

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

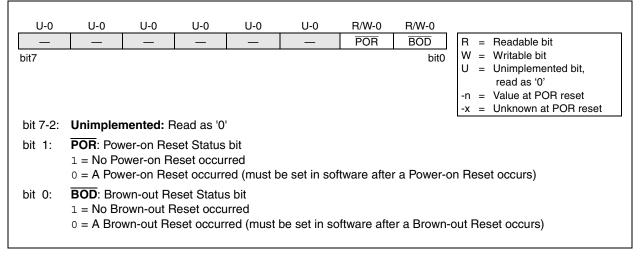
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce624-04-ss

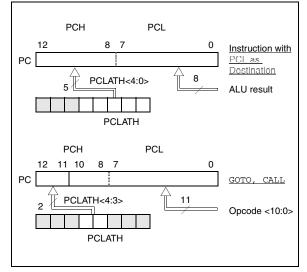
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).


REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

4.3 PCL and PCLATH

The program counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-6 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CE62X family has an 8 level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instruction/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

6.0 EEPROM PERIPHERAL OPERATION

The PIC16CE623/624/625 each have 128 bytes of EEPROM data memory. The EEPROM data memory supports a bi-directional, 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), and are mapped to bit1 and bit2, respectively, of the EEINTF register (SFR 90h). In addition, the power to the EEPROM can be controlled using bit0 (EEVDD) of the EEINTF register. For most applications, all that is required is calls to the following functions:

; ; ;	Byte_Write: Byte write routine Inputs: EEPROM Address EEADDR EEPROM Data EEDATA
;	Outputs: Return 01 in W if OK, else
΄.	return 00 in W
'	
i	- · · · · · · · · · · · · · · · · · · ·
;	Read_Current: Read EEPROM at address
C١	urrently held by EE device.
;	Inputs: NONE
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK, else
;	return 00 in W
;	
;	Read Random: Read EEPROM byte at supplied
;	address
;	Inputs: EEPROM Address EEADDR
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK,
	else return 00 in W
'	

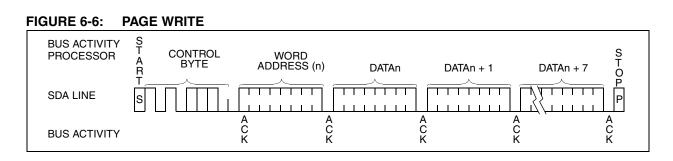
The code for these functions is available on our web site (www.microchip.com). The code will be accessed by either including the source code FL62XINC.ASM or by linking FLASH62X.ASM. FLASH62.IMC provides external definition to the calling program.

6.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the memory.

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

6.0.2 SERIAL CLOCK


This SCL input is used to synchronize the data transfer to and from the memory.

6.0.3 EEINTF REGISTER

The EEINTF register (SFR 90h) controls the access to the EEPROM. Register 6-1 details the function of each bit. User code must generate the clock and data signals.

REGISTER 6-1: EEINTF REGISTER (ADDRESS 90h)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1					
	_	_	_	_	EESCL	EESDA	EEVDD	R = Readable bit				
bit7 bit 7-3:	Unimpler	nented: F	lead as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 2:	Unimplemented: Read as '0' EESCL: Clock line to the EEPROM 1 = Clock high 0 = Clock low											
bit 1:	1 = Data I	 EESDA: Data line to EEPROM 1 = Data line is high (pin is tri-stated, line is pulled high by a pull-up resistor) 0 = Data line is low 										
bit 0:	EEVDD : VDD control bit for EEPROM 1 = VDD is turned on to EEPROM 0 = VDD is turned off to EEPROM (all pins are tri-stated and the EEPROM is powered down)											
Note:	EESDA, E	ESCL an	d EEVDD	will read '(0' if EEVDD	is turned c	off.					

6.5 <u>Read Operation</u>

Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the EEPROM address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

6.6 Current Address Read

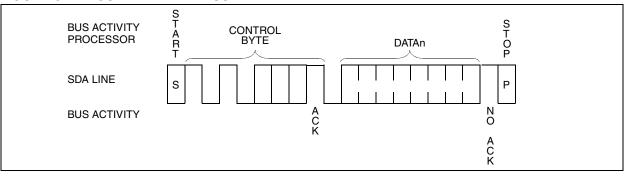
The EEPROM contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the EEPROM address with R/W bit set to one, the EEPROM issues an acknowledge and transmits the eight bit data word. The processor will not acknowledge the transfer, but does generate a stop condition and the EEPROM discontinues transmission (Figure 6-7).

6.7 Random Read

Random read operations allow the processor to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the EEPROM as part of a write operation. After the word address is sent, the processor generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the processor issues the control byte again, but with the R/W bit set to a one. The EEPROM will then issue an acknowledge and transmits the eight bit data word. The processor will not acknowledge the transfer, but does generate a stop condition and the EEPROM discontinues transmission (Figure 6-8).

6.8 Sequential Read

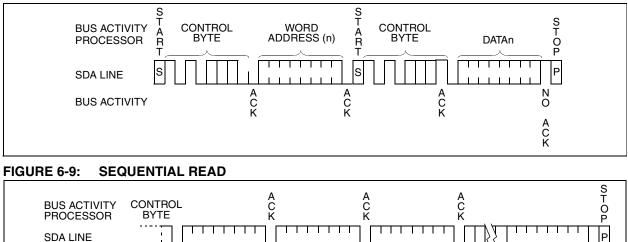
Sequential reads are initiated in the same way as a random read except that after the EEPROM transmits the first data byte, the processor issues an acknowledge as opposed to a stop condition in a random read. This directs the EEPROM to transmit the next sequentially addressed 8-bit word (Figure 6-9).


To provide sequential reads, the EEPROM contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.

6.9 Noise Protection

The EEPROM employs a Vcc threshold detector circuit, which disables the internal erase/write logic if the Vcc is below 1.5 volts at nominal conditions.

The SCL and SDA inputs have Schmitt trigger and filter circuits, which suppress noise spikes to assure proper device operation even on a noisy bus.


FIGURE 6-8: RANDOM READ

BUS ACTIVITY

. .

A C K

DATAn

DATAn + 1

DATAn + 2

N O

A C K

DATAn + X

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other Resets
CMCON	C2OUT	C1OUT		_	CIS	CM2	CM1	CM0	00 0000	00 0000
VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
PIR1	_	CMIF		_	_		_	_	-0	-0
PIE1	—	CMIE	—	—	—	—	—	—	-0	-0
TRISA	—	—	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
	CMCON VRCON INTCON PIR1 PIE1	CMCON C2OUT VRCON VREN INTCON GIE PIR1 PIE1	CMCONC2OUTC1OUTVRCONVRENVROEINTCONGIEPEIEPIR1—CMIFPIE1—CMIE	CMCONC2OUTC1OUTVRCONVRENVROEVRRINTCONGIEPEIETOIEPIR1CMIFPIE1CMIE	CMCONC2OUTC1OUT—VRCONVRENVROEVRR—INTCONGIEPEIETOIEINTEPIR1—CMIF——PIE1I—CMIEI	CMCONC2OUTC1OUT——CISVRCONVRENVROEVRR—VR3INTCONGIEPEIET0IEINTERBIEPIR1—CMIF———PIE1—CMIE———	CMCONC2OUTC1OUT——CISCM2VRCONVRENVROEVRR—VR3VR2INTCONGIEPEIETOIEINTERBIETOIFPIR1—CMIF————PIE1—CMIE————	CMCONC2OUTC1OUT——CISCM2CM1VRCONVRENVROEVRR—VR3VR2VR1INTCONGIEPEIET0IEINTERBIET0IFINTFPIR1—CMIF—————PIE1—CMIE—————	CMCONC2OUTC1OUT——CISCM2CM1CM0VRCONVRENVROEVRR—VR3VR2VR1VR0INTCONGIEPEIETOIEINTERBIETOIFINTFRBIFPIR1—CMIF——————PIE1—CMIE——————	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR CMCON C2OUT C1OUT — — CIS CM2 CM1 CM0 00 0000 VRCON VREN VROE VRR — VR3 VR2 VR1 VR0 000- 0000 INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF 0000 000x PIR1 — CMIE — — — — — - -0 -0 PIE1 — CMIE — — — — — - -0 -

TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: - = Unimplemented, read as "0", x = Unknown, u = unchanged

9.0 VOLTAGE REFERENCE MODULE

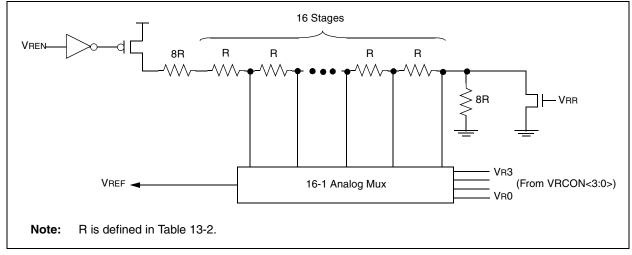
The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 9-1. The block diagram is given in Figure 9-1.

9.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD


if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

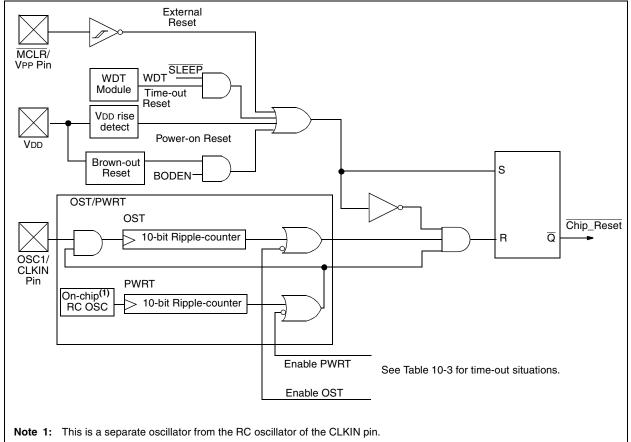
The setting time of the Voltage Reference must be considered when changing the VREF output (Table 13-1). Example 9-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VREN	VROE	Vrr	_	Vr3	VR2	VR1	VR0	R = Readable bit
bit7	•		•				bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:		Enable EF circuit p EF circuit p			IDD drain			
bit 6:		= Output E EF is outpu EF is disco	ut on RA	•	2 pin			
bit 5:		Range sel w Range gh Range	ection					
bit 4:	Unimplem	ented: Re	ad as '0	^{ji}				
bit 3-0:		VRR = 1: V	ref = (\	/R<3:0>/ 2	-	32) * Vdd		

REGISTER 9-1: VRCON REGISTER (ADDRESS 9Fh)

FIGURE 9-1: VOLTAGE REFERENCE BLOCK DIAGRAM

10.3 <u>Reset</u>


The PIC16CE62X differentiates between various kinds of reset:

- a) Power-on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOD)

Some registers are not affected in any reset condition. Their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on reset, MCLR reset, WDT reset and MCLR reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different reset situations as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-6.

The $\overline{\text{MCLR}}$ reset path has a noise filter to detect and ignore small pulses. See Table 13-5 for pulse width specification.

FIGURE 10-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 10-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set and the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

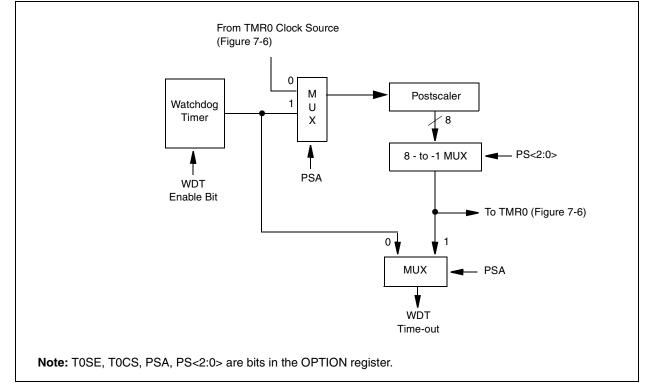
TABLE 10-6: INITIALIZATION CONDITION FOR REGISTERS

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	-	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	00h	-	-	-
TMR0	01h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	uuuu uuuu	นนนน นนนน
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	นนนน นนนน
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	x000 0000	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	นนนน นนนน
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
EEINTF	90h	111	111	111
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).


3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 10-5 for reset value for specific condition.

5: If wake-up was due to comparator input changing , then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If reset was due to brown-out, then PCON bit 0 = 0. All other resets will cause bit 0 = u.

FIGURE 10-17: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 10-18: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BOREN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: - = Unimplemented location, read as "0", + = Reserved for future use

Note: Shaded cells are not used by the Watchdog Timer.

TABLE 11-2: PIC16CE62X INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Status	Notes		
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						•	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SLEEP				1					1
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BTFSS	Bit Test	i, Skip if S	Set	
Syntax:	[<i>label</i>] B	TFSS f,b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b < 7 \end{array}$	7		
Operation:	skip if (f<	b>) = 1		
Status Affected:	None			
Encoding:	01	11bb	bfff	ffff
Description:	instruction If bit 'b' is ' fetched du execution, executed i	register 'f' is is skipped. 1', then the ring the cur is discarde nstead, ma instruction.	next instru rrent instru d and a No	uction Iction
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE
	Before In	struction		
	After Inst	ruction if FLAG<1> PC = a if FLAG<1>	= 0, address F	

CLRF	Clear f					
Syntax:	[label] CLRF f	_				
Operands:	$0 \leq f \leq 127$					
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	00 0001 1fff fff					
Description:	The contents of register 'f' are cleared and the Z bit is set.					
Words:	1					
Cycles:	1					
Example	CLRF FLAG_REG					
	Before Instruction FLAG_REG = 0x5A After Instruction					
	$FLAG_REG = 0x00$ $Z = 1$					

CALL	Call Subroutine				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \leq k \leq 2047$				
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$				
Status Affected:	None				
Encoding:	10 0kkk kkkk kkkk				
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.				
Words:	1				
Cycles:	2				
Example	HERE CALL THERE				
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1				

CLRW	Clear W		
Syntax:	[label] CLRW		
Operands:	None		
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Encoding:	00 0001	0000	0011
Description:	W register is cleare set.	d. Zero bit	(Z) is
Words:	1		
Cycles:	1		
Example	CLRW		
	Before Instruction W =	ו 0x5A	
	After Instruction		
	W = Z =	0x00 1	

 \odot 1998-2013 Microchip Technology Inc.

stand-alone mode the PRO MATE II can read, verify or program PIC devices. It can also set code-protect bits in this mode.

12.11 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PIC devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

12.12 <u>SIMICE Entry-Level</u> <u>Hardware Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB-SIM. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PIC 8-bit microcontrollers. SIM-ICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entry-level system development.

12.13 <u>PICDEM-1 Low-Cost PIC MCU</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

12.14 <u>PICDEM-2 Low-Cost PIC16CXX</u> <u>Demonstration Board</u>

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

12.15 <u>PICDEM-3 Low-Cost PIC16CXXX</u> <u>Demonstration Board</u>

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

12.16 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756, PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode, (Note 4)
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode, (Note 6)
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS osc mode
			-	4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WDT disabled*, HS osc mode
			-	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V
			-	-	5.0	μA	$VDD = 4.5V^*$
			_	-	9.0 15	μΑ μΑ	VDD = 5.5V VDD = 5.5V Extended
D022	ΔIWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD = 4.0V
					12	μΑ	(125°C)
D022A	Δ IBOR	Brown-out Reset Current (Note 5)	-	75	125	μA	$\overline{\text{BOD}}$ enabled, VDD = 5.0V
D023	∆ICOMP	Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	ΔIEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	∆IEE Read	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	$V_{CC} = 3.0V, EE V_{DD} = V_{CC}$
4.4	ΔIEE	Standby Current	-		100	μΑ	Vcc = 3.0V, EE VDD = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures
		RC Oscillator Operating Frequency XT Oscillator Operating Frequency	0 0	_	4	MHz MHz	All temperatures All temperatures
		HS Oscillator Operating Frequency	0		4 20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

TABLE 13-1: COMPARATOR SPECIFICATIONS

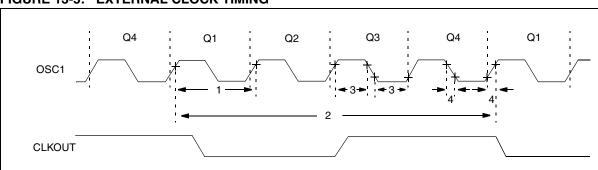
Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D300	Input offset voltage	VIOFF		± 5.0	± 10	mV	
D301	Input common mode voltage	VICM	0		Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
300	Response Time ⁽¹⁾	TRESP		150*	400*	ns	PIC16CE62X
301	Comparator Mode Change to Output Valid	Тмс2ov			10*	μS	

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. .

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 13-2: VOLTAGE REFERENCE SPECIFICATIONS


Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.

Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D310	Resolution	VRES	VDD/24		Vdd/32	LSB	
D311	Absolute Accuracy	Vraa			<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
D312	Unit Resistor Value (R)	VRur		2K*		Ω	Figure 9-1
310	Settling Time ⁽¹⁾	TSET			10*	μS	

* These parameters are characterized but not tested.

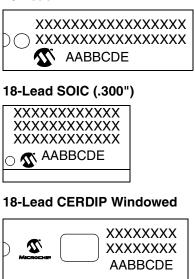
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-5: EXTERNAL CLOCK TIMING

TABLE 13-3: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode, VDD=5.0V
		(Note 1)	DC	—	20	MHz	HS osc mode
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode, VDD=5.0V
		(Note 1)	0.1	—	4	MHz	XT osc mode
			1	—	20	MHz	HS osc mode
			DC	-	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	_	ns	XT and RC osc mode
		(Note 1)	50	—	—	ns	HS osc mode
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			50	—	1,000	ns	HS osc mode
			5	—	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy=Fosc/4
3*	TosL,	External Clock in (OSC1) High or	100*	—	—	ns	XT oscillator, Tosc L/H duty cycle
	TosH	Low Time	2*	—	—	μs	LP oscillator, Tosc L/H duty cycle
			20*		—	ns	HS oscillator, Tosc L/H duty cycle
4*	TosR,	External Clock in (OSC1) Rise or	25*	—	—	ns	XT oscillator
	TosF	Fall Time	50*	—	—	ns	LP oscillator
			15*	—	—	ns	HS oscillator

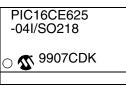

These parameters are characterized but not tested.

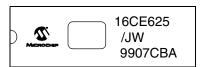
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

14.1 Package Marking Information


18-Lead PDIP


20-Lead SSOP


Example

Example

Example

Example

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

NOTES:

INDEX

Α	
ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	7
Assembler	
MPASM Assembler	77
в	

В

BCF Instruction	
Block Diagram	
TIMER0	35
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	
BSF Instruction	68
BTFSC Instruction	
BTFSS Instruction	
С	

CALL Instruction	
Clocking Scheme/Instruction Cycle	10
CLRF Instruction	
CLRW Instruction	69
CLRWDT Instruction	70
CMCON Register	
Code Protection	
COMF Instruction	
Comparator Configuration	42
Comparator Interrupts	
Comparator Module	41
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	47
Crystal Operation	51
_	

D

Data Memory Organization	12
DECF Instruction	
DECFSZ Instruction	70
Development Support	77
E	

Е

EEPROM Peripheral Operation	29
Errata	2
External Crystal Oscillator Circuit	52

G

General purpose Register File	12
GOTO Instruction	71

L

I/O Ports	23
I/O Programming Considerations	
ID Locations	64
INCF Instruction	
INCFSZ Instruction	71
In-Circuit Serial Programming	64
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	10
Instruction Set	
ADDLW	67
ADDWF	67
ANDLW	
ANDWF	67
BCF	
BSF	
-	

BTFSC	68
BTFSS	69
CALL	
CLRF	
CLRW	
COMF	
DECF	
DECFSZ	70
GOTO	
INCFSZIORLW	
IORWF	
MOVF	
MOVLW	72
MOVWF	72
NOP	-
OPTION	
RETFIE RETLW	
RETURN	-
RLF	
RRF	
SLEEP	74
SUBLW	
SUBWF SWAPF	-
TRIS	
XORLW	
XORLW	-
XORWF Instruction Set Summary	76 65
XORWF Instruction Set Summary INT Interrupt	76 65 60
XORWF Instruction Set Summary INT Interrupt INTCON Register	76 65 60 17
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts	76 65 60 17 59
XORWF Instruction Set Summary INT Interrupt INTCON Register	76 65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction	76 65 60 17 59 71
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K	76 65 60 17 59 71 72
XORWF	76 65 60 17 59 71 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	76 65 60 17 59 71 72 80
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction	76 65 60 17 59 71 72 80 72
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M	76 65 60 17 59 71 72 80 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77
XORWF	76 65 60 17 59 71 72 80 72 72 72 72 77 73
XORWF Instruction Set Summary INT Interrupt INTCON Register Interrupts IORLW Instruction IORWF Instruction K KeeLoq® Evaluation and Programming Tools M MOVF Instruction MOVLW Instruction MOVLW Instruction MOVLW Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVWF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction MOVMF Instruction	76 65 60 17 59 71 72 80 72 72 72 72 77 73
XORWF	76 65 60 17 59 71 72 80 72 72 72 77 73 . 5 73 16
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 . 5 73 16 51
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 . 5 73 16 51
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54 01
XORWF	76 65 60 17 59 71 72 80 72 72 77 73 .5 73 16 51 54 01 97
XORWF	76 660 17 59 71 72 80 72 72 72 77 73 .5 73 16 51 54 01 97 20
XORWF	76 660 17 59 71 72 80 72 72 77 73 .5 73 61 51 54 01 97 20 19
XORWF	76 600 65 600 177 80 727 77 73 .573 161 514 01 97 79 79

PICSTART® Plus Entry Level Development System 79 PIE1 Register 18 PIR1 Register 18

NOTES: