

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	C166SV2
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-5
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc164cs32f20fbbakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table 2	Piı	n Definit	ions and Fu	Inctions	(cont'd)
Sym- bol	Pin Num.	Input Outp.	Function		
P9		IO	Port 9 is a 6 programme state) or ou driver). The or special).	6-bit bidire d for inpu tput (cont input thre a Port 9	ectional I/O port. Each pin can be it (output driver in high-impedance figurable as push/pull or open drain eshold of Port 9 is selectable (standard
P9.0	10	I/O I I	CC16IO CAN1_RxD EX7IN	CAPCO CAN No Fast Ext	M2: CC16 Capture Inp./Compare Outp., de B Receive Data Input, ernal Interrupt 7 Input (alternate pin B)
P9.1	11	I/O O I	CC17IO CAN1_TxD EX6IN	CAPCO CAN No Fast Ext	M2: CC17 Capture Inp./Compare Outp., de B Transmit Data Output, ernal Interrupt 6 Input (alternate pin B)
P9.2	12	I/O I I	CC18IO CAN0_RxD EX7IN	CAPCO CAN No Fast Ext	M2: CC18 Capture Inp./Compare Outp., de A Receive Data Input, ernal Interrupt 7 Input (alternate pin A)
P9.3	13	I/O O I	CC19IO CAN0_TxD EX6IN	CAPCO CAN No Fast Ext	M2: CC19 Capture Inp./Compare Outp., de A Transmit Data Output, ernal Interrupt 6 Input (alternate pin A)
P9.4 P9.5	14 15	I/O I/O	CC20IO CC21IO	CAPCO CAPCO	M2: CC20 Capture Inp./Compare Outp. M2: CC21 Capture Inp./Compare Outp.
P5		1	Port 5 is a 1 The pins of A/D convert	14-bit inpu Port 5 als ter, or the	ut-only port. o serve as analog input channels for the ey serve as timer inputs:
P5.0	18	1	AN0	·	
P5.1	19	1	AN1		
P5.2	20	I	AN2		
P5.3	21	I	AN3		
P5.4	22	1	AN4		
P5.5	23		AN5		
P5.10	24		AN10,	T6EUD	GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.
P5.11	25	1	AN11,	T5EUD	GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.
P5.6	26		AN6		
P5.7	27		AN/	TOIN	
P5.12	30		ANTZ,		GP12 Timer 16 Count/Gate Input
10.13 DE 11	20		AIN 13,		CDT1 Timer T4 Ext Lin/Down Otri Line
P5.14 D5.15	32 33		ΔΝ15		GPT1 Timer T2 Ext. Up/D0wn Ctrl. Inp.
10.10	00	1	, רואוס,		\Box

General Device Information

Table 2	Pin Definitions and Functions (cont'd)					
Sym- bol	Pin Num.	Input Outp.	Function			
PORT0 POL.0 - POL.7 POH.0 - POH.3 POH.4 - POH.7	67 - 74 4 - 7 75 - 78	10	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. Each pin can be programmed for input (output driver in high-impedance state) or output. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes: 8-bit data bus: P0H = I/O, P0L = D7 - D0 16-bit data bus: P0H = D15 - D8, P0L = D7 - D0 Multiplexed bus modes: 8-bit data bus: P0H = A15 - A8, P0L = AD7 - AD0 16-bit data bus: P0H = AD15 - AD8, P0L = AD7 - AD0			
			Note: At the end of an external reset (EA = 0) PORT0 also may input configuration values			
PORT1		Ю	PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. Each pin can be programmed for input (output driver in high-impedance state) or output. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes (also after switching from a demultiplexed to a multiplexed bus mode). The following PORT1 pins also serve for alt. functions:			
P1L.0	79	I/O	CC60 CAPCOM6: Input / Output of Channel 0			
P1L.1	80	0	COUT60 CAPCOM6: Output of Channel 0			
P1L.2 P1L.3	82	0	COUT61 CAPCOM6: Input / Output of Channel 1 COUT61 CAPCOM6: Output of Channel 1			
P1L.4	83	I/O	CC62 CAPCOM6: Input / Output of Channel 2			
P1L.5	84	0	COUT62 CAPCOM6: Output of Channel 2			
P1L.6	85 86	0	COUT63 Output of 10-bit Compare Channel			
PIL.7	80	1	CTRAP is an input pin with an internal pull-up resistor. A low level on this pin switches the CAPCOM6 compare outputs to the logic level defined by software (if enabled).			
		I/O	CC22IO CAPCOM2: CC22 Capture Inp./Compare Outp.			
PIH			continuea			

General Device Information

Table 2	2 Pin Definitions and Functions (cont'd)						
Sym- bol	Pin Num.	Input Outp.	Function				
V _{DDI}	35, 97	_	Digital Core Supply Voltage (On-Chip Modules): +2.5 V during normal operation and idle mode. Please refer to the Operating Condition Parameters .				
V _{DDP}	9, 17, 38, 61, 87	-	Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Operating Condition Parameters .				
V _{SSI}	34, 98	_	Digital Ground				
V _{SSP}	8, 16, 37,62, 88	_	Connect decoupling capacitors to adjacent $V_{\rm DD}/V_{\rm SS}$ pin pairs as close as possible to the pins. All $V_{\rm SS}$ pins must be connected to the ground-line or ground-plane.				

1) The CAN interface lines are assigned to ports P4 and P9 under software control.

RH7) so-called General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR, any location in the DPRAM is bitaddressable.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC166 Family. Therefore, they should either not be accessed, or written with zeros, to ensure upward compatibility.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 12 Mbytes (approximately, see **Table 3**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

· · · · · · · · · · · · · · · · · · ·		ſ		
Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Flash register space	FF'F000 _H	FF'FFFF _H	4 Kbytes	3)
Reserved (Acc. trap)	FE'0000 _H	FF'EFFF _H	60 Kbytes	-
Reserved for EPSRAM	F8'1800 _H	FD'FFFF _H	378 Kbytes	-
Emul. Program SRAM ⁴⁾	F8'0000 _H	F8'17FF _H	6 Kbytes	2 nd way to PSRAM
Reserved for PSRAM	E0'1800 _H	F7'FFFF _H	< 1.5 Mbytes	Minus PSRAM
Program SRAM	E0'0000 _H	E0'17FF _H	6 Kbytes	Maximum
Reserved for program memory	C4'0000 _H	DF'FFFF _H	< 2 Mbytes	Minus Flash
Program Flash/ROM	C0'0000 _H	C3'FFFF _H	256 Kbytes	-
Reserved	BF'0000 _H	BF'FFFF _H	64 Kbytes	-
External memory area	40'0000 _H	BE'FFFF _H	< 8 Mbytes	Minus reserved segment
External IO area ⁵⁾	20'0800 _H	3F'FFFF _H	< 2 Mbytes	Minus TwinCAN
TwinCAN registers	20'0000 _H	20'07FF _H	2 Kbytes	-
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
Data RAMs and SFRs	00'8000 _H	00'FFFF _H	32 Kbytes	Partly used
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-

Table 3XC164CS Memory Map¹⁾

1) Accesses to the shaded areas generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".

3) Not defined register locations return a trap code.

4) The Emulation PSRAM (EPSRAM) realizes a 2nd access path to the PSRAM with a different timing.

3.4 Interrupt System

With an interrupt response time of typically 8 CPU clocks (in case of internal program execution), the XC164CS is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the XC164CS supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source, or the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The XC164CS has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt nodes. Via its related register, each node can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt nodes has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 4 shows all of the possible XC164CS interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 4XC164CS Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 29	CC2_CC29IC	xx'0110 _H	44 _H / 68 _D
CAPCOM Register 30	CC2_CC30IC	xx'0114 _H	45 _H / 69 _D
CAPCOM Register 31	CC2_CC31IC	xx'0118 _H	46 _H / 70 _D
CAPCOM Timer 0	CC1_T0IC	xx'0080 _H	20 _H / 32 _D
CAPCOM Timer 1	CC1_T1IC	xx'0084 _H	21 _H / 33 _D
CAPCOM Timer 7	CC2_T7IC	xx'00F4 _H	3D _H / 61 _D
CAPCOM Timer 8	CC2_T8IC	xx'00F8 _H	3E _H / 62 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0088 _H	22 _H / 34 _D
GPT1 Timer 3	GPT12E_T3IC	xx'008C _H	23 _H / 35 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0090 _H	24 _H / 36 _D
GPT2 Timer 5	GPT12E_T5IC	xx'0094 _H	25 _H / 37 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0098 _H	26 _H / 38 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
A/D Conversion Complete	ADC_CIC	xx'00A0 _H	28 _H / 40 _D
A/D Overrun Error	ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subchannel	EOPIC	xx'0130 _H	4C _H / 76 _D

The XC164CS also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location ¹⁾	Trap Number	Trap Priority	
 Reset Functions: Hardware Reset Software Reset Watchdog Timer Overflow 	_	RESET RESET RESET	xx'0000 _H xx'0000 _H xx'0000 _H	00 _H 00 _H 00 _H	 	
 Class A Hardware Traps: Non-Maskable Interrupt Stack Overflow Stack Underflow Software Break 	NMI STKOF STKUF SOFTBRK	NMITRAP STOTRAP STUTRAP SBRKTRAP	xx'0008 _H xx'0010 _H xx'0018 _H xx'0020 _H	02 _H 04 _H 06 _H 08 _H	 	
 Class B Hardware Traps: Undefined Opcode PMI Access Error Protected Instruction Fault Illegal Word Operand Access 	UNDOPC PACER PRTFLT ILLOPA	BTRAP BTRAP BTRAP BTRAP	xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H	0A _H 0A _H 0A _H 0A _H	 	
Reserved	-	_	[2C _H - 3C _H]	[0B _H - 0F _H]	-	
Software Traps TRAP Instruction 	_	_	Any [xx'0000 _H - xx'01FC _H] in steps of 4 _H	Any [00 _н - 7F _н]	Current CPU Priority	

Table 5Hardware Trap Summary

1) Register VECSEG defines the segment where the vector table is located to.

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC164CS. The user software running on the XC164CS can thus be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the JTAG interface or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals are realized as alternate functions on Port 3 pins.

Complete system emulation is supported by the New Emulation Technology (NET) interface.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The

3.11 Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)

The Asynchronous/Synchronous Serial Interfaces ASC0/ASC1 (USARTs) provide serial communication with other microcontrollers, processors, terminals or external peripheral components. They are upward compatible with the serial ports of the Infineon 8-bit microcontroller families and support full-duplex asynchronous communication and half-duplex synchronous communication. A dedicated baud rate generator with a fractional divider precisely generates all standard baud rates without oscillator tuning. For transmission, reception, error handling, and baudrate detection 5 separate interrupt vectors are provided.

In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to 115.2 kbit/s with fixed or programmable IrDA pulse width are supported.

In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift clock which is generated by the ASC0/1. The LSB is always shifted first.

In both modes, transmission and reception of data is FIFO-buffered. An autobaud detection unit allows to detect asynchronous data frames with its baudrate and mode with automatic initialization of the baudrate generator and the mode control bits.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

Summary of Features

- Full-duplex asynchronous operating modes
 - 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
 - Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
 - Multiprocessor mode for automatic address/data byte detection
 - Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
 - Loop-back capability
 - Auto baudrate detection
- Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
- Buffered transmitter/receiver with FIFO support (8 entries per direction)
- Loop-back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, last bit transmitted condition, receive buffer full condition, error condition (frame, parity, overrun error), start and end of an autobaud detection

Table 7	9 7 Summary of the XC164CS's Parallel Ports						
Port	Control	Alternate Functions					
PORT0	Pad drivers	Address/Data lines or data lines ¹⁾					
PORT1	Pad drivers	Address lines ²⁾					
		Capture inputs or compare outputs, Serial interface lines					
Port 3	Pad drivers, Open drain, Input threshold	Timer control signals, serial interface lines, Optional bus control signal BHE/WRH, System clock output CLKOUT (or FOUT)					
Port 4 Pad drivers,		Segment address lines ³⁾ , CS signal lines					
	Open drain, Input threshold	CAN interface lines ⁴⁾					
Port 5	-	Analog input channels to the A/D converter, Timer control signals					
Port 9	Pad drivers,	Capture inputs or compare outputs					
	Open drain, Input threshold	CAN interface lines ⁴⁾					
Port 20	Pad drivers, Open drain	Bus control signals RD, WR/WRL, ALE, External access enable <u>pin EA,</u> Reset indication output RSTOUT					

1) For multiplexed bus cycles.

2) For demultiplexed bus cycles.

3) For more than 64 Kbytes of external resources.

4) Can be assigned by software.

5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: $V_{OV} > V_{DDP} + 0.5 \vee (I_{OV} > 0)$ or $V_{OV} < V_{SS} - 0.5 \vee (I_{OV} < 0)$. The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltages must remain within the specified limits.

Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, \overline{RD} , \overline{WR} , etc.

- 6) Not subject to production test verified by design/characterization.
- 7) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it.

The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.

8) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the XC164CS and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the XC164CS will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the XC164CS.

4.2 DC Parameters

Table 11DC Characteristics (Operating Conditions apply)¹⁾

Parameter	Symbol		Limit Values		Unit	Test Condition
			Min.	Max.		
Input low voltage TTL (all except XTAL1)	V _{IL}	SR	-0.5	0.2 × V _{DDP} - 0.1	V	-
Input low voltage XTAL1 ²⁾	V _{ILC}	SR	-0.5	$0.3 imes V_{ m DDI}$	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	$0.45 \times V_{\text{DDP}}$	V	3)
Input high voltage TTL (all except XTAL1)	V _{IH}	SR	$0.2 \times V_{\text{DDP}} + 0.9$	V _{DDP} + 0.5	V	-
Input high voltage XTAL1 ²⁾	V _{IHC}	SR	$0.7 imes V_{ m DDI}$	V _{DDI} + 0.5	V	-
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 × V _{DDP} - 0.2	V _{DDP} + 0.5	V	3)
Input Hysteresis (Special Threshold)	HYS		$0.04 \times V_{\text{DDP}}$	-	V	V_{DDP} in [V], Series resis- tance = 0 $\Omega^{3)}$
Output low voltage	V _{OL}	CC	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}^{4)}$
			-	0.45	V	$I_{\rm OL} \leq I_{\rm OLnom}^{4)5)}$
Output high voltage ⁶⁾	V _{OH}	CC	V _{DDP} - 1.0	_	V	$I_{\rm OH} \ge I_{\rm OHmax}^{4)}$
			V _{DDP} - 0.45	_	V	$I_{\rm OH} \ge I_{\rm OHnom}^{4)5)$
Input leakage current (Port 5) ⁷⁾	I _{OZ1}	СС	_	±300	nA	$0 V < V_{IN} < V_{DDP},$ $T_A \le 125 \text{ °C}$
				±200	nA	$0 V < V_{IN} < V_{DDP},$ $T_A \le 85 \ ^{\circ}C^{14})$
Input leakage current (all other ⁸⁾) ⁷⁾	I _{OZ2}	CC	-	±500	nA	$0.45 V < V_{IN} < V_{DDP}$
Configuration pull-up	I _{CPUH} ¹⁰⁾		-	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
current ⁹⁾	$I_{\text{CPUL}}^{(11)}$		-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
Configuration pull-	$I_{\text{CPDL}}^{10)}$		_	10	μA	$V_{\rm IN} = V_{\rm ILmax}$
down current ⁽²⁾	$I_{\rm CPDH}^{11)}$		120	_	μA	$V_{\rm IN} = V_{\rm IHmin}$

Table 11	DC Characteristics (Operating	Conditions	apply) ¹⁾	(conťd)
----------	----------------------	-----------	-------------------	----------------------	---------

Parameter	Symbol		Limit Values		Unit	Test Condition
			Min.	Max.		
Level inactive hold current ¹³⁾	$I_{\rm LHI}^{10)}$		-	-10	μA	$V_{\rm OUT}$ = 0.5 × $V_{\rm DDP}$
Level active hold current ¹³⁾	$I_{\rm LHA}^{(11)}$		-100	-	μA	V _{OUT} = 0.45 V
XTAL1 input current	I _{IL}	CC	-	±20	μA	$0 V < V_{IN} < V_{DDI}$
Pin capacitance ¹⁴⁾ (digital inputs/outputs)	C _{IO}	CC	-	10	pF	_

1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

2) If XTAL1 is driven by a crystal, reaching an amplitude (peak to peak) of $0.4 \times V_{DDI}$ is sufficient.

3) This parameter is tested for P3, P4, P9.

4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

- 5) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are guaranteed.
- 6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- 7) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 8) The driver of P3.15 is designed for faster switching, because this pin can deliver the reference clock for the bus interface (CLKOUT). The maximum leakage current for P3.15 is, therefore, increased to 1 μ A.
- 9) This specification is valid during Reset for configuration on RD, WR, EA, PORTO
- 10) The maximum current may be drawn while the respective signal line remains inactive.
- 11) The minimum current must be drawn to drive the respective signal line active.
- 12) This specification is valid during Reset for configuration on ALE.
- 13) This specification is valid during Reset for pins P4.3-0, which can act as \overline{CS} outputs, and for P3.12.
- 14) Not subject to production test verified by design/characterization.

Figure 12 Sleep and Power Down Supply Current due to RTC and Oscillator Running, as a Function of Oscillator Frequency

Figure 13 Sleep and Power Down Leakage Supply Current as a Function of Temperature

- 3) The limit values for f_{BC} must not be exceeded when selecting the peripheral frequency and the ADCTC setting.
- 4) This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result (t_{SYS} = 1/f_{SYS}). Values for the basic clock t_{BC} depend on programming and can be taken from Table 15. When the post-calibration is switched off, the conversion time is reduced by 12 x t_{BC}.
- 5) The actual duration of the reset calibration depends on the noise on the reference signal. Conversions executed during the reset calibration increase the calibration time. The TUE for those conversions may be increased.
- 6) Not subject to production test verified by design/characterization. The given parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) reduced values can be used for calculations. At room temperature and nominal supply voltage the following typical values can be used:

 $C_{AINTtyp}$ = 12 pF, $C_{AINStyp}$ = 7 pF, R_{AINtyp} = 1.5 k Ω , $C_{AREFTtyp}$ = 15 pF, $C_{AREFStyp}$ = 13 pF, $R_{AREFtyp}$ = 0.7 k Ω .

Figure 14 Equivalent Circuitry for Analog Inputs

Sample time and conversion time of the XC164CS's A/D Converter are programmable. In compatibility mode, the above timing can be calculated using **Table 15**. The limit values for $f_{\rm BC}$ must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample Time <i>t</i> _S
00	<i>f</i> _{SYS} / 4	00	$t_{\rm BC} imes 8$
01	f _{SYS} / 2	01	$t_{\rm BC} \times 16$
10	<i>f</i> _{SYS} / 16	10	$t_{\rm BC} imes 32$
11	f _{SYS} / 8	11	$t_{\rm BC} \times 64$

 Table 15
 A/D Converter Computation Table¹⁾

1) These selections are available in compatibility mode. An improved mechanism to control the ADC input clock can be selected.

Converter Timing Example:

Assumptions:	$f_{\sf SYS}$	= 40 MHz (i.e. <i>t</i> _{SYS} = 25 ns), ADCTC = '01', ADSTC = '00'					
Basic clock	$f_{\sf BC}$	= f_{SYS} / 2 = 20 MHz, i.e. t_{BC} = 50 ns					
Sample time	t _S	= $t_{\rm BC} \times 8$ = 400 ns					
Conversion 10-bit:							
With post-calibr.	t _{C10P}	= 52 × $t_{\rm BC}$ + $t_{\rm S}$ + 6 × $t_{\rm SYS}$ = (2600 + 400 + 150) ns = 3.15 μ s					
Post-calibr. off	t _{C10}	= $40 \times t_{\rm BC}$ + $t_{\rm S}$ + $6 \times t_{\rm SYS}$ = (2000 + 400 + 150) ns = 2.55 µs					
Conversion 8-bit:							
With post-calibr.	t _{C8P}	= 44 × $t_{\rm BC}$ + $t_{\rm S}$ + 6 × $t_{\rm SYS}$ = (2200 + 400 + 150) ns = 2.75 µs					
Post-calibr. off	t _{C8}	= $32 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (1600 + 400 + 150) ns = 2.15 µs					

4.4.5 External Bus Timing

Table 20CLKOUT Reference Signal

Parameter	Symbol		Limit Values		Unit
			Min.	Max.	
CLKOUT cycle time	tc_5	CC	40/30/25 ¹⁾		ns
CLKOUT high time	tc ₆	CC	8	_	ns
CLKOUT low time	<i>tc</i> ₇	CC	6	-	ns
CLKOUT rise time	tc ₈	CC	_	4	ns
CLKOUT fall time	tc ₉	CC	-	4	ns

1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{CPU} = 25/33/40 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 20 CLKOUT Signal Timing

Package and Reliability

Package Outlines

Figure 23 PG-TQFP-100-5 (Plastic Green Thin Quad Flat Package)

Package and Reliability

Figure 24 P-TQFP-100-16 (Plastic - Thin Quad Flat Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm