

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Last Time Buy
Core Processor	SH-2A
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, Host Interface, FIFO, SCI, SD, Serial Sound, Stream, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 1.3V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-20°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-FBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s76700b200bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 2 CPU

2.1 Register Configuration

The register set consists of sixteen 32-bit general registers, four 32-bit control registers, and four 32-bit system registers.

2.1.1 General Registers

Figure 2.1 shows the general registers.

The sixteen 32-bit general registers are numbered R0 to R15. General registers are used for data processing and address calculation. R0 is also used as an index register. Several instructions have R0 fixed as their only usable register. R15 is used as the hardware stack pointer (SP). Saving and restoring the status register (SR) and program counter (PC) in exception handling is accomplished by referencing the stack using R15.

	R0*1	
	R1	
	R2	
	R3	
	R4	
	R5	
	R6	
	R7	
	R8	
	R9	
	R10	
	R11	
	R12	
	R13	
	R14	
R15, S	SP (hardware sta	ck pointer)*2

Notes: 1. R0 functions as an index register in the indexed register indirect addressing mode and indexed GBR indirect addressing mode. In some instructions, R0 functions as a fixed source register or destination register.

2. R15 functions as a hardware stack pointer (SP) during exception processing.

Figure 2.1 General Registers

Section 7 Bus State Controller (BSC)

The bus state controller (BSC) outputs control signals for various types of memory and external devices that are connected to the external address space. BSC functions enable this LSI to connect directly with SRAM, SDRAM, