

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014112	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce625-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16CE62X FAMILY OF DEVICES

		PIC16CE623	PIC16CE624	PIC16CE625
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Momoriy	EPROM Program Memory (x14 words)	512	1K	2K
Memory	Data Memory (bytes)	96	96	128
	EEPROM Data Memory (bytes)	128	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
Peripherais	Comparators(s)	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes
	Interrupt Sources	4	4	4
	I/O Pins	13	13	13
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
Features	Brown-out Reset	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CE62X Family devices use serial programming with clock pin RB6 and data pin RB7.

NOTES:

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the status register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any status bit. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

Note 1:	The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16CE62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
Note 2:	The <u>C</u> and <u>DC</u> bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	W U -n	= = =	Readable bit Writable bit Unimplemented bit, read as '0' Value at POR reset Unknown at POR reset
bit 7:	IRP: The I	RP bit is r	eserved o	n the PIC1	6CE62X, al	lways main	itain this bit			Unknown at FUR leset
bit 6:5	11 = Bank 10 = Bank 01 = Bank 00 = Bank	: 3 (180h - : 2 (100h - : 1 (80h - F : 0 (00h - 7	1FFh) 17Fh) FFh) 7Fh)		ed for direct		-	clear	<i>.</i>	
bit 4:	TO : Time- 1 = After p 0 = A WD	ower-up,		struction,	or sleep in	struction				
bit 3:	PD : Power 1 = After p 0 = By exe	ower-up o	or by the C							
bit 2:		sult of an			peration is z peration is r					
bit 1:	1 = A carry	y-out from	the 4th lo	w order bit	N, SUBLW, S t of the resu bit of the res	It occurred		or bor	row	the polarity is reversed)
bit 0:	1 = A carry 0 = No car Note: For	y-out from rry-out from borrow the erand. Fo	the most m the mos e polarity i	significant t significar s reversed		esult occurr result occu ion is exec	ed rred uted by add			two's complement of the high or low order bit of

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT (PSA = 1).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

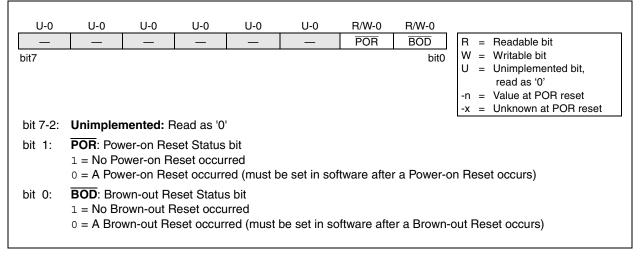
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset
bit 7:	RBPU : PO 1 = PORTE 0 = PORTE	3 pull-ups	are disal	oled	lividual port	latch valu	es	
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	ot on rising	g edge o	f RB0/INT				
bit 5:	TOCS : TMF 1 = Transiti 0 = Interna	ion on RA	4/T0CKI	pin	(OUT)			
bit 4:		ent on hig	h-to-low	transition	on RA4/T0 on RA4/T0			
bit 3:	PSA : Prese 1 = Presca 0 = Presca	ler is assi	gned to t	he WDT) module			
bit 2-0:	PS<2:0> : F	Prescaler I	Rate Sele	ect bits				
	Bit Value	TMR0 Ra	te WD1	Γ Rate				
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 3 1 :	2 4				

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset
bit 7:			masked in					
bit 6:		es all un-r	terrupt En masked pe ipheral int	eripheral ir	nterrupts			
bit 5:		es the TN	ow Interrup IR0 interru IR0 interru	ıpt	bit			
bit 4:		es the RB	ernal Inter 0/INT exte 30/INT ext	ernal interi	rupt			
bit 3:		es the RB	nge Interr port char 3 port cha	ige interru	pt			
bit 2:) register l		wed (mus	t be cleare	d in softwa	ure)	
bit 1:		RB0/INT e		errupt occ	urred (must	t be cleare	d in softwar	re)
bit 0:		at least c	one of the	RB<7:4> p		•	ust be clea	red in software)

4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset, an external $\overline{\text{MCLR}}$ reset, WDT reset or a Brown-out Reset.

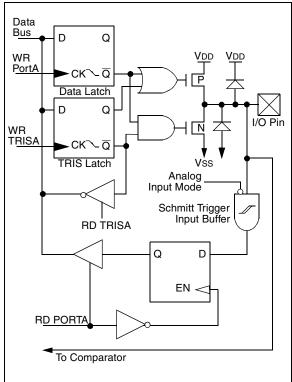
Note:	BOD is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent resets to see if BOD is
	cleared, indicating a brown-out has
	occurred. The BOD status bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

5.0 I/O PORTS

The PIC16CE62X parts have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the TOCKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a hi- impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

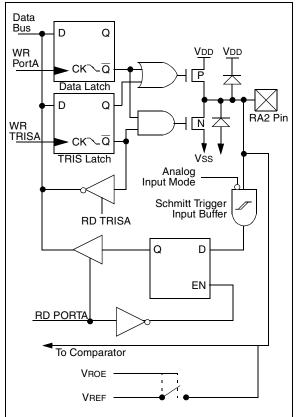
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (Comparator Control Register) register and the VRCON (Voltage Reference Control Register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA<1:0> PINS

Note:	On reset, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA		;Initialize PORTA by setting ;output data latches
MOVLW	0X07		;Turn comparators off and
MOVWF	CMCON		;enable pins for I/O
			;functions
BSF	STATUS,	RP0	;Select Bank1
MOVLW	0x1F		;Value used to initialize
			;data direction
MOVWF	TRISA		;Set RA<4:0> as inputs
			;TRISA<7:5> are always
			;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

^{© 1998-2013} Microchip Technology Inc.

6.0 EEPROM PERIPHERAL OPERATION

The PIC16CE623/624/625 each have 128 bytes of EEPROM data memory. The EEPROM data memory supports a bi-directional, 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), and are mapped to bit1 and bit2, respectively, of the EEINTF register (SFR 90h). In addition, the power to the EEPROM can be controlled using bit0 (EEVDD) of the EEINTF register. For most applications, all that is required is calls to the following functions:

; ; ;	Byte_Write: Byte write routine Inputs: EEPROM Address EEADDR EEPROM Data EEDATA
;	Outputs: Return 01 in W if OK, else
΄.	return 00 in W
'	
i	- · · · · · · · · · · · · · · · · · · ·
;	Read_Current: Read EEPROM at address
C١	urrently held by EE device.
;	Inputs: NONE
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK, else
;	return 00 in W
;	
;	Read Random: Read EEPROM byte at supplied
;	address
;	Inputs: EEPROM Address EEADDR
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK,
	else return 00 in W
'	

The code for these functions is available on our web site (www.microchip.com). The code will be accessed by either including the source code FL62XINC.ASM or by linking FLASH62X.ASM. FLASH62.IMC provides external definition to the calling program.

6.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the memory.

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

6.0.2 SERIAL CLOCK

This SCL input is used to synchronize the data transfer to and from the memory.

6.0.3 EEINTF REGISTER

The EEINTF register (SFR 90h) controls the access to the EEPROM. Register 6-1 details the function of each bit. User code must generate the clock and data signals.

REGISTER 6-1: EEINTF REGISTER (ADDRESS 90h)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	
	_	_	_	_	EESCL	EESDA	EEVDD	R = Readable bit
bit7 bit 7-3:	Unimpler	nented: F	lead as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 2:	EESCL : 0 1 = Clock 0 = Clock	high	o the EEF	PROM				
bit 1:	EESDA : [1 = Data 0 = Data	ine is high			ne is pulled	high by a p	oull-up resi	stor)
bit 0:	EEVDD : V 1 = VDD is 0 = VDD is	s turned o	n to EEPF	OM	ins are tri-s	tated and t	he EEPRC	0M is powered down)
Note:	EESDA, E	ESCL an	d EEVDD	will read '(0' if EEVDD	is turned c	off.	

8.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be reset by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

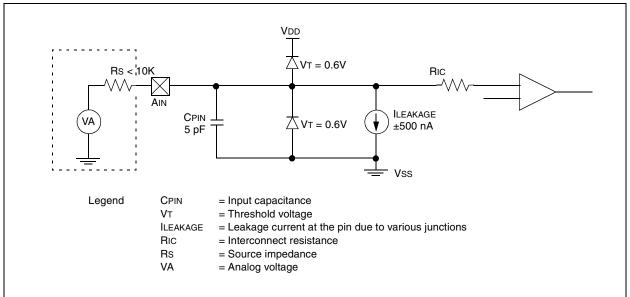
Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<6>) interrupt flag may not get set.

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

8.7 <u>Comparator Operation During SLEEP</u>


When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher sleep currents than shown in the power down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering sleep. If the device wakes-up from sleep, the contents of the CMCON register are not affected.

