'k'. The ter.
Words:	1			
Cycles:	1			
Example	ANDLW	0x5F		
	Before In After Inst	struction W = ruction W =	0xA3 0x03	

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ADDWF FSR, 0
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0101 dfff ffff
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ANDWF FSR, 1
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02

PIC16CE62X

and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

12.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

12.18 <u>KEELOQ Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

Metallicity (Metallicity) Metallicity (Metallicity) Me		PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7281519	XX7Oðfolg	PIC16C8X	PIC16F8XX	PIC16C9XX	X4071019	XX7371319	PIC18CXX2	83CXX 52CXX/ 54CXX/	хххээн	MCRFXXX	MCP2510
Bit Add C 17 Complex Source in the contraction of the control of the co	MPLAB [®] Integrated Development Environment	~	~	>	>	>	>	>	>	>	>	>	>	>	>				
MAME Complex Image Complex Complex <th>MPLAB[®] C17 Compiler</th> <th></th> <th>></th> <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th>	MPLAB [®] C17 Compiler												>	>					
Mediatricity × <t< th=""><th>MPLAB[®] C18 Compiler</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>></th><th></th><th></th><th></th><th></th></t<>	MPLAB [®] C18 Compiler														>				
MPAR8 ¹⁶ -LE V <t< td=""><td>MPASM/MPLINK</td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td>></td><td></td><td></td></t<>	MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
PICHARGE /<	2 MPLAB [®] -ICE	~	>	>	>	>	** ^	>	>	>	>	>	>	>	>				
Closette funder Image: Closete funder Image: Closefunder	PICMASTER/PICMASTER-CE	~	>	>	>	>		>	>	>		>	>	>					
MetaBolic Statisticati Not Statist	ICEPIC™ Low-Cost In-Circuit Emulator	~		~	>	>		>	>	>		`							
PICSTART® Plus. V	999 MPLAB [®] -ICD In-Circuit Debugger				*>			* >			>								
PRIONATE® IL V <t< td=""><td>PICSTART®Plus Low-Cost Universal Dev. Kit</td><td>></td><td>~</td><td>~</td><td>`</td><td>></td><td>**></td><td>`</td><td>></td><td>`</td><td>></td><td>></td><td>></td><td>`</td><td>></td><td></td><td></td><td></td><td></td></t<>	PICSTART®Plus Low-Cost Universal Dev. Kit	>	~	~	`	>	**>	`	>	`	>	>	>	`	>				
Since v <td>BRO MATE® II Universal Programmer</td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>** ></td> <td>></td> <td></td> <td></td>	BRO MATE® II Universal Programmer	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	>	>		
PICDEM-1 ·<	SIMICE	~		>															
PICDEM-3 PICDEM-3 ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····· ····· ····· ····· ····· ····· ····· ······ ······ ······· ·······	PICDEM-1			>		>		<+ <		>			>						
PICDEM-3 PICDEM-1 ·	PICDEM-2				+∽			↓							>				
PICDEM:14 (PICDEM-3											>							
Pictore Defendent Electore Evaluation Kit V	PICDEM-14A		>																
KEELO0® Evaluation Kit Image: market in the image: ma	PICDEM-17													~					
KEELOO Transponder Kit Image: market in the image: ma	KEELoo® Evaluation Kit																~		
IndecolD1 ^{rm} Programmer's Kit Indecol	KEELoo Transponder Kit																~		
125 kHz microID Developer's Kit 125 kHz microID Developer's Kit 1	microlD™ Programmer's Kit																	~	
125 KHz Anticollision microlD 125 KHz Anticollision microlD Developer's Klt 13.56 MHz Anticollision microlD 13.56 MHz Anticollision microlD 13.56 MHz Anticollision microlD Developer's Klt 1	125 kHz microID Developer's Kit																	~	
13.56 MHz Anticollision microlD 13.56 MHz Anticollision microlD Developer's Kit MCP2510 CAN Developer's Kit	7 125 kHz Anticollision microlD Developer's Kit																	>	
MCP2510 CAN Developer's Kit	13.56 MHz Anticollision microID Developer's Kit																	~	
	MCP2510 CAN Developer's Kit																		`

** Contact Microchip Technology Inc. for availability [†] Development tool is available on select devices.

13.6 EEPROM Timing

Parameter	Symbol	STANDARD MODE		Vcc = 4.5 - 5.5V FAST MODE		Units	Remarks
		Min.	Max.	Min.	Max.		
Clock frequency	FCLK		100		400	kHz	
Clock high time	Thigh	4000	—	600	_	ns	
Clock low time	TLOW	4700	—	1300	—	ns	
SDA and SCL rise time	TR	_	1000	—	300	ns	(Note 1)
SDA and SCL fall time	TF	—	300	_	300	ns	(Note 1)
START condition hold time	THD:STA	4000	—	600	—	ns	After this period the first clock pulse is generated
START condition setup time	TSU:STA	4700	—	600	—	ns	Only relevant for repeated START condition
Data input hold time	THD:DAT	0		0	—	ns	(Note 2)
Data input setup time	TSU:DAT	250	—	100	_	ns	
STOP condition setup time	Tsu:sto	4000	—	600	_	ns	
Output valid from clock	ΤΑΑ	_	3500	_	900	ns	(Note 2)
Bus free time	TBUF	4700		1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from VIH minimum to VI∟ maximum	TOF	—	250	20 + 0.1 CB	250	ns	(Note 1), $CB \le 100 \text{ pF}$
Input filter spike suppression (SDA and SCL pins)	TSP	—	50	_	50	ns	(Note 3)
Write cycle time	Twr	—	10	_	10	ms	Byte or Page mode
Endurance	_	10M 1M	-	10M 1M	—	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)

TABLE 13-7: AC CHARACTERISTICS

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.

14.1 Package Marking Information

18-Lead PDIP

20-Lead SSOP

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information.

PIC16CE62X

Port RB Interrupt	60
PORTA	
PORTB	
Power Control/Status Register (PCON)	55
Power-Down Mode (SLEEP)	63
Power-On Reset (POR)	54
Power-up Timer (PWRT)	54
Prescaler	
PRO MATE® II Universal Programmer	79
Program Memory Organization	11
•	

Q

R

53
73
73
74
74
74

S

SEEVAL® Evaluation and Programming System	80
Serialized Quick-Turnaround-Production (SQTP) Devices	s5
SLEEP Instruction	74
Software Simulator (MPLAB-SIM)	78
Special Features of the CPU	49
Special Function Registers	14
Stack	20
Status Register	15
SUBLW Instruction	75
SUBWF Instruction	75
SWAPF Instruction	76

T Timer0

Timer0
TIMER0
TIMER0 (TMR0) Interrupt35
TIMER0 (TMR0) Module
TMR0 with External Clock
Timer1
Switching Prescaler Assignment
Timing Diagrams and Specifications
TMR0 Interrupt
TRIS Instruction
TRISA23
TRISB
V
Voltage Reference Module
VRCON Register
W
Watchdog Timer (WDT)61
WWW, On-Line Support2
x
XORLW Instruction
XORWF Instruction76

PIC16CE62X PRODUCT IDENTIFICATION SYSTEM

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NOXX X /XX XXX		
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	
Package:	P = PDIP SO = SOIC (Gull Wing, 300 mil body)	
	JW* = Windowed CERDIP a) PIC16	:s: 6CE623-04/P301 =
Temperature Range:	$\begin{array}{rcl} - & = & 0^{\circ} \mathbb{C} \text{ to } + 70^{\circ} \mathbb{C} & & \mathbb{C} \text{ comm} \\ \mathbb{I} & = & -40^{\circ} \mathbb{C} \text{ to } + 85^{\circ} \mathbb{C} & & \text{age, } 4 \\ \mathbb{E} & = & -40^{\circ} \mathbb{C} \text{ to } + 125^{\circ} \mathbb{C} & & \mathbb{O} \text{ TP} \\ \end{array}$	4 MHz, normal VDD limits, pattern #301. 6CE623-04I/SO =
Frequency Range:	04 = 200kHz (LP osc) Indus 04 = 4 MHz (XT and RC osc) age, 4 20 = 20 MHz (HS osc) its.	trial temp., SOIC pack- 4MHz, industrial VDD lim-
Device:	PIC16CE62X :VDD range 3.0V to 5.5V PIC16CE62XT:VDD range 3.0V to 5.5V (Tape and R	eel)

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)