E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	115
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l4s5zit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The main features of the firewall are the following:

- Three segments can be protected and defined thanks to the firewall registers:
 - Code segment (located in Flash or SRAM1 if defined as executable protected area)
 - Non-volatile data segment (located in Flash)
 - Volatile data segment (located in SRAM1)
- The start address and the length of each segment are configurable:
 - Code segment: up to 2048 Kbytes with granularity of 256 bytes
 - Non-volatile data segment: up to 2048 Kbytes with granularity of 256 bytes
 - Volatile data segment: up to 192 Kbytes of SRAM1 with a granularity of 64 bytes
- Specific mechanism implemented to open the firewall to get access to the protected areas (call gate entry sequence)
- Volatile data segment can be shared or not with the non-protected code
- Volatile data segment can be executed or not depending on the firewall configuration

The Flash readout protection must be set to level 2 in order to reach the expected level of protection.

3.8 Boot modes

At startup, a BOOT0 pin and an nBOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

A Flash empty-check mechanism is implemented to force the boot from system Flash if the first Flash memory location is not programmed and if the boot selection is configured to boot from main Flash.

The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in device mode through the DFU (device firmware upgrade).

3.9 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size.

Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity.

The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location.

- 1. LPR means Main regulator is OFF and Low-power regulator is ON.
- 2. All peripherals can be active or clock gated to save power consumption.
- 3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
- 4. The SRAM1, SRAM2 and SRAM3 clocks can be gated on or off independently.
- 5. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 6. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 7. OTG_FS wakeup by resume from suspend and attach detection protocol event.
- 8. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Jp, down, Up/down Any integer between 1 and 65536		4	No
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Up, down, Up/down Up/down Any integer between 1 and 65536		4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 10. Timer feature comparison

3.32.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in *Section 3.32.2*) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.46.2 Embedded Trace Macrocell™

The Arm[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L4Sxxx devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Figure 17. STM32L4S9xx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

					Table 1	6. Alternate funct	ion AF0 to AF	7 ⁽¹⁾ (continued)		
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port		OTG_FS/ SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/ 5	SPI2/SAI1/I2C4/U SART2/OTG_FS/T IM1/8/OCTOSPIM _P1	I2C1/2/3/4/DC MI	SPI1/2/3/I2C4/DFS DM1/DCMI/OCTOS PIM_P1/2	SPI3/I2C3/DFS DM1/COMP1/O CTOSPIM_P2	USART1/2/3
		PI0	-	-	TIM5_CH4	OCTOSPIM_P1_IO5	-	SPI2_NSS	-	-
		PI1	-	-	-	-	-	SPI2_SCK	-	-
		Pl2	-	-	-	TIM8_CH4	-	SPI2_MISO	-	-
		PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI	-	-
		PI4	-	-	-	TIM8_BKIN	-	-	-	-
	Dout	PI5	-	-	-	TIM8_CH1	-	OCTOSPIM_P2_NCS	-	-
DS	Port I	PI6	-	-	-	TIM8_CH2	-	OCTOSPIM_P2_CLK	-	-
1202		PI7	-	-	-	TIM8_CH3	-	-	-	-
24 R		PI8	-	-	-	-	-	OCTOSPIM_P2_NCS	-	-
₹V 3		PI9	-	-	-	-	-	OCTOSPIM_P2_IO2	-	-
		PI10	-	-	-	-	-	OCTOSPIM_P2_IO1	-	-
		PI11	-	-	-	-	-	OCTOSPIM_P2_IO0	-	-

1. Refer to *Table 17* for AF8 to AF15.

103/277

STM32L4S5xx, STM32L4S7xx and STM32L4S9xx

			T	able 17. Alternate fu	nction AF8 to	AF15 ⁽¹⁾ (contin	ued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4/5/ LPUART1/ CAN2	CAN1/TSC	OTG_FS/DCMI/ OCTOSPI_P1/P2	LCD	SDMMC/ COMP1/2/ FMC	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PH0	-	-	-	-	-	-	-	EVENTOUT
	PH1	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	-	-	-	-	-	-	EVENTOUT
	PH3	-	-	-	-	-	-	-	EVENTOUT
	PH4	-	-	-	-	-	-	-	EVENTOUT
	PH5	-	-	DCMI_PIXCLK	-	-	-	-	EVENTOUT
	PH6	-	-	DCMI_D8	-	-	-	-	EVENTOUT
Dort H	PH7	-	-	DCMI_D9	-	-	-	-	EVENTOUT
POILE	PH8	-	-	DCMI_HSYNC	-	-	-	-	EVENTOUT
	PH9	-	-	DCMI_D0	-	-	-	-	EVENTOUT
	PH10	-	-	DCMI_D1	-	-	-	-	EVENTOUT
	PH11	-	-	DCMI_D2	-	-	-	-	EVENTOUT
	PH12	-	-	DCMI_D3	-	-	-	-	EVENTOUT
	PH13	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PH14	-	-	DCMI_D4	-	-	-	-	EVENTOUT
	PH15	-	-	DCMI_D11	-	-	-	-	EVENTOUT

DS12024 Rev 3

111/277

STM32L4S5xx, STM32L4S7xx and STM32L4S9xx

Symbol	Parameter	Con	ditions	Min	Мах	Unit
		LQFP144	-	-	625	
P _D		LQFP100	-	-	476	
	Power dissipation at $T_{A} = 85 ^{\circ}C$ for suffix $6^{(4)}$	UFBGA169	-	-	385	mW
		UFBGA132	-	-	364	
		WLCSP144	-	-	664	
		LQFP144	-	-	156	
	Power dissipation at T _A = 125 °C for suffix 3 ⁽⁴⁾	LQFP100	-	-	119	mW
P_D		UFBGA169	-	-	96	
		UFBGA132	-	-	91	
		WLCSP144	-	-	831	
	Ambient temperature for	Maximum po	wer dissipation	-40	85	
т.	the suffix 6 version	Low-power d	lissipation ⁽⁵⁾	-40	105	ŝ
IA	Ambient temperature for	Maximum po	wer dissipation	-40	125	C
	the suffix 3 version	Low-power d	lissipation ⁽⁵⁾	-40	130	
TJ	Junction temperature range	Suffix 6 versi	on	-40	105	°C
		Suffix 3 versi	on	-40	130	

Table 22. General operating conditions (continued)

1. When RESET is released functionality is guaranteed down to $\mathrm{V}_{\mathrm{BOR0}}$ Min.

 This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB})+3.6 V and 5.5V.

3. For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

Electrical characteristics

STM32L4S5xx, STM32L4S7xx and STM32L4S9xx

Ourseland	Demonster	Condition	าร			ΤΥΡ					MAX	(1)			
Symbol	Parameter	-	Vdd	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uni	
			1.8 V	370	640	2100	5300	13500	1100	1400	6400	16000	41000		
		RTC clocked	2.4 V	455	760	2500	6250	15500	1200	1700	6800	18000	47000		
		independent	3 V	560	930	3050	7650	19000	1300	1900	8100	21000	55000		
		watchdog	3.6 V	690	1150	3700	9200	23000	1400	2400	9000	24000	62000 (2)	n	
	DTO alsolved	1.8 V	420	-	-	-	-	-	-	-	-	-			
		by LSI, with	2.4 V	525	-	-	-	-	-	-	-	-	-		
חר	Supply current in Standby	Supply current in Standby	independent	3 V	645	-	-	-	-	-	-	-	-	-	
Standby with	mode (backup registers	watchuog	3.6 V	795	-	-	-	-	-	-	-	-	-		
TC)	RTC enabled	PTC clocked	1.8 V	480	750	2200	5400	13500	-	-	-	-	-		
		by LSE bypassed at 32768 Hz	by LSE	2.4 V	615	930	2650	6400	15500	-	-	-	-	-	
			3 V	770	1150	3250	7900	19500	-	-	-	-	-		
		02100112	3.6 V	975	1450	3950	9500	23000	-	-	-	-	-		
		RTC clocked	1.8 V	420	685	2150	5400	13500	-	-	-	-	-		
		by LSE	2.4 V	520	830	2550	6400	15500	-	-	-	-	-		
		quartz ⁽³⁾ in low	3 V	650	1000	3100	7800	19500	-	-	-	-	-		
	diver		3.6 V	825	1300	3800	9400	23000	-	-	-	-	-		
			1.8 V	380	1420	5600	13300	28500	-	-	-	-	-		
D	Supply current to be added in Standby mode when SRAM2	 -	2.4 V	380	1410	5650	12950	29000	-	-	-	-	-		
SRAM2) ⁽⁴⁾	is retained	ode when SRAM2 -	3 V	385	1415	5600	13000	28500	-	-	-	-	-	'	
			3.6 V	400	1435	5700	13150	29000	-	-	-	-	-		

144/277

DS12024 Rev 3

5

	Peripheral	Range 1 Boost Mode	Range 1 Normal Mode	Range 2	Low-power run and sleep	Unit
	GPIOI	1.6	1.4	1.25	2	
	HASH1	2.6	2.4	2	3	
	OTG_FS independent clock domain	25.5	28	NA	NA	
	OTG_FS AHB clock domain	18	16.5	NA	NA	
	OSPIM independent clock domain	0.15	0.115	0.084	0.5	
	OSPIM AHB clock domain	0.665	0.625	0.54	1	
	OSPI1 independent clock domain	2.5	2.4	2.1	2.5	
	OSPI1 AHB clock domain	6.15	5.75	4.6	5.5	
AHB	OSPI2 independent clock domain	1.9	1.65	1.25	1	uA/MHz
(Cont.)	OSPI2 AHB clock domain	5.5	5.25	4.15	5.5	P
	RNG independent clock domain	3.9	4.25	NA	NA	
	RNG AHB clock domain	2.65	2.5	NA	NA	
	SDMMC1 independent clock domain	24.5	23.5	NA	NA	
	SDMMC1 AHB clock domain	23.5	22	NA	NA	
	SRAM1	2.65	2.65	2.1	2	
	SRAM2	2.25	2	1.75	2	
	SRAM3	5.35	5	4.25	5.5	
	TSC	1.85	1.75	1.65	1	
	All AHB Peripherals	165	150	125	145	
	AHB to APB1 bridge	0.084	0.25	0.165	0.5	
	CAN1	4.85	4.5	3.75	4.5	
APR1	CRS	0.335	0.25	0.415	0.5	цΔ/МН 7
	DAC1	2.75	2.5	2.1	2.5	P1 11111
	I2C1 independent clock domain	3.75	3.4	2.9	2.5	

 Table 43. Peripheral current consumption (continued)

- 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
- 3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 34* and *Table 69*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit			
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1				
	Emay	Maximum	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	МЦт			
	Filldx	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5				
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1				
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52				
	Tr/Tf	Output rise and	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	ne			
	11/11	fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	115			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110				
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10				
	Fmax	Maximum	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	М⊔≂			
	THIAX	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15				
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1				
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16				
	Tr/Tf	Output rise and	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40	ne			
	117.11	fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	115			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9]			
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21				

Table 69. I/O AC characteristics⁽¹⁾⁽²⁾

Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
ET	Total		ended	Slow channel (max speed)	-	4.5	6.5	
	error		Differential	Fast channel (max speed)	-	4.5	7.5	
		-	Differential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
FO	EO Offset		ended	Slow channel (max speed)	-	2.5	5	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2.5	3	
		Single	Fast channel (max speed)	-	4.5	7		
EG Gain error		ended	Slow channel (max speed)	-	3.5	6	ISB	
		Differential	Fast channel (max speed)	-	3.5	4	LOD	
		Differential	Slow channel (max speed)	-	3.5	5		
Differential ED linearity error		Single ended	Fast channel (max speed)	-	1.2	1.5		
			Slow channel (max speed)	-	1.2	1.5		
	ADC clock frequency ≤ 80 MHz.	Differential	Fast channel (max speed)	-	1	1.2		
		Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	1.2	-
		tegral 1.65 V \leq V _{DDA} = V _{REF+} \leq 3.6 V, Nearity Voltage scaling Range 1	Single ended	Fast channel (max speed)	-	3	3.5	
	Integral			Slow channel (max speed)	-	2.5	3.5	
	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	-	
ENOR	Effective		ended	Slow channel (max speed)	10	10.4	-	bite
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	5113
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	62	64	-	
	noise and		ended	Slow channel (max speed)	62	64	-	
UNAD	distortion ratio		Differential	Fast channel (max speed)	65	66	-	
	ratio		Differential	Slow channel (max speed)	65	66	-	dD
			Single	Fast channel (max speed)	63	65	-	uВ
SND	Signal-to-		ended	Slow channel (max speed)	63	65	-	
	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Dinerential	Slow channel (max speed)	66	67	-	

Table 77. ADC accuracy - limited test conditions 3 ⁽¹⁾	1)(2)(3)
---	----------

Sym- bol	Parameter	()	Min	Тур	Max	Unit	
			Single	Fast channel (max speed)	-	5	5.4	
FT	Total		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	4	5	
		-	Differentia	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	2	4	
FO	Offset	set	ended	Slow channel (max speed)	-	2	4	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
FG	EG Gain error		ended	Slow channel (max speed)	-	4	4.5	ISB
LO	Gainentoi		Differential	Fast channel (max speed)	-	3	4	LOD
			Differential	Slow channel (max speed)	-	3	4	
Differential ED linearity error		Single ended	Fast channel (max speed)	-	1	1.5		
			Slow channel (max speed)	-	1	1.5		
	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2		
		עסט אוחצ, 1.65 V ≤ V אחסע = VREF+ ≤		Slow channel (max speed)	-	1	1.2	-
		tegral Voltage scaling Range 2	Single ended	Fast channel (max speed)	-	2.5	3	
FI	Integral			Slow channel (max speed)	-	2.5	3	
	error		Differential	Fast channel (max speed)	-	2	2.5	
			Differential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	-	
	Effective		ended	Slow channel (max speed)	10.2	10.5	-	bite
ENOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	63	65	-	
	noise and		ended	Slow channel (max speed)	63	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	ratio		Differential	Slow channel (max speed)	65	66	-	40
			Single	Fast channel (max speed)	64	65	-	uВ
SND	Signal-to-		ended	Slow channel (max speed)	64	65	-]
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Dinerential	Slow channel (max speed)	66	67	-	

Table 78. ADC accur	acy - limited test	conditions $4^{(1)(2)(3)}$
---------------------	--------------------	----------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -0.5	3T _{HCLK} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK} -0.5	2T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	1	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	2T _{HCLK} -1	-	ne
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} +14	-	115
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	14	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1.5	

Table 97. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Table 98. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} -0.5	8T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	7T _{HCLK} -0.5	7T _{HCLK} +0.5	
t _{w(NWAIT)}	FMC_NWAIT low time	T _{HCLK}	-	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +12.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +12	-	

1. CL = 30 pF.

2. Guaranteed by characterization results.

- 1. CL = 30 pF.
- 2. Guaranteed by characterization results.

Symbol	Parameter		Мах	Unit
t _{w(NE)}	FMC_NE low time	10T _{HCLK} -0.5	10T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK} -0.5	7T _{HCLK} +0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	7T _{HCLK} +12.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	5T _{HCLK} +13	-	

Table 104. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 49 through *Figure 52* represent synchronous waveforms and *Table 105* through *Table 108* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the T_{HCLK} is the HCLK clock period.

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and 54 MHz for CLKDIV = 0x0 at CL = 30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD} \leq 2.7 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and 32 MHz for CLKDIV = 0x0 at CL= 20 pF (on FMC_CLK).

Figure 49. Synchronous multiplexed NOR/PSRAM read timings

Symbol	Parameter	Min	Мах	Unit	
t _{w(CLK)}	FMC_CLK period	RxT _{HCLK} - 0.5	-		
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5		
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	RxT _{HCLK} /2 +1	-		
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5		
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2	-		
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	5.5		
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	RxT _{HCLK} /2 +1	-		
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	20	
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	RxT _{HCLK} /2 +1	-	115	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3		
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-		
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5		
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1	-		
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	RxT _{HCLK} /2 +1.5	-		
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	1.5	-		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-		

Table 106. Synchronous multiplexed PSRAM write timings $^{(1)(2)(3)}$

1. CL = 30 pF.

2. Guaranteed by characterization results.

3. Clock ratio R = (HCLK period /FMC_CLK period).

Symbol	Parameter	Conditions		Min	Тур	Max ⁽²⁾	Unit
F _{СК} 1/t _(СК)		$1.71 V < V_{DD} < 3.6 V$ Voltage Range 1 C _{LOAD} = 20 pF		-	-	60	
	OctoSPI clock frequency (fixed latency)	$2.7 V < V_{DD} < 3.6 V$ Voltage Range 1 C _{LOAD} = 20 pF		-	-	64	
		1.71 V < V _{DD} < 3.6 V Voltage Range 1 C _{LOAD} = 15 pF		-	-	60	
		$1.71 V < V_{DD} < 3.6 V$ Voltage Range 2 C _{LOAD} = 20 pF		-	-	26	MH-7
	OctoSPI clock frequency (additional latency)	1.71 < V _{DD} < 3.6 V Voltage Range V1	Prescaler = 0,1,3,5	-	-	18	
		C _{LOAD} = 20 pF t _{CKDS} = 9ns	Prescaler = 2,4,6	-	-	25	
		2.7 < V _{DD} < 3.6 V Voltage Range V1	Prescaler = 0,1,3,5	-	-	22	
		C _{LOAD} = 20 pF t _{CKDS} = 9ns	Prescaler = 2,4,6	-	-	29	
		$1.71 < V_{DD} < 3.6 V$ Voltage Range V2 $C_{LOAD} = 20 \text{ pF}$ $t_{CKDS} = 9\text{ns}$	-	-	-	17	

Table 113. OctoSPI characteristics in DTR mode (with DQS)⁽¹⁾/Octal and Hyperbus

Symbol	millimeters		inches ⁽¹⁾				
	Min.	Тур.	Max.	Min.	Тур.	Max.	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	
F	0.450	0.500	0.550	0.0177	0.0197	0.0217	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

Table 118. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball gridarray package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 68. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array recommended footprint

Table 119. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5 mm
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note: Non-solder mask defined (NSMD) pads are recommended.

Note: 4 to 6 mils solder paste screen printing process.

		millimeters inches ⁽¹⁾			inches ⁽¹⁾		
Symbol		minineters	[inches. 7	1	
	Min	Тур	Max	Min	Тур	Мах	
А	-	-	0.59	-	-	0.023	
A1	-	0.18	-	-	0.007	-	
A2	-	0.38	-	-	0.015	-	
A3	-	0.025 ⁽²⁾	-	-	0.0010	-	
b	0.22	0.25	0.28	0.009	0.010	0.011	
D	5.22	5.24	5.26	0.205	0.206	0.207	
Е	5.22	5.24	5.26	0.205	0.206	0.207	
е	-	0.40	-	-	0.016	-	
e1	-	4.40	-	-	0.173	-	
e2	-	4.40	-	-	0.173	-	
F	-	0.420 ⁽³⁾	-	-	0.0165	-	
G	-	0.420 ⁽⁴⁾	-	-	0.0165	-	
aaa	-	-	0.10	-	-	0.004	
bbb	-	-	0.10	-	-	0.004	
CCC	-	-	0.10	-	-	0.004	
ddd	-	-	0.05	-	-	0.002	
eee	-	-	0.05	-	-	0.002	

Table 123. WLCSP - 144 bump, 5.24x 5.24 mm, 0.40 mm pitch, wafer level chip scale,mechanical data

1. Values in inches are converted from mm and rounded to 3 decimal digits.

2. A3 value is guaranteed by technology design value.

3. This value is calculated from over value D and e1.

4. This value is calculated from over value E and e2.

Figure 77. WLCSP - 144 bump, 5.24x 5.24 mm, 0.40 mm pitch, wafer level chip scale, recommended footprint

1. Dimensions are expressed in millimeters.

