

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

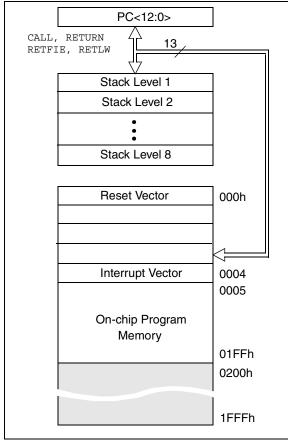
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

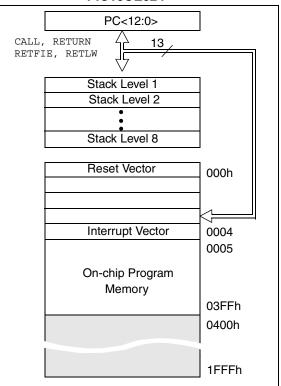
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lce625-04i-ss

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION


4.1 <u>Program Memory Organization</u>

The PIC16CE62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16CE623, 1K x 14 (0000h - 03FFh) for the PIC16CE624 and 2K x 14 (0000h - 07FFh) for the PIC16CE625 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16CE623) or 1K x 14 space (PIC16CE624) or 2K x 14 space (PIC16CE625). The reset vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

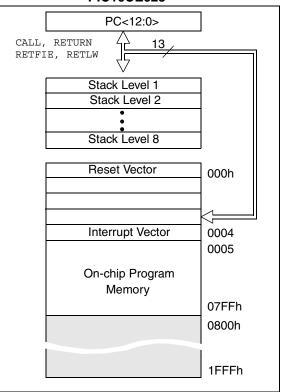

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE623

FIGURE 4-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE624

FIGURE 4-3: PROGRAM MEMORY MAP AND STACK FOR THE PIC16CE625

4.2 Data Memory Organization

The data memory (Figure 4-4 and Figure 4-5) is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16CE625 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In all three microcontrollers, address space F0h-FFh (Bank1) is mapped to 70-7Fh (Bank0) as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 96×8 in the PIC16CE623/624 and 128 x 8 in the PIC16CE625. Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The special registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 M	odule's Reg	jister						xxxx xxxx	uuuu uuuu
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address p	ointer		I		I	xxxx xxxx	uuuu uuuu
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	Unimplemented		1		1		1		1	-	-
08h	Unimplemented									-	_
09h	Unimplemented									-	_
0Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
0Dh-1Eh	Unimplemented									—	_
1Fh	CMCON	C2OUT	C10UT	_		CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	ig this locat	ion uses co	ontents of F	SR to addre	ess data me	emory (not a	a physical	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte	1		1	0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address p	ointer		1		1	xxxx xxxx	uuuu uuuu
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	Unimplemented									-	-
88h	Unimplemented									-	-
89h	Unimplemented									-	-
8Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram cou	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	CMIE	_	—	_	—	_	—	-0	-0
8Dh	Unimplemented									-	-
8Eh	PCON	—	—	—	_	—	—	POR	BOD	0x	uq
8Fh-9Eh	Unimplemented									-	-
90h	EEINTF	—	—	—	_	—	EESCL	EESDA	EEVDD	111	111
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

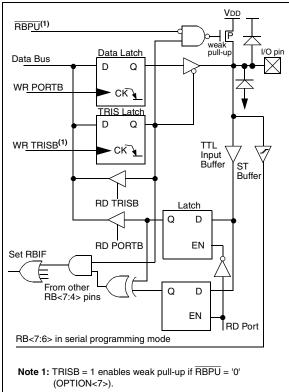
TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16CE62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

Note 2: IRP & RPI bits are reserved; always maintain these bits clear.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a high impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

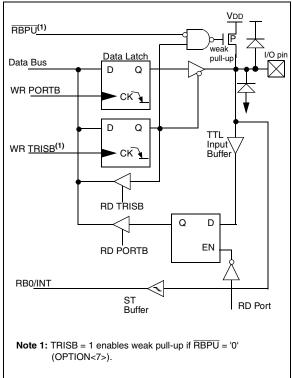
Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the \overline{RBPU} (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins of RB<7:4> are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes".)

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF inter-
	rupt flag may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

1.BCF	STATUS, RPO	;Skip if already in
		; Bank 0
2.CLRWDT		;Clear WDT
3.CLRF	TMR0	;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	; are required only if
		; desired PS<2:0> are
7.CLRWDT		; 000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	; desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ;prescaler
		/prebearer
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION_REG	
BCF	STATUS, RPO	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other Resets
01h	TMR0	Timer0	Fimer0 module register							xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA			_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged.

Note: Shaded bits are not used by TMR0 module.

8.1 <u>Comparator Configuration</u>

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 8-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 13-1.

Note: Comparator interrupts should be disabled during a comparator mode change, otherwise a false interrupt may occur.

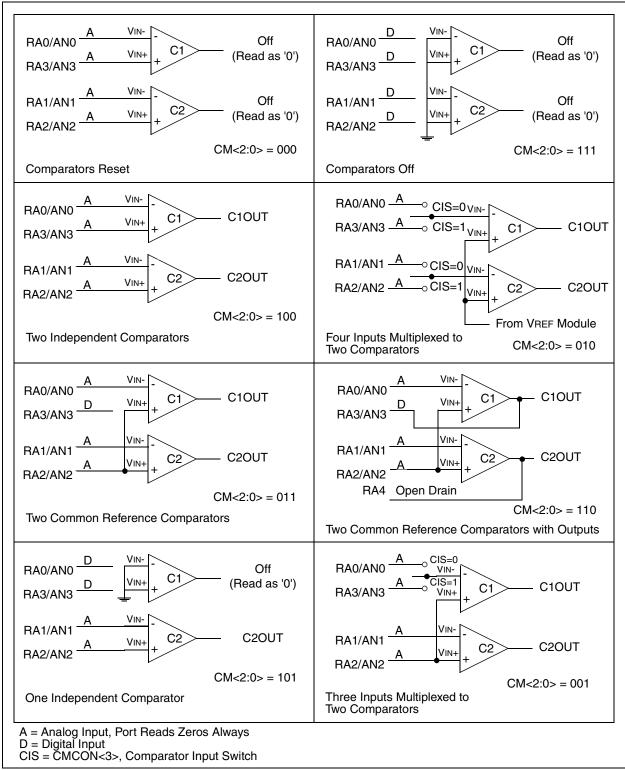


FIGURE 8-1: COMPARATOR I/O OPERATING MODES

9.0 VOLTAGE REFERENCE MODULE

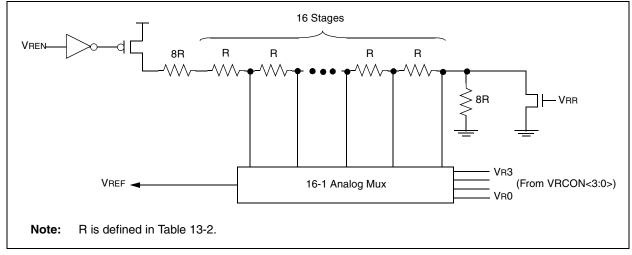
The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 9-1. The block diagram is given in Figure 9-1.

9.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD


if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 13-1). Example 9-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VREN	VROE	Vrr	_	Vr3	VR2	VR1	VR0	R = Readable bit
bit7	•		•				bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7: VREF Enable 1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drain								
bit 6:	 t 6: VREF Output Enable 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin 							
bit 5:	<pre>VRR: VREF Range selection 1 = Low Range 0 = High Range</pre>							
bit 4: Unimplemented: Read as '0'								
bit 3-0: VR<3:0>: VREF value selection $0 \le VR$ [3:0] ≤ 15 when VRR = 1: VREF = (VR<3:0>/ 24) * VDD when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD								

REGISTER 9-1: VRCON REGISTER (ADDRESS 9Fh)

FIGURE 9-1: VOLTAGE REFERENCE BLOCK DIAGRAM

10.9 <u>Code Protection</u>

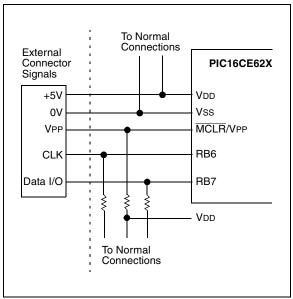
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code		
	protecting windowed devices.						

10.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Only the least significant 4 bits of the ID locations are used.

10.11 In-Circuit Serial Programming


The PIC16CE62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specifications (Literature #DS30228).

A typical in-circuit serial programming connection is shown in Figure 10-20.

FIGURE 10-20: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

11.1 Instruction Descriptions

ADDLW	Add Lite	ral and V	w	
Syntax:	[label] A	ADDLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conter added to th result is pla	ne eight b	it literal 'k'	and the
Words:	1			
Cycles:	1			
Example	ADDLW	0x15		
	After Inst	W =	0x10 0x25	

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3 After Instruction W = 0x03

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ADDWF FSR, 0
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0101 dfff ffff					
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ANDWF FSR, 1					
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02					

BTFSS	Bit Test f, Skip if Set			
Syntax:	[<i>label</i>] B	TFSS f,b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b < 7 \end{array}$	7		
Operation:	skip if (f<	b>) = 1		
Status Affected:	None			
Encoding:	01	11bb	bfff	ffff
Description:	instruction If bit 'b' is ' fetched du execution, executed i	register 'f' is is skipped. 1', then the ring the cur is discarde nstead, ma instruction.	next instru rrent instru d and a No	uction Iction DP is
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE		FLAG, 1 PROCESS_	_CODE
	Before In	struction		
	After Inst	ruction if FLAG<1> PC = a if FLAG<1>	= 0, address F	

CLRF	Clear f				
Syntax:	[label] (CLRF f			
Operands:	$0 \le f \le 12$	27			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0 0	0001	lfff	ffff	
Description:	The contents of register 'f' are cleared and the Z bit is set.				
Words:	1				
Cycles:	1				
Example	CLRF	FLAC	G_REG		
	Before In	struction			
		FLAG_RE	EG =	0x5A	
	After Inst	ruction Flag Re	EG =	0x00	
		Z	=	1	

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 2047$			
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>			
Status Affected:	None			
Encoding:	10 0kkk kkkk kkkk			
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.			
Words:	1			
Cycles:	2			
Example	HERE CALL THERE			
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			

Clear W				
[label]	CLRW			
None				
$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Z				
00	0001	0000	0011	
W register is cleared. Zero bit (Z) is set.				
1				
1				
CLRW				
Before Instruction				
After Inst	ruction W =	0x5A 0x00 1		
	$[label]$ None $00h \rightarrow (V \\ 1 \rightarrow Z$ Z 00 W register set. 1 $CLRW$ Before In After Inst	$[label] CLRW$ None $00h \rightarrow (W)$ $1 \rightarrow Z$ Z $00 0001$ W register is cleared set. 1 $CLRW$ Before Instruction $W =$ After Instruction $W =$	$[label] CLRW$ None $00h \rightarrow (W)$ $1 \rightarrow Z$ Z $00 0001 0000$ W register is cleared. Zero bit set. 1 1 $CLRW$ Before Instruction $W = 0x5A$ After Instruction $W = 0x00$	

 \odot 1998-2013 Microchip Technology Inc.

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	0 0	0000	0xx0	0000	
Description:	No operati	ion.			
Words:	1				
Cycles:	1				
Example	NOP				

RETFIE	Return from Interrupt				
Syntax:	[label]	RETFIE			
Operands:	None				
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE				
Status Affected:	None				
Encoding:	00	0000	0000	1001	
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETFIE				
		rrupt PC = GIE =	TOS 1		

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	١	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	0 0	0000	0110	0010
Description: Words:	The conter loaded in t instruction compatibil Since OPT register, th address it. 1	he OPTIC is suppor ity with PI TION is a re user ca	DN registe rted for co C16C5X p readable/v	r. This de products.
Cycles:	1			
Example				
		re PIC [®] N	rd compa /ICU prode uction.	-

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE ;W contains table ;offset value • ;W now has table value
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • RETLW kn ; End of table
	Before Instruction
	W = 0x07 After Instruction
	W = value of k8

RETURN	Return from Subroutine	RRF	Rotate Right f through Carry
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$		$d \in [0,1]$
Status Affected:	None	Operation:	See description below
Encoding:	00 0000 0000 1000	Status Affected:	С
Description:	Return from subroutine. The stack is	Encoding:	00 1100 dfff ffff
	POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is
Words:	1		placed back in register 'f'.
Cycles: Example	2 RETURN		C Register f
	After Interrupt	Words:	1
	PC = TOS	Cycles:	1
		Example	RRF REG1,0
			Before Instruction REG1 = 1110 0110 C = 0 0 After Instruction REG1 = 1110 0110 W = 0111 0011 C = 0 0

RLF	Rotate Left f t	hrough Carry				
Syntax:	[label] RLF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	See description	n below				
Status Affected:	С					
Encoding:	00 110	1 dfff ff	ff			
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	RLF	REG1,0				

SLEEP

02221					
Syntax:	[label] SLEEP				
Operands:	None				
Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler, 1 \rightarrow TO, 0 \rightarrow PD				
Status Affected:	TO, PD				
Encoding:	00 0000 0110 0011				
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.8 for more details.				
Words:	1				
Cycles:	1				
Example:	SLEEP				

and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

12.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

12.18 <u>KEELOQ Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

13.1 DC CHARACTERISTICS:

PIC16CE62X-04 (Commercial, Industrial, Extended) PIC16CE62X-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial an -40° C \leq TA \leq +125°C for extended				$\begin{array}{rl} -40^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial and} \end{array}$	
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figure 13-1 through Figure 13-3
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	-	V/ms	See section on power-on reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current (Note 2, 4)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*
			-	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT osc mode, (Note 4)
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS osc mode, (Note 6)
			-	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS osc mode
			-	4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WDT disabled*, HS osc mode
			-	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc mode
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μA	VDD = 3.0V
			-	-	5.0	μA	$VDD = 4.5V^*$
			_	-	9.0 15	μΑ μΑ	VDD = 5.5V VDD = 5.5V Extended
D022	ΔIWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD = 4.0V
					12	μ Α	(125°C)
D022A	Δ IBOR	Brown-out Reset Current (Note 5)	-	75	125	μA	$\overline{\text{BOD}}$ enabled, VDD = 5.0V
D023	∆ICOMP	Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V
	ΔIEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz
	∆IEE Read	Operating Current	-		1	mA	
	ΔIEE	Standby Current	-		30	μA	$V_{CC} = 3.0V, EE V_{DD} = V_{CC}$
4.4	ΔIEE	Standby Current	-		100	μΑ	Vcc = 3.0V, EE VDD = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	-	200	kHz	All temperatures
		RC Oscillator Operating Frequency XT Oscillator Operating Frequency	0 0	_	4	MHz MHz	All temperatures All temperatures
		HS Oscillator Operating Frequency	0		4 20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

13.2 DC CHARACTERISTICS: F

PIC16LCE62X-04 (Commercial, Industrial)

DC CHARACTERISTICS								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	2.5	-	5.5	V	See Figure 13-1 through Figure 13-3	
D002	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5*	-	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	-	V	See section on power-on reset for details	
D004	SVDD	VDD rise rate to ensure Power-on Reset	.05*	-	-	V/ms	See section on power-on reset for details	
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared	
D010	IDD	Supply Current (Note 2)	-	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT osc mode, (Note 4)*	
			-	-	1.1	mA	FOSC = 4 MHz, $VDD = 2.5V$, WDT disabled,	
			-	35	70	μA	XT osc mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP osc mode	
D020	IPD	Power Down Current (Note 3)	_	-	2.0	μA	VDD = 2.5V	
			-	-	2.2	μA	VDD = 3.0V*	
			-	-	9.0	μA	VDD = 5.5V	
			-	-	15	μA	VDD = 5.5V Extended	
D022	Δ IWDT	WDT Current (Note 5)	-	6.0	10	μA	VDD=4.0V	
D022A	Δ IBOR	Brown-out Reset Current	_	75	12 125	μΑ μΑ	$(125^{\circ}C)$ BOD enabled, VDD = 5.0V	
D023		(Note 5) Comparator Current for each Comparator (Note 5)	-	30	60	μA	VDD = 4.0V	
D023A	Δ IVREF	VREF Current (Note 5)	-	80	135	μA	VDD = 4.0V	
	Δ IEE Write	Operating Current	-		3	mA	Vcc = 5.5V, SCL = 400 kHz	
	$\Delta IEE \ Read$	Operating Current	-		1	mA		
	ΔIEE	Standby Current	-		30	μA	VCC = 3.0V, EE VDD = VCC	
	ΔIEE	Standby Current	-		100	μA	VCC = 3.0V, EE VDD = VCC	
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures	
		RC Oscillator Operating Frequency		—	4	MHz	All temperatures	
		XT Oscillator Operating Frequency	0	—	4 20	MHz	All temperatures	
		HS Oscillator Operating Frequency	-		20	MHz	All temperatures	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

TABLE 13-1: COMPARATOR SPECIFICATIONS

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D300	Input offset voltage	VIOFF		± 5.0	± 10	mV	
D301	Input common mode voltage	VICM	0		Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
300	Response Time ⁽¹⁾	TRESP		150*	400*	ns	PIC16CE62X
301	Comparator Mode Change to Output Valid	Тмс2ov			10*	μS	

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. .

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

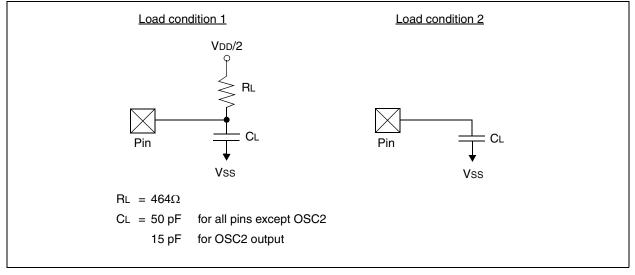
TABLE 13-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.

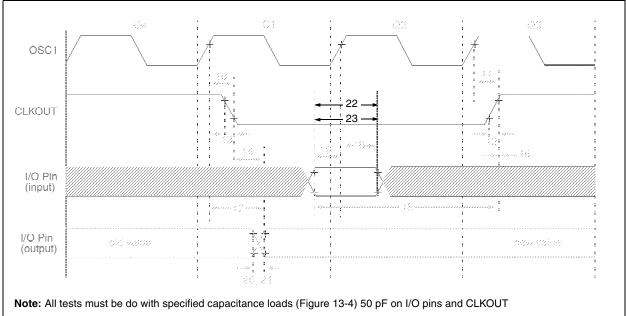
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D310	Resolution	VRES	VDD/24		Vdd/32	LSB	
D311	Absolute Accuracy	Vraa			<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
D312	Unit Resistor Value (R)	VRur		2K*		Ω	Figure 9-1
310	Settling Time ⁽¹⁾	TSET			10*	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.


13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

2. ippo			
т			
F	Frequency	Т	Time
Lowerc	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	OSC	OSC1
io	I/O port	tO	TOCKI
mc	MCLR		
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 13-4: LOAD CONDITIONS

FIGURE 13-6: CLKOUT AND I/O TIMING

Parameter #	Sym	Characteristic	Min	Тур†	Мах	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	75	200	ns
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑] ⁽¹⁾	_	75	200	ns
12*	TckR	CLKOUT rise time ⁽¹⁾	_	35	100	ns
13*	TckF	CLKOUT fall time ⁽¹⁾	_	35	100	ns
14*	TckL2ioV	CLKOUT ↓ to Port out valid ⁽¹⁾	_	—	20	ns
15*	TioV2ckH	Port in valid before CLKOUT \uparrow ⁽¹⁾	Tosc +200 ns	—		ns
16*	TckH2iol	Port in hold after CLKOUT ↑ ⁽¹⁾	0	—		ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	—	50	150	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	—	_	ns
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	—	_	ns
20*	TioR	Port output rise time	—	10	40	ns
21*	TioF	Port output fall time	—	10	40	ns
22*	Tinp	RB0/INT pin high or low time	25	—	_	ns
23	Trbp	RB<7:4> change interrupt high or low time	Тсү	—	_	ns

	TABLE 13-4:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

* These parameters are characterized but not tested

+ Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

APPENDIX A: CODE FOR ACCESSING EEPROM DATA MEMORY

Please check our web site at www.microchip.com for code availability.

APPENDIX B:REVISION HISTORY

Revision D (January 2013)

Added a note to each package outline drawing.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820