

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce625-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	3
2.0	PIC16CE62X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	11
5.0	I/O Ports	
6.0	EEPROM Peripheral Operation	29
7.0	Timer0 Module	
8.0	Comparator Module	41
9.0	Voltage Reference Module	47
10.0	Special Features of the CPU	49
11.0	Instruction Set Summary	65
	Development Support	
	Electrical Specifications	
14.0	Packaging Information	97
Appe	ndix A: Code for Accessing EEPROM Data Memory	103
Index		105
On Li	ne Support	. 107
Read	ne Support er Response	108
PIC1	6CE62X Product Identification System	. 109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CE62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CE62X uses a Harvard architecture in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single-cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM) and non-volatile memory (EEPROM) for each PIC16CE62X device.

Device	Program Memory	RAM Data Memory	EEPROM Data Memory
PIC16CE623	512x14	96x8	128x8
PIC16CE624	1Kx14	96x8	128x8
PIC16CE625	2Kx14	128x8	128x8

The PIC16CE62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CE62X family has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CE62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16CE62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

4.2 Data Memory Organization

The data memory (Figure 4-4 and Figure 4-5) is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16CE625 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In all three microcontrollers, address space F0h-FFh (Bank1) is mapped to 70-7Fh (Bank0) as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 96×8 in the PIC16CE623/624 and 128 x 8 in the PIC16CE625. Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The special registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 M	odule's Reg	jister						xxxx xxxx	uuuu uuuu
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address p	ointer		I		I	xxxx xxxx	uuuu uuuu
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	Unimplemented		1		1		1		1	-	-
08h	Unimplemented									-	_
09h	Unimplemented									-	_
0Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
0Dh-1Eh	Unimplemented									—	_
1Fh	CMCON	C2OUT	C10UT	_		CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte	1		1	0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address p	ointer		1		1	xxxx xxxx	uuuu uuuu
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	Unimplemented									-	-
88h	Unimplemented									-	-
89h	Unimplemented									-	-
8Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	CMIE	_	—	_	—	_	—	-0	-0
8Dh	Unimplemented									-	-
8Eh	PCON	—	—	—	_	—	—	POR	BOD	0x	uq
8Fh-9Eh	Unimplemented									-	-
90h	EEINTF	—	—	—	_	—	EESCL	EESDA	EEVDD	111	111
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16CE62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

Note 2: IRP & RPI bits are reserved; always maintain these bits clear.

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the status register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any status bit. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

Note 1:	The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16CE62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
Note 2:	The <u>C</u> and <u>DC</u> bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	W U -n	= = =	Readable bit Writable bit Unimplemented bit, read as '0' Value at POR reset Unknown at POR reset
bit 7:	IRP: The I	RP bit is r	eserved o	n the PIC1	6CE62X, al	lways main	itain this bit			Unknown at FUR leset
bit 6:5										
bit 4:	TO : Time- 1 = After p 0 = A WD	ower-up,		struction,	or sleep in	struction				
bit 3:	PD : Power 1 = After p 0 = By exe	ower-up o	or by the C							
bit 2:		sult of an			peration is z peration is r					
bit 1:	 0 = The result of an arithmetic or logic operation is not zero DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 									
bit 0:										

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT (PSA = 1).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset
bit 7:	RBPU : PO 1 = PORTE 0 = PORTE	3 pull-ups	are disal	oled	lividual port	latch valu	es	
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	ot on rising	g edge o	f RB0/INT				
bit 5:	TOCS : TMF 1 = Transiti 0 = Interna	ion on RA	4/T0CKI	pin	(OUT)			
bit 4:		ent on hig	h-to-low	transition	on RA4/T0 on RA4/T0			
bit 3:	PSA : Prese 1 = Presca 0 = Presca	ler is assi	gned to t	he WDT) module			
bit 2-0:	PS<2:0> : F	Prescaler I	Rate Sele	ect bits				
	Bit Value	TMR0 Ra	te WD1	Γ Rate				
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 3 1 :	2 4				

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x			
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset -x = Unknown at POR reset		
bit 7:	GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts									
bit 6:	 Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts 									
bit 5:	TolE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt									
bit 4:		es the RB	ernal Inter 0/INT exte 30/INT ext	ernal interi	rupt					
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt									
bit 2:	TOIF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow									
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur									
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = When at least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state									

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4: PIE1 REGISTER (ADDRESS 8CH)

4.2.2.5 PIR1 REGISTER

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt					
	condition occurs, regardless of the state of					
	its corresponding enable bit or the global					
	enable bit, GIE (INTCON<7>). User					
	software should ensure the appropriate					
	interrupt flag bits are clear prior to enabling					
	an interrupt.					

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a high impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the \overline{RBPU} (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins of RB<7:4> are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes".)

Note:	If a change on the I/O pin should occur				
	when the read operation is being executed				
	(start of the Q2 cycle), then the RBIF inter-				
	rupt flag may not get set.				

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 6-8: RANDOM READ

BUS ACTIVITY

. .

A C K

DATAn

DATAn + 1

DATAn + 2

N O

A C K

DATAn + X

FIGURE 7-4: TIMER0 INTERRUPT TIMING

10.5 Interrupts

The PIC16CE62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PortB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which re-enable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source(s) of

the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs (Figure 10-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

FIGURE 10-15: INTERRUPT LOGIC

11.1 Instruction Descriptions

ADDLW	Add Lite	ral and V	w		
Syntax:	[label] A	ADDLW	k		
Operands:	$0 \le k \le 25$	55			
Operation:	(W) + k –	→ (W)			
Status Affected:	C, DC, Z				
Encoding:	11	111x	kkkk	kkkk	
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW	0x15			
	After Inst	W =	0x10 0x25		

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3 After Instruction W = 0x03

ADDWF	Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(W) + (f) \to (dest)$						
Status Affected:	C, DC, Z						
Encoding:	00 0111 dfff ffff						
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ADDWF FSR, 0						
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2						

ANDWF	AND W with f						
Syntax:	[label] ANDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .AND. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0101 dfff ffff						
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ANDWF FSR, 1						
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02						

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] GOTO k	Syntax:	[label] INCFSZ f,d			
Operands:	$0 \le k \le 2047$	Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1]\\ (f)+1\rightarrow (dest), skip if result=0 \end{array}$			
Operation:	$k \rightarrow PC < 10:0 >$					
•	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:				
Status Affected:	None	Status Affected:	None			
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff			
Description: Words: Cycles:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. 1	upper bits of ATH<4:3>.	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.			
Example	GOTO THERE	Words:	1			
	After Instruction PC = Address THERE	Cycles:	1(2)			
	TO - Addless There	Example	HERE INCFSZ CNT, 1 GOTO LOOP			
			CONTINUE • •			
			•			

 $\begin{array}{rcl} Before \ Instruction \\ PC &= & address \ HERE \\ After \ Instruction \\ CNT &= & CNT + 1 \\ if \ CNT = & 0, \\ PC &= & address \ CONTINUE \\ if \ CNT \neq & 0, \\ PC &= & address \ HERE \ +1 \\ \end{array}$

INCF	Increment f								
Syntax:	[label] INCF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) + 1 \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 1010 dfff ffff								
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
Words:	1								
Cycles:	1								
Example	INCF CNT, 1								
	Before Instruction $CNT = 0xFF$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$								

IORLW	Inclusive OR Literal with W							
Syntax:	[<i>label</i>] IORLW k							
Operands:	$0 \le k \le 255$							
Operation:	(W) .OR. $k \rightarrow$ (W)							
Status Affected:	Z							
Encoding:	11 1000 kkkk kkkk							
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Example	IORLW 0x35							
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1							

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

12.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

12.6 <u>MPLAB-ICE High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PIC microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PIC MCU.

12.7 PICMASTER/PICMASTER CE

The PICMASTER system from Microchip Technology is a full-featured, professional quality emulator system. This flexible in-circuit emulator provides a high-quality, universal platform for emulating Microchip 8-bit PIC microcontrollers (MCUs). PICMASTER systems are sold worldwide, with a CE compliant model available for European Union (EU) countries.

12.8 <u>ICEPIC</u>

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-timeprogrammable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

12.9 MPLAB-ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost run-time development tool. This tool is based on the flash PIC16F877 and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. MPLAB-ICD utilizes the In-Circuit Debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming protocol, offers cost-effective in-circuit flash programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB-ICD is also a programmer for the flash PIC16F87X family.

12.10 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS			n d Ope		e	tions (unless otherwise stated) $-40^{\circ}C$ $\leq Ta \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq Ta \leq +70^{\circ}C$ for commercial and $-40^{\circ}C$ $\leq Ta \leq +125^{\circ}C$ for extended			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3		
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared		
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*		
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode, (Note 4)		
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode, (Note 6)		
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS osc mode		
			-	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS osc mode		
			-	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode		
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V		
			-	-	5.0	μA	VDD = 4.5V*		
			_	-	9.0 15	μΑ μΑ	VDD = 5.5V VDD = 5.5V Extended		
D022	ΔIWDT	WDT Current (Note 5)	- 1	6.0	10	μΑ	VDD = 4.0V		
					12	μA	(125°C)		
D022A	Δ IBOR	Brown-out Reset Current (Note 5)	-	75	125	μA	$\overline{\text{BOD}}$ enabled, VDD = 5.0V		
D023	∆ICOMP	Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V		
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V		
	$\Delta \text{IEE Write}$	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz		
	Δ IEE Read	Operating Current	-		1	mA			
	ΔIEE	Standby Current	-		30	μA	$V_{CC} = 3.0V, EE V_{DD} = V_{CC}$		
4.4	ΔIEE	Standby Current	-		100	μΑ	Vcc = 3.0V, EE VDD = Vcc		
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures		
		RC Oscillator Operating Frequency XT Oscillator Operating Frequency	0 0	_	4	MHz MHz	All temperatures All temperatures		
		HS Oscillator Operating Frequency	0		4 20	MHz	All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	_	_	ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$
34	Tioz	I/O hi-impedance from MCLR low		—	2.0	μS	
35	TBOR	Brown-out Reset Pulse Width	100*	—		μs	$3.7V \leq V\text{DD} \leq 4.3V$

These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769768

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.