8.8 Effects of a RESET

A device reset forces the CMCON register to its reset state. This forces the comparator module to be in the comparator reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at reset time. The comparators will be powered-down during the reset interval.

8.9 <u>Analog Input Connection</u> <u>Considerations</u>

A simplified circuit for an analog input is shown in Figure 8-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 8-4: ANALOG INPUT MODEL

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

REGISTER 10-1: CONFIGURATION WORD

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1 CP	0 ⁽²⁾ CP1 C	_{CP0} (2)	CP1	CP0 ⁽²⁾	_	BODEN ⁽¹⁾	CP1	CP0 ⁽²⁾	PWRTE(1) WDTE	F0SC1	F0SC0	CONFIG	Addres
bit13												bit0	REGISTER	8: 2007
bit 13-8,	CP1:CP0 Pa	irs: Cod	le prote	ection bit	pairs	(2)								
5-4:	· · · · •													
	11 = Progra			•		n off								
	10 = 0400h													
	01 = 0200h- 00 = 0000h-													
	Code prote					morv								
	11 = Progra													
	10 =Program													
	01 = 0200h-													
	00 = 0000h-													
	Code prote 11 = Progra					-								
	11 = Progra 10 = Progra			•										
	01 = Progra			•										
	00 = 0000h-	-01FFh	code	, protecte	d									
bit 7:	Unimpleme	ented: F	Read a	s '1'										
bit 6:	BODEN: Bro	own-ou	t Rese	t Enable	e bit (1)								
	1 = BOD en													
	0 = BOD dis	sabled												
bit 3:	PWRTE: Po	wer-up	Timer	Enable	bit (1)								
	1 = PWRT c		-											
	0 = PWRT 6	enabled												
bit 2:	WDTE: Wat	-	Timer	Enable I	oit									
	1 = WDT en													
	0 = WDT dis	sabled												
bit 1-0:	FOSC1:FOS		scillato	or Select	ion b	its								
	11 = RC osc													
	10 = HS oscillations 01 = XT													
	01 = LP osc													
													_	
Note 1:											ardless o	of the valu	e of bit PWR	TĒ.
0.	Ensure the I		•								ata ati a -	oobome l	inted	
2:	All of the CF	<1:0>	pairs r	ave to t	e giv	en trie sa	ine va	iue io er	iable the	coue pr	olection	scheme i	ISIEU.	

TABLE 11-2: PIC16CE62X INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	e	Status	Notes
Operands				MSb	MSb		LSb	Affected	
BYTE-ORIE	INTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS		•					
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
	-	Return from Subroutine	2	00	0000	0000	1000		
RETURN			1	1				I	1
	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
RETURN	- k	Go into standby mode Subtract W from literal	1	00 11	0000 110x		0011 kkkk	TO,PD C,DC,Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

RETURN	Return from Subroutine	RRF	Rotate Right f through Carry
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$		$d \in [0,1]$
Status Affected:	None	Operation:	See description below
Encoding:	00 0000 0000 1000	Status Affected:	С
Description:	Return from subroutine. The stack is	Encoding:	00 1100 dfff ffff
	POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is
Words:	1		placed back in register 'f'.
Cycles: Example	2 RETURN		C Register f
	After Interrupt	Words:	1
	PC = TOS	Cycles:	1
		Example	RRF REG1,0
			Before Instruction REG1 = 1110 0110 C = 0 - - After Instruction - - - - REG1 = 1110 0110 - W = 0111 0011 - C = 0 - -

Rotate L	eft f thre	ough	Carr	у
[label]	RLF	f,d		
$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	27			
See desc	cription b	elow		
С				
00	1101	dff	f	ffff
one bit to t Flag. If 'd' the W regi	the left th is 0, the r ster. If 'd' k in regis	rough result i is 1, t ster 'f'.	the Ca is plac he res	arry ed in
1				
1				
RLF	REG	G1,0		
20.010	REG1 C	ן = =	1110 0	0110
	$\begin{bmatrix} label \\ 0 \le f \le 12 \\ d \in [0,1] \\ See desc \\ C \\ \hline 00 \\ \hline The conte \\ one bit to \\ Flag. If 'd' \\ the W registored back \\ \hline C \\ 1 \\ 1 \\ RLF \\ Before In \\ \hline C \\ RLF \\ C \\ $	$\begin{bmatrix} label \end{bmatrix} \text{ RLF} \\ 0 \le f \le 127 \\ d \in [0,1] \\ \text{See description b} \\ C \\ \hline 00 1101 \\ \text{The contents of reg} \\ \text{one bit to the left th} \\ \text{Flag. If 'd' is 0, the ist the W register. If 'd' stored back in register \\ \text{the W register. If 'd' stored back in register } \\ \hline 1 \\ 1 \\ \text{RLF} \\ \text{RLF} \\ \text{REG1} \\ C \\ \text{C} \\ \end{bmatrix}$	$\begin{bmatrix} label \end{bmatrix} & \text{RLF} & \text{f,d} \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ \text{See description below} \\ \hline \\ \hline \\ \hline \\ 00 & 1101 & \text{dff} \\ \hline \\ \hline \\ The contents of register 'f' \\ one bit to the left through \\ \hline \\ Flag. If 'd' is 0, the result is the W register. If 'd' is 1, the W register. If 'd' is 1, the W register 'f'. \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ RLF & REG1, 0 \\ \hline \\ Before Instruction \\ \hline \\ \\ REG1 & = \\ \hline \\ C & = \\ \hline \end{bmatrix}$	$0 \le f \le 127$ $d \in [0,1]$ See description below C 00 1101 dfff The contents of register 'f' are r one bit to the left through the C. Flag. If 'd' is 0, the result is place the W register. If 'd' is 1, the res- stored back in register 'f'. C Register f 1 1 RLF REG1, 0 Before Instruction REG1 = 1110 C = 0

SLEEP

02221	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Encoding:	00 0000 0110 0011
Description:	The power-down status bit, \overrightarrow{PD} is cleared. Time-out status bit, \overrightarrow{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.8 for more details.
Words:	1
Cycles:	1
Example:	SLEEP

stand-alone mode the PRO MATE II can read, verify or program PIC devices. It can also set code-protect bits in this mode.

12.11 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PIC devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

12.12 <u>SIMICE Entry-Level</u> <u>Hardware Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB-SIM. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PIC 8-bit microcontrollers. SIM-ICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entry-level system development.

12.13 <u>PICDEM-1 Low-Cost PIC MCU</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

12.14 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

12.15 <u>PICDEM-3 Low-Cost PIC16CXXX</u> <u>Demonstration Board</u>

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

12.16 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756, PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC120	PIC14	PIC160	PIC160	PIC16C	PIC16F	PIC160	DICI6C	PIC160	PIC16F8	PIC16C	DTFDIG	20712JI9	PIC18C)	83CX) 52CX) 54CX)	кхээн	МСВFX	MCP25
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
												>	>					
MPLAB [®] C18 Compiler														>				
B MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
2 MPLAB [®] -ICE	>	>	>	>	>	**`	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	>	~	>		>	>	~		>	~	~					
E ICEPIC™ Low-Cost III In-Circuit Emulator	`		~	>	>		>	>	>		`							
MPLAB [®] -ICD In-Circuit Debugger Debugger				*>			*			>								
20 PICSTART®Plus E Low-Cost Universal Dev. Kit	~	>	~	>	`	×**	~	`	`	~	~	>	`	`				
ସେମ୍ବର MATE® I Universal Programmer ଦ	>	>	>	>	>	**/	>	>	>	>	>	>	~	~	>	>		
SIMICE	>		>															
PICDEM-1			>		>		۲ ⁺		>			>						
PICDEM-2				à			<↓ ↓							~				
2 PICDEM-3											~							
PICDEM-14A		>																
PICDEM-17													~					
KEELOQ® Evaluation Kit																`		
KEELOQ Transponder Kit																>		
microlD™ Programmer's Kit																	~	
125 kHz microID Developer's Kit																	>	
25 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microlD Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

ğ Contact Microcrip reciniology inc. for availability [†] Development tool is available on select devices.

13.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to VSS	0 to +7.0V
Voltage on RA4 with respect to Vss	8.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (VI <0 or VI> VDD)	±20 mA
Output Clamp Current, IOK (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) = 100 + \sum IOH}	$x \text{ IOH} + \sum (\text{VOI } x \text{ IOL})$

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100³/₄ should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 13-1: COMPARATOR SPECIFICATIONS

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D300	Input offset voltage	VIOFF		± 5.0	± 10	mV	
D301	Input common mode voltage	VICM	0		Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
300	Response Time ⁽¹⁾	TRESP		150*	400*	ns	PIC16CE62X
301	Comparator Mode Change to Output Valid	Тмс2ov			10*	μS	

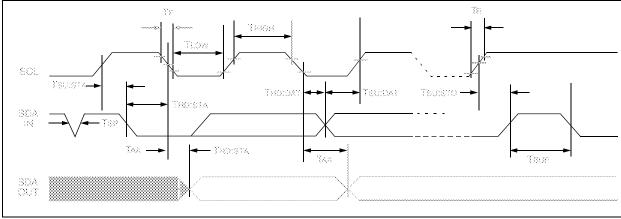
Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. .

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 13-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.


Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D310	Resolution	VRES	VDD/24		Vdd/32	LSB	
D311	Absolute Accuracy	Vraa			<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
D312	Unit Resistor Value (R)	VRur		2K*		Ω	Figure 9-1
310	Settling Time ⁽¹⁾	TSET			10*	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

13.6 EEPROM Timing

Parameter	Symbol	STANE MOI		Vcc = 4.5 FAST N		Units	Remarks
		Min.	Max.	Min.	Max.		
Clock frequency	FCLK		100		400	kHz	
Clock high time	THIGH	4000	_	600	_	ns	
Clock low time	TLOW	4700	_	1300	—	ns	
SDA and SCL rise time	TR		1000	_	300	ns	(Note 1)
SDA and SCL fall time	TF	_	300	_	300	ns	(Note 1)
START condition hold time	THD:STA	4000	—	600	—	ns	After this period the first clock pulse is generated
START condition setup time	TSU:STA	4700	—	600	—	ns	Only relevant for repeated START condition
Data input hold time	THD:DAT	0		0		ns	(Note 2)
Data input setup time	TSU:DAT	250	_	100	_	ns	
STOP condition setup time	Tsu:sto	4000	_	600	_	ns	
Output valid from clock	TAA		3500	—	900	ns	(Note 2)
Bus free time	TBUF	4700	_	1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from VIH minimum to VIL maximum	TOF	_	250	20 + 0.1 CB	250	ns	(Note 1), $CB \le 100 \text{ pF}$
Input filter spike suppression (SDA and SCL pins)	TSP	_	50	_	50	ns	(Note 3)
Write cycle time	Twr	_	10		10	ms	Byte or Page mode
Endurance		10M 1M	—	10M 1M	_	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)

TABLE 13-7: AC CHARACTERISTICS

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Limits n	MIN	NOM				
n		110101	MAX	MIN	NOM	MAX
		18			18	
р		.050			1.27	
А	.093	.099	.104	2.36	2.50	2.64
A2	.088	.091	.094	2.24	2.31	2.39
A1	.004	.008	.012	0.10	0.20	0.30
Е	.394	.407	.420	10.01	10.34	10.67
E1	.291	.295	.299	7.39	7.49	7.59
D	.446	.454	.462	11.33	11.53	11.73
h	.010	.020	.029	0.25	0.50	0.74
L	.016	.033	.050	0.41	0.84	1.27
ø	0	4	8	0	4	8
С	.009	.011	.012	0.23	0.27	0.30
В	.014	.017	.020	0.36	0.42	0.51
α	0	12	15	0	12	15
β	0	12	15	0	12	15
	A2 A1 E D h L C B α	A2 .088 A1 .004 E .394 E1 .291 D .446 h .010 L .016 ϕ 0 c .009 B .014 α 0	A2 .088 .091 A1 .004 .008 E .394 .407 E1 .291 .295 D .446 .454 h .010 .020 L .016 .033 ϕ 0 .4 c .009 .011 B .014 .017 α 0 .12	A2 .088 .091 .094 A1 .004 .008 .012 E .394 .407 .420 E1 .291 .295 .299 D .446 .454 .462 h .010 .020 .029 L .016 .033 .050 φ 0 4 8 c .009 .011 .012 B .014 .017 .020 α 0 12 15	A2.088.091.0942.24A1.004.008.0120.10E.394.407.42011.01E1.291.295.2997.39D.446.454.46211.33h.010.020.0290.25L.016.033.0500.41 ϕ 0480c.009.011.0120.23B.014.017.0200.36 α 012150	A2.088.091.0942.242.31A1.004.008.0120.100.20E.394.407.42011.0110.34E1.291.295.2997.397.49D.446.454.46211.3311.53h.010.020.0290.250.50L.016.033.0500.410.84 ϕ 04804c.009.011.0120.230.27B.014.017.0200.360.42 α 01215012

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

NOTES:

NOTES: