E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce623t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	3
2.0	PIC16CE62X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	11
5.0	I/O Ports	
6.0	EEPROM Peripheral Operation	29
7.0	Timer0 Module	
8.0	Comparator Module	41
9.0	Voltage Reference Module	47
10.0	Special Features of the CPU	49
11.0	Instruction Set Summary	65
	Development Support	
	Electrical Specifications	
14.0	Packaging Information	97
Appe	ndix A: Code for Accessing EEPROM Data Memory	103
Index		105
On Li	ne Support	. 107
Read	ne Support er Response	108
PIC1	6CE62X Product Identification System	. 109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

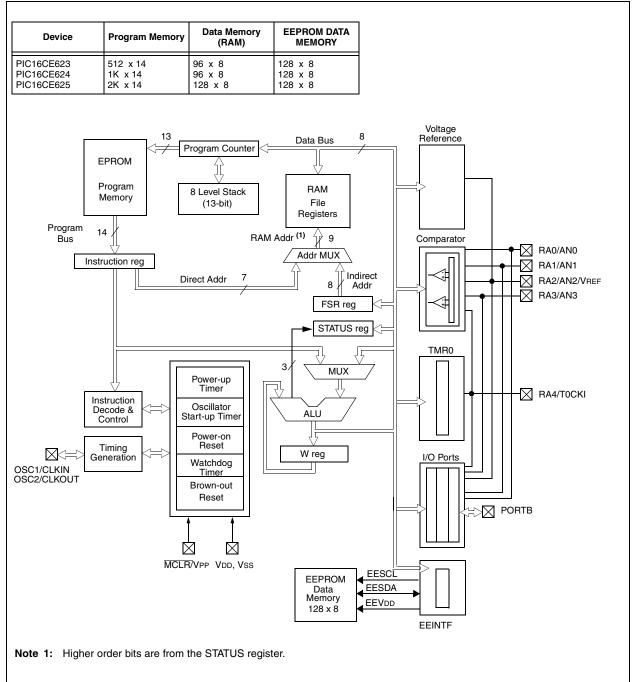
Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.


Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

FIGURE 3-1: BLOCK DIAGRAM

4.2.2.2 OPTION REGISTER

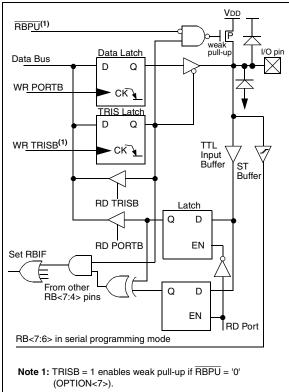
The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT (PSA = 1).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit			
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset			
bit 7:											
bit 6:											
bit 5:	TOCS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)										
bit 4:		ent on hig	h-to-low	transition	on RA4/T0 on RA4/T0						
bit 3:	PSA: Prese 1 = Presca 0 = Presca	ler is assi	gned to t	he WDT) module						
bit 2-0:	PS<2:0> : F	Prescaler I	Rate Sele	ect bits							
	Bit Value	TMR0 Ra	te WD1	Γ Rate							
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 3 1 :	2 4							

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a high impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

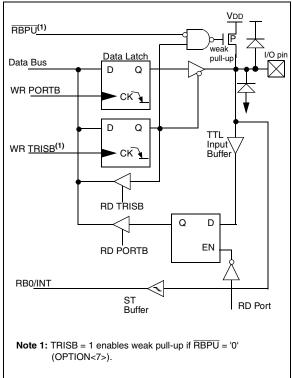
Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the \overline{RBPU} (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins of RB<7:4> are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes".)

Note:	If a change on the I/O pin should occur						
	when the read operation is being executed						
	(start of the Q2 cycle), then the RBIF inter-						
	rupt flag may not get set.						

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

5.3 <u>I/O Programming Considerations</u>

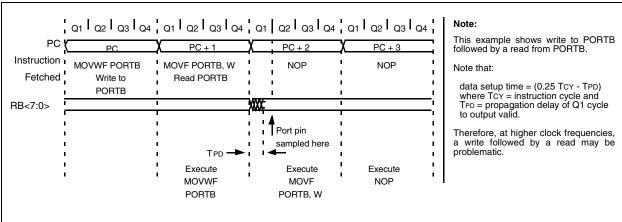
5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

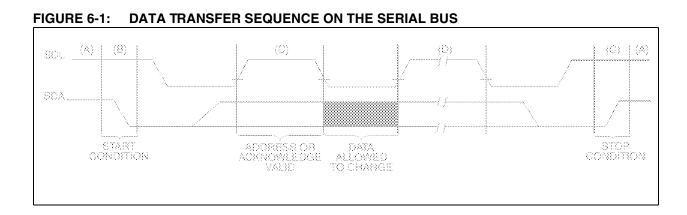
Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read modify write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (i.e., ${\tt BCF}\,,\ {\tt BSF},$ etc.) on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.


EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ; ; PORTB<7:6> have external pull-up and are not ; connected to other circuitry ; PORT latch PORT pins ; ; BCF PORTB. 7 ; 01pp pppp 11pp pppp BCF PORTB, 6 ; 10pp pppp 11pp pppp BSF STATUS, RPO ; BCF TRISB, 7 ; 10pp pppp 11pp pppp BCF TRISB, 6 ; 10pp pppp 10pp pppp ; ; Note that the user may have expected the pin


; values to be 00pp pppp. The 2nd BCF caused ; RB7 to be latched as the pin value (High).

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

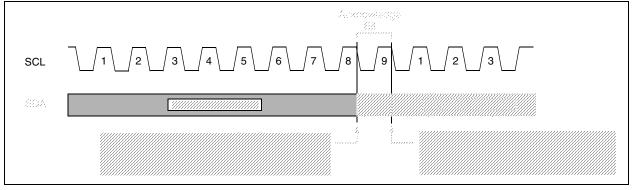
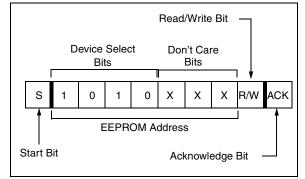

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with an NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION



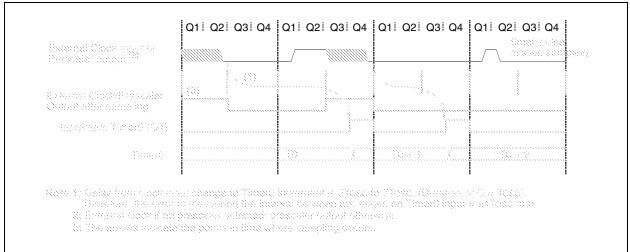
6.2 Device Addressing

After generating a START condition, the processor transmits a control byte consisting of a EEPROM address and a Read/Write bit that indicates what type of operation is to be performed. The EEPROM address consists of a 4-bit device code (1010) followed by three don't care bits.

The last bit of the control byte determines the operation to be performed. When set to a one, a read operation is selected, and when set to a zero, a write operation is selected. (Figure 6-3). The bus is monitored for its corresponding EEPROM address all the time. It generates an acknowledge bit if the EEPROM address was true and it is not in a programming mode.

FIGURE 6-3: CONTROL BYTE FORMAT

7.2 Using Timer0 with External Clock

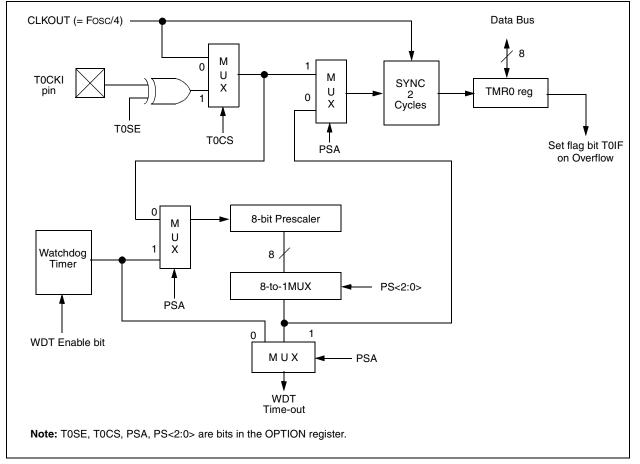

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.


FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

NOTES:

9.0 VOLTAGE REFERENCE MODULE

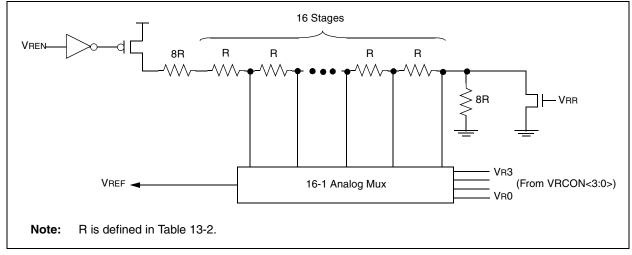
The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 9-1. The block diagram is given in Figure 9-1.

9.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD


if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 13-1). Example 9-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
VREN	VROE	Vrr	_	Vr3	VR2	VR1	VR0	R = Readable bit			
bit7	•		•				bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7: VREF Enable 1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drain											
bit 6:	6: VROE: VREF Output Enable 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin										
bit 5:	VRR: VREF Range selection 1 = Low Range 0 = High Range										
bit 4: Unimplemented: Read as '0'											
bit 3-0: VR<3:0>: VREF value selection $0 \le VR [3:0] \le 15$ when VRR = 1: VREF = (VR<3:0>/ 24) * VDD when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD											

REGISTER 9-1: VRCON REGISTER (ADDRESS 9Fh)

FIGURE 9-1: VOLTAGE REFERENCE BLOCK DIAGRAM

EXAMPLE 9-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x07	;	RA3-RA0 are
MOVWF	TRISA	;	outputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank 0
CALL	DELAY10	;	10µs delay

9.2 <u>Voltage Reference Accuracy/Error</u>

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 9-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The absolute accuracy of the Voltage Reference can be found in Table 13-2.

9.3 Operation During Sleep

When the device wakes up from sleep through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.

9.4 Effects of a Reset

A device reset disables the Voltage Reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

9.5 <u>Connection Considerations</u>

The Voltage Reference Module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 9-2 shows an example buffering technique.

VREF Nodule Voltage Reference Output Impedance

FIGURE 9-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.

TABLE 9-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR / BOD	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: - = Unimplemented, read as "0"

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

REGISTER 10-1: CONFIGURATION WORD

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1 CP	0 ⁽²⁾ CP1 C	_{CP0} (2)	CP1	CP0 ⁽²⁾	_	BODEN ⁽¹⁾	CP1	CP0 ⁽²⁾	PWRTE(1) WDTE	F0SC1	F0SC0	CONFIG	Addres
bit13												bit0	REGISTER	8: 2007
bit 13-8,	CP1:CP0 Pa	irs: Cod	le prote	ection bit	pairs	(2)								
5-4:	· · · · •													
	11 = Progra			•		n off								
	10 = 0400h													
	01 = 0200h- 00 = 0000h-													
	Code prote					morv								
	11 = Progra													
	10 =Program													
	01 = 0200h-													
	00 = 0000h-													
	Code prote 11 = Progra					-								
	11 = Progra 10 = Progra			•										
	01 = Progra			•										
	00 = 0000h-	-01FFh	code	, protecte	d									
bit 7:	Unimpleme	ented: F	Read a	s '1'										
bit 6:	BODEN: Bro	own-ou	t Rese	t Enable	e bit (1)								
	1 = BOD en													
	0 = BOD dis	sabled												
bit 3:	PWRTE: Po	wer-up	Timer	Enable	bit (1)								
	1 = PWRT c		-											
	0 = PWRT 6	enabled												
bit 2:	WDTE: Wat	-	Timer	Enable I	oit									
	1 = WDT en													
	0 = WDT dis	sabled												
bit 1-0:	FOSC1:FOS		scillato	or Select	ion b	its								
	11 = RC osc													
	10 = HS oscillations 01 = XT													
	01 = XT OSC 00 = LP osc													
													_	
Note 1:											ardless o	of the valu	e of bit PWR	TĒ.
0.	Ensure the I		•								ata ati a -	oobome l	inted	
2:	All of the CF	<1:0>	pairs r	ave to t	e giv	en trie sa	ine va	iue io er	iable the	coue pr	olection	scheme i	ISIEU.	

10.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit in the STATUS register is cleared, the \overline{TO} bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin, and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated								
	by a WDT time-out does not drive MCLR								
	pin low.								

10.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device reset. The two latter events are considered a continuation of program execution. The \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device reset. \overline{PD} bit, which is set on power-up is cleared when SLEEP is invoked. \overline{TO} bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

If the global interrupts are disabled (GIE is
cleared), but any interrupt source has both
its interrupt enable bit and the correspond-
ing interrupt flag bits set, the device will
immediately wake-up from sleep. The
sleep instruction is completely executed.

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

Q1 Q2 Q3 Q4 Q1 Q	Q2 Q3 Q4 Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT(4) \		/			
INT pin			· · · · · · · · · · · · · · · · · · ·		i
INTF flag (INTCON<1>)		· · · · ·	Interrupt Latency		
GIE bit (INTCON<7>)	Processor in SLEEP			י ו ו ו	
INSTRUCTION FLOW		· ·	i I I I	1	1 1
PC X PC X F	PC+1 X PC+2	X PC+2	PC + 2	(0004h)	0005h
Instruction { Inst(PC) = SLEEP Ins	st(PC + 1)	Inst(PC + 2)	1 I	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1)	EEP	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 10-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay does not occur for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

SWAPF	Swap Nibbles in f	XORLW	Exclusive OR Literal with W
Syntax:	[label] SWAPF f,d	Syntax:	[<i>label</i>] XORLW k
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	0 ≤ k ≤ 255
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$	Operation: Status Affected:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	None	Encoding:	11 1010 kkkk kkkk
Encoding:	00 1110 dfff ffff	Description:	The contents of the W register are
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.	Words:	XOR'ed with the eight bit literal 'k'. The result is placed in the W register. 1
Words:	1	Cycles:	1
Cycles:	1	Example:	XORLW 0xAF
Example	SWAPF REG, 0		Before Instruction
·	Before Instruction		W = 0xB5
	REG1 = 0xA5		After Instruction
	After Instruction		W = 0x1A
	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$		

TRIS	Load TRIS Register						
Syntax:	[label]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	(W) \rightarrow TRIS register f;						
Status Affected:	None						
Encoding:	0 0	0000	0110	Offf			
Description: Words: Cycles:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. 1						
Example							
	To maintain upward compatibility						
	with future PIC [®] MCU products, do not use this instruction.						

XORWF	Exclusive OR W with f								
Syntax:	[label]	XORWF	f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$								
Operation:	(W) .XOR. (f) \rightarrow (dest)								
Status Affected:	Z								
Encoding:	0 0	0110	dfff	f fff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.								
Words:	1								
Cycles:	1								
Example	XORWF	REG	1						
	Before In	struction							
		REG W	= =	0xAF 0xB5					
	After Instruction								
		REG W	= =	0x1A 0xB5					

NOTES:

13.2 DC CHARACTERISTICS: F

PIC16LCE62X-04 (Commercial, Industrial)

DC CHARACTERISTICS			$\begin{array}{l lllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	2.5	-	5.5	V	See Figure 13-1 through Figure 13-3	
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details	
D004	SVDD	VDD rise rate to ensure Power-on Reset	.05*	-	-	V/ms	See section on power-on reset for details	
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared	
D010	IDD	Supply Current (Note 2)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*	
			-	-	1.1	mA	FOSC = 4 MHz, $VDD = 2.5V$, WDT disabled,	
			-	35	70	μA	XT osc mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP osc mode	
D020	IPD	Power Down Current (Note 3)	_	-	2.0	μA	VDD = 2.5V	
			-	-	2.2	μA	VDD = 3.0V*	
			-	-	9.0	μA	VDD = 5.5V	
			-	-	15	μA	VDD = 5.5V Extended	
D022	Δ IWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD=4.0V	
D022A	Δ IBOR	Brown-out Reset Current	_	75	12 125	μΑ μΑ	$(125^{\circ}C)$ BOD enabled, VDD = 5.0V	
D023		(Note 5) Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V	
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V	
	Δ IEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz	
	$\Delta IEE \ Read$	Operating Current	-		1	mA		
	ΔIEE	Standby Current	-		30	μA	VCC = 3.0V, EE VDD = VCC	
	ΔIEE	Standby Current	-		100	μA	VCC = 3.0V, EE VDD = VCC	
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures	
		RC Oscillator Operating Frequency		—	4	MHz	All temperatures	
		XT Oscillator Operating Frequency	0	—	4 20	MHz	All temperatures	
		HS Oscillator Operating Frequency	-		20	MHz	All temperatures	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

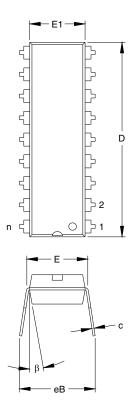
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

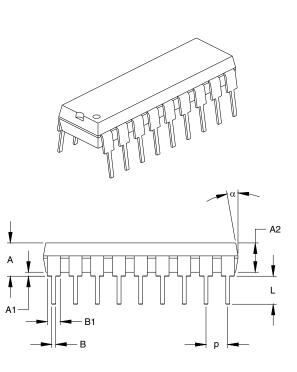
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.


4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kΩ.


5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001

Drawing No. C04-007

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Limits n	MIN	NOM				
n		110101	MAX	MIN	NOM	MAX
		18			18	
р		.050			1.27	
А	.093	.099	.104	2.36	2.50	2.64
A2	.088	.091	.094	2.24	2.31	2.39
A1	.004	.008	.012	0.10	0.20	0.30
Е	.394	.407	.420	10.01	10.34	10.67
E1	.291	.295	.299	7.39	7.49	7.59
D	.446	.454	.462	11.33	11.53	11.73
h	.010	.020	.029	0.25	0.50	0.74
L	.016	.033	.050	0.41	0.84	1.27
ø	0	4	8	0	4	8
С	.009	.011	.012	0.23	0.27	0.30
В	.014	.017	.020	0.36	0.42	0.51
α	0	12	15	0	12	15
β	0	12	15	0	12	15
	A2 A1 E D h L C B α	A2 .088 A1 .004 E .394 E1 .291 D .446 h .010 L .016 ϕ 0 c .009 B .014 α 0	A2 .088 .091 A1 .004 .008 E .394 .407 E1 .291 .295 D .446 .454 h .010 .020 L .016 .033 ϕ 0 .4 c .009 .011 B .014 .017 α 0 .12	A2 .088 .091 .094 A1 .004 .008 .012 E .394 .407 .420 E1 .291 .295 .299 D .446 .454 .462 h .010 .020 .029 L .016 .033 .050 φ 0 4 8 c .009 .011 .012 B .014 .017 .020 α 0 12 15	A2.088.091.0942.24A1.004.008.0120.10E.394.407.42011.01E1.291.295.2997.39D.446.454.46211.33h.010.020.0290.25L.016.033.0500.41 ϕ 0480c.009.011.0120.23B.014.017.0200.36 α 012150	A2.088.091.0942.242.31A1.004.008.0120.100.20E.394.407.42011.0110.34E1.291.295.2997.397.49D.446.454.46211.3311.53h.010.020.0290.250.50L.016.033.0500.410.84 ϕ 04804c.009.011.0120.230.27B.014.017.0200.360.42 α 01215012

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

APPENDIX A: CODE FOR ACCESSING EEPROM DATA MEMORY

Please check our web site at www.microchip.com for code availability.

APPENDIX B:REVISION HISTORY

Revision D (January 2013)

Added a note to each package outline drawing.