

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	112
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l4s9zij6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pe	ripheral	S5VI	S7VI	S9VI	S5QI	S5ZI	S7ZI	S9ZI	S5AI	S7AI	S9AI
Flash mer	mory					2 Mbyte	S				
SDAM	System				640 (192	+ 64 + 3	84) Kby	tes			
SKAIVI	Backup										
External r controller memories	nemory for static (FSMC)		Yes ⁽¹⁾					Yes			
OctoSPI						2					
	Advanced control					2 (16-bi	t)				
	General purpose					5 (16-bi 2 (32-bi	t) t)				
	Basic					2 (16-bi	t)				
Timers	Low-power					2 (16-bi	t)				
	SysTick timer		2 (16-bit) 1 2 3								
	Watchdog timers (independent , window)					2					
	SPI					3					
	l ² C					4					
Timers Comm. interface s Digital filte delta modu Number of RTC	USART/UAR T UART LPUART					3 2 1					
	SAI					2					
	CAN					1					
	USB OTG FS					Yes					
	SDMMC					Yes					
Digital filte delta mod	ers for sigma- lulators				Y	es (4 filte	ers)				
Number o	f channels					8					
RTC			Yes								
Tamper pi	ins					3					
Camera ir	nterface					Yes					
Chrom-AF Accelerate	RT or™					Yes					
Chrom-GI	RC™	No	Ye	es	N)	Y	′es	No	Y	es

Table 2. STM32L4S5xx, STM32L4S7xx and STM32L4S9xx features and peripheral counts

Peripheral	S5VI	S7VI	S9VI	S5QI	S5ZI	S7ZI	S9ZI	S5AI	S7AI	S9AI
LCD - TFT	No	Ye	es	N	0	١	res	No	Y	′es
MIPI DSI Host ⁽²⁾	N	lo	Yes	No			Yes	1	No	Yes
Random number generator				Yes						
AES + HASH										
GPIOs Wakeup pins Nb of I/Os down to 1.08 V	8 ! (3 5)	77 4 0	110 5 14	115 5 14		112 5 11	140 5 14		131 4 13
Capacitive sensing Number of channels	2	21					24			
12-bit ADCs		1								
Number of channels	1	6	14			16	6			14
12-bit DAC Number of channels	2 2									
Internal voltage reference buffer					Yes					
Analog comparator					2					
Operational amplifiers					2					
Max. CPU frequency					120 MH	z				
Operating voltage				1	.71 to 3.	6 V				
Operating temperature		Ambi	ient opera	ting tempe	erature: -	40 to 85	5 °C / -40	to 125	°C	
Packages		LQFP100		UFBGA 132	JFBGA LQFP 144 LQFP 132 WLCS 144 P144		LQFP 144, UFBGA 144 WLCSP 144	UFBGA169		69
Bootloader	USART 1	USART 2	USART 3	SPI1	SPI2	I2C1	I2C2	I2C3	CAN1	USB through DFU

Table 2. STM32L4S5xx, STM32L4S7xx and STM32L4S9xx features and peripheral counts (continued)

1. For the LQFP100 package, only FMC bank1 and NAND bank are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select.

2. The DSI Host interface is only available on the STM32L4S9xx sales types.

By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the Low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode to detect their wake-up condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The Brownout reset (BOR) always remains active in Standby mode.

The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1, SRAM3 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.14 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
 - Each channel is connected to a dedicated hardware DMA request, a software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are both software programmable (4 levels: very high, high, medium, low) or hardware programmable in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating
 packing and unpacking. Source/destination addresses must be aligned on the data size
- Support for circular buffer management
- 3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

Figure 17. STM32L4S9xx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

				Pin Nu	umbe	ər									
	STM STN	32L4 132L4	S5xx S7xx			ST	M32L4	S9xx		Pin name	/pe	cture	se		Additional
LQFP100	BGA132	LQFP144	WLCSP144	UFBGA169	LQFP100	LQFP144	UFBGA144	WLCSP144	UFBGA169	(functio n after reset)	Pin ty	I/O stru	Not	Alternate functions	functions
48	L11	70	M4	H8	45	66	К9	M4	H7	PB11	I/O	FT_fl	_	TIM2_CH4, I2C4_SDA, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, LPUART1_TX, OCTOSPIM_P1_NC S, DSI_TE, COMP2_OUT, EVENTOUT	-
-	-	-	-	К9	-	-	-	-	K8	PH4	I/O	FT_f	-	I2C2_SCL, OCTOSPIM_P2_DQ S, EVENTOUT	-
-	-	-	-	L9	-	-	-	-	L9	PH5	I/O	FT_f	-	I2C2_SDA, DCMI_PIXCLK, EVENTOUT	-
-	-	-	-	N10	-	-	-	-	N10	PH8	I/O	FT_f	-	I2C3_SDA, OCTOSPIM_P2_IO3 , DCMI_HSYNC, EVENTOUT	-
-	-	-	-	М9	-	-	-	-	M9	PH10	I/O	FT	-	TIM5_CH1, OCTOSPIM_P2_IO5 , DCMI_D1, EVENTOUT	-
-	-	-	-	M10	-	-	-	-	M10	PH11	I/O	FT	-	TIM5_CH2, OCTOSPIM_P2_IO6 , DCMI_D2, EVENTOUT	-
-	-	-	-	C2	-	-	-	-	C2	VSS	S	-	-	-	-
49	F12	71	М3	A7	46	67	M12	М3	A7	VSS	S	-	-	-	-
50	G12	72	M1	N11	47	68	L11	M1	N11	VDD	S	-	-	-	-
51	L12	73	J4	N12	48	69	L10	J4	N12	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, SAI2_FS_A, TIM15_BKIN, EVENTOUT	-

Table 15. STW32L45XXX pin definitions (continued)	Table 15.	STM32L4Sxxx	pin definitions	(continued)
---	-----------	-------------	-----------------	-------------

Symbol	Parameter	Condi	tions	Code	TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Un
		-	Voltage scaling		25°C	25°C		25°C	25°C	
				Reduced code ⁽¹⁾	3.40	3.60		131	138	
			Range2	Coremark	3.90	3.95		150	152	
			fHCLK=26MHz	Dhrystone2.1	4.25	4.30	mA	163	165	µA/N
				Fibonacci	3.65	3.90	-	140	150	
			While ⁽¹⁾	3.15	3.15	-	121	121		
		fHCLK=fHSE up to 48 MHZ included, bypass mode PLL ON above	Range 1 Normal Mode e fHCLK= 80	Reduced code ⁽¹⁾	11.5	12.5		144	156	μΑ/MHz
חח	Supply			Coremark	13.5	13.5		169	169	
(Run)	current in Run mode			Dhrystone2.1	14.5	14.5	mA	181	181	
		48 MHz all peripherals	MHZ	Fibonacci	12.5	14.0	-	156	175	
		disable		While ⁽¹⁾	10.5	10.5	-	131	131	
				Reduced code ⁽¹⁾	18.5	17.0		154	142	_ μA/MHz
			Range 1 Boost Mode	Coremark	21.5	21.5		179	179	
			fHCLK= 120	Dhrystone2.1	22.5	22.5	mA	188	188	
			MHz	Fibonacci	20.0	21.0		167	175	
				While ⁽¹⁾	16.5	16.5]	138	138	

5

		Conditions			ТҮР		TYP		
Symbol	Parameter	- Voltage - scaling		Code	25°C	Unit	25°C	Unit	
				Reduced code ⁽¹⁾	3.35		129		
			Range?	Coremark	3.10	mA	119	µA/MHz	
			fHCLK=26	Dhrystone2.1	3.65		140		
			MHz Range 1 Normal Mode fHCLK= 80 MHz Range 1 Boost Mode	Fibonacci	3.20		123		
				While ⁽¹⁾	2.85		110		
				Reduced code ⁽¹⁾	11.0	mA	138		
		fHCLK=fHSE up to 48 MHZ included, bypass mode PLL ON above 48 MHz all peripherals disable		Coremark	10.5		131		
IDD (Run)	Supply current in Run mode			Dhrystone2.1	12.5		156	μΑ/MHz μΑ/MHz	
				Fibonacci	10.5		131		
				While ⁽¹⁾	9.40		118		
				Reduced code ⁽¹⁾	18.0		150		
				Coremark	16.5		138		
				Dhrystone2.1	19.5		163		
			fHCLK= 120 MHz	Fibonacci	17.5		146		
				While ⁽¹⁾	15.0		125		
				Reduced code ⁽¹⁾	435		218		
				Coremark	395		198		
IDD(LPRun)	Supply current in Low-power run	tHCLK = tMSI = 2MHz all p	oripherals	Dhrystone2.1	470	μΑ	235	μA/MH	
		-		Fibonacci	425		213		
				While ⁽¹⁾	455		228	-	

37/277

STM32L4S5xx, STM32L4S7xx and STM32L4S9xx

Electrical characteristics

	Peripheral	Range 1 Boost Mode	Range 1 Normal Mode	Range 2	Low-power run and sleep	Unit
	I2C1 APB clock domain	1.4	1.4	1.25	2	
	I2C2 independent clock domain	3.5	3.4	2.5	3.5	
	I2C2 APB clock domain	1.4	1.25	1.25	1	
	I2C3 independent clock domain	3.25	3.15	2.9	3	
	I2C3 APB clock domain	1.15	1	0.835	1	
	I2C4 independent clock domain	3.5	3.25	2.75	3	
	I2C4 APB clock domain	1.35	1.25	1	1.5	
	LPUART1 independent clock domain	3.15	3	2.45	3	
	LPUART1 APB clock domain	1.65	1.5	1.3	1.5	
APB1	LPTIM1 independent clock domain	3.6	3.5	2.9	3	µA/MHz
APB1 (Cont.)	LPTIM1 APB clock domain	1	0.875	0.835	1	
	LPTIM2 independent clock domain	3.4	3.25	2.55	3.5	
	LPTIM2 APB clock domain	1.1	1	0.79	1	
	OPAMP	0.415	0.375	0.415	0.5	
	PWR	0.5	0.375	0.415	0.5	
	RTCAPB	1.25	1.15	1.25	1	
	SPI2	2.6	2.4	2.1	2.5	
	SPI3	3	2.75	2.5	3	
	TIM2	6.15	5.75	4.65	4.5	
	TIM3	5.25	4.9	4.15	5	
	TIM4	5.15	4.75	4.15	5	
	TIM5	6.5	6	5	6	
	TIM6	1.35	1.15	1.25	1	
	TIM7	1.25	1.15	0.835	1	

 Table 43. Peripheral current consumption (continued)

	Peripheral	Range 1 Boost Mode	Range 1 Normal Mode	Range 2	Low-power run and sleep	Unit
	USART2 independent clock domain	5.35	5	4.15	4.5	
	USART2 APB clock domain	3	2.75	2.5	2.5	
	USART3 independent clock domain	6.35	6	5	5.5	
	USART3 APB clock domain	2.6	2.4	2.1	2.5	
APB1 (Cont.)	UART4 independent clock domain	5.15	4.9	3.75	4.5	µA/MHz
	UART4 APB clock domain	2.5	2.25	2.1	2.5	
	UART5 independent clock domain	5.4	5	4.15	5	
	UART5 APB clock domain	2.4	2.25	2.1	2	
	WWDG	0.75	0.625	0.835	0.5	1
	All APB1 on	110	100	84	97	
	AHB to APB2 bridge	0.185	0.15	0.125	0.5	
	DFSDM	9.5	9	7.5	8.5	
	DSI independent clock domain	33	34.5	29.5	NA	
	DSI APB clock domain	13	7.15	29	NA	1
	FW	0.665	0.625	0.5	0.5	1
	LTDC independent clock domain	35.5	34.5	40	NA	
. – – – –	LTDC APB clock domain	18	17	14	NA	
APB2	SAI1 independent clock domain	3.1	2.9	2.5	3	µA/MHz
	SAI1 APB clock domain	2.6	2.4	1.9	2	
	SAI2 independent clock domain	3.15	3	2.55	3	
	SAI2 APB clock domain	2.6	2.4	1.9	2.5	
APB2	SPI1	2.25	2.15	1.75	1	1
	SYSCFG/VREFBUF/C OMP	0.565	0.6	0.5	0.5	

 Table 43. Peripheral current consumption (continued)

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 49*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-	
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
	HSE current consumption	V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 49.	HSE	oscillator	characteristics ⁽¹	I)
-----------	-----	------------	-------------------------------	----

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 26*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

6.3.13 Flash memory characteristics

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{prog}	64-bit programming time	-	81.7	90.8	μs
+	One row (64 double	Normal programming	5.2	5.5	
^L prog_row	word) programming time	Fast programming	3.8	4	
+	One page (4 Kbytes)	Normal programming	41.8	43	ms
^L prog_page	programming time	Fast programming	30.4	31	_
t _{ERASE}	Page (4 Kbytes) erase time	-	22	24.5	
t _{prog_bank}	One bank (1 Mbyte)	Normal programming	10.7	11	
	programming time	Fast programming	7.7	8	5
t _{ME}	Mass erase time (one or two banks)	-	22.1	25	ms
	Average consumption	Write mode	3.4	-	
I _{DD}	from V _{DD}	Erase mode	3.4	-	m۸
	Maximum current (noak)	Write mode	7 (for 6 µs)	-	mA
	Maximum current (peak)	Erase mode	7 (for 67 µs)	-	

Table 60. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Table 01. Thas memory endurance and data retention					
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles	
		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	15	Years	
+		1 kcycle ⁽²⁾ at T _A = 125 °C	7		
^I RET		10 kcycles ⁽²⁾ at T _A = 55 °C	30		
		10 kcycles ⁽²⁾ at T _A = 85 °C	15		
		10 kcycles ⁽²⁾ at T _A = 105 °C	10		

Table 61. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

Sym bol	Parameter	Conditions	Min	Тур	Мах	Unit
	I/O input high level voltage except BOOT0	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.7xV _{DDIOx} ⁽²⁾	-	-	
VIH	I/O input high level voltage except BOOT0	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.49xV _{DDIOX} +0.26	-	-	V
(1)	I/O input high level voltage except BOOT0	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	0.61xV _{DDIOX} +0.05	-	-	v
	BOOT0 I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.77xV _{DDIOX} ⁽³⁾	-	-	
Vhua	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	
(3)	FT_sx	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	-	150	-	mV
	BOOT0 I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±100	
	FT_xx input leakage current ⁽³⁾	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)(5)} \end{array}$	-	-	650 ⁽³⁾⁽⁶⁾	
		$\begin{array}{l} \mbox{Max}(V_{\mbox{DDXXX}})\mbox{+1 V} < \\ \mbox{VIN} \leq 5.5 \ V^{(3)(5)} \end{array}$	-	-	200 ⁽⁶⁾	
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±150	
	FT_lu, FT_u, PB2 and PC3 IO	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)} \end{array}$	-	-	2500 ⁽³⁾⁽⁷⁾	
l _{ikg}		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}){+}1\;{\sf V}{<} \\ {\sf VIN} \leq 5.5\;{\sf V}^{(4)(5)(7)} \end{array}$	-	-	250 ⁽⁷⁾	nA
	TT vy input	$V_{IN} \le Max(V_{DDXXX})^{(6)}$	-	-	±150	
	leakage current	Max(V _{DDXXX}) ≤ V _{IN} < 3.6 V ⁽⁶⁾	-	-	2000 ⁽³⁾	
	OPAMPx_VINM (x=1,2) dedicated input leakage current	-	-	-	(8)	
R _{PU}	Weak pull-up equivalent resistor ⁽⁹⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁹⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 67. I/O static characteristics (continued)

6.3.22 Digital-to-Analog converter characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for DAC ON	DAC output buffer OFF, DAC_OUT pin not connected (internal connection only)		1.71	-	3.6	
		Other modes		1.80	-		
V _{REF+}	Positive reference voltage	DAC output buffer OFF, DAC_OUT pin not connected (internal connection only)		1.71	-	V _{DDA}	V
		Other modes		1.80	-		
V _{REF-}	Negative reference voltage		-		V _{SSA}		
D	Posistivo load	DAC output	connected to V_{SSA}	5	-	-	۲O
κL	Resistive load	buffer ON	connected to V_{DDA}	25	-	-	K12
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
D	Output impedance sample	V _{DD} = 2.7 V		-	-	2	10
RBON	buffer ON	V _{DD} = 2.0 V		-	-	3.5	К12
_	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5	
R _{BOFF}	buffer OFF	V _{DD} = 2.0 V		-	-	18.0	KU2
CL	Canacitiva laad	DAC output buffer ON		-	-	50	pF
C _{SH}		Sample and ho	old mode	-	0.1	1	μF
V _{DAC OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{REF+} - 0.2	v
	ouipui	DAC output bu	ffer OFF	0	-	V _{REF+}	
			±0.5 LSB	-	1.7	3	
	Settling time (full scale: for	Normal mode DAC output	±1 LSB	-	1.6	2.9	
	between the lowest and the	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	highest input codes when DAC OUT reaches final	CL ≤ 50 pr, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs
	value ±0.5LSB, ±1 LSB,		±8 LSB	-	1.4	2.75	_
	±2 LSB, ±4 LSB, ±8 LSB)	Normal mode I OFF, ±1LSB, C	DAC output buffer CL = 10 pF	-	2	2.5	
Wakeup time from off state $CL \le 50$ g		Normal mode [CL ≤ 50 pF, RL	DAC output buffer ON .≥5 kΩ	-	4.2	7.5	
	DAC Control register) until final value ±1 LSB	Normal mode I OFF, CL ≤ 10 p	DAC output buffer	-	2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON . = 5 kΩ, DC	-	-80	-28	dB

Table 79. DAC characteristics⁽¹⁾

Symbol	Parameter	Conditions			Тур	Max	Unit
T _{W_to_W}	Minimal time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC_OUT for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 000 or 001 DAC_MCR:MODEx[2:0] = 010 or 011	CL ≤ 50 pF, RL ≥ 5 kΩ CL ≤ 10 pF		1 1.4	-	-	μs
		DAC output buffer DAC OUT ON, C _{SH} = 100 nF		-	0.7	3.5	Line Unit μs μs ms μs μs μs μs μs μs μs μν
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	1115
t _{SAMP}	lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and hold mode, DAC_OUT pin connected		-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs
V	Middle code offset for 1 trim	V _{REF+} = 3.6 V		-	1500	-	
v offset	code step	V _{REF+} = 1.8 V		-	750	-	μv
I _{DDA} (DAC)		DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON	No load, worst code (0xF1C)	-	450	670	
	DAC consumption from V _{DDA}	DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μA
		Sample and ho 100 nF	old mode, C _{SH} =	-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	

Table 79. DAC characteristics⁽¹⁾ (continued)

Figure 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

Figure 48. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 103. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	5T _{HCLK} -0.5	5T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -0.5	T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	2T _{HCLK} -0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	3	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} +0.5	T _{HCLK} +1.5	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high	T _{HCLK} -3	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	0	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	2T _{HCLK} -0.5	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	T _{HCLK}	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	2T _{HCLK} +0.5	-	

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	RxT _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
$t_{d(CLKH_NExH)}$	FMC_CLK high to FMC_NEx high (x= 02)	RxT _{HCLK} /2 +1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	5.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	RxT _{HCLK} /2 +1	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	RxT _{HCLK} /2 +1	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	2	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	4	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	1.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 105. Synchronous multiplexed NOR/PSRAM read timings $^{(1)(2)(3)}$

1. CL = 30 pF.

2. Guaranteed by characterization results.

3. Clock ratio R = (HCLK period /FMC_CLK period).

Symbol	Parameter	Conditions		Min	Тур	Max ⁽²⁾	Unit
t _{w(CKH)}	OctoSPI clock high			t _(CK) /2-1	-	t _(CK) /2+0.5	
t _{w(CKL)}	and low time	-		t _(CK) /2-0.5	-	t _(CK) /2+0.5	
t _{v(CK)}	Clock valid time	-		-	-	t _(СК) +1	
t _{h(CK)}	Clock hold time	-		t _(CK) /2-0.5	-	-	
t _{w(CS)}	Chip select high time	-	-		-	-	
t _{v(DQ)}	Data input vallid time	-		0	-	-	
t _{v(DS)}	Data storbe input valid time	-		0	-	-	ns
t _{h(DS)}	Data storbe input hold time	-		0	-	-	
t _{v(RWDS)}	Data storbe output valid time	-		-	-	3 х t _(СК)	
t _{sr(IN)}	Data input	Voltage Range 1		-3.5	-	t _(CK) /2-5.75 ⁽³⁾	
t _{sf(IN)}	setup time	Voltage Range 2		-5.5	-	t _(CK) /2-9 ⁽³⁾	
t _{hr(IN)}	Data input	Voltage Range 1		5.75	-	-	
t _{hf(IN)}	hold time	Voltage Range 2		9	-	-	
			DHQC = 0		4.5	6	
t _{vr(OUT)} t _{vf(OUT)}	Data output valid time	Voltage Range 1	DHQC = 1 Pres=1,2	-	tpclk/4+1. 5	tpclk/4+2.25	
		Voltage Range 2	DHQC = 0		8	11	
			DHQC = 0	0.5	-	-	ns
t _{hr(OUT)} t _{hf(OUT)}	Data output hold time	Voltage Range 1	DHQC = 1 Pres=1,2	tpclk/4-1.75	-	-	
		Voltage Range 2	DHQC = 0	0.75	-	-	

Table 113. OctoSPI characteristics in DTR mode ((with DQS) ⁽¹⁾ /Octal and Hyperbus (continued)
--	---

1. Guaranteed by characterization results.

2. Maximum frequency values are given for a RWDS to DQ skew of maximum +/-1.0 ns.

3. Data input setup time maximum does not take into account Data level switching duration.

Figure 57. OctoSPI timing diagram - SDR mode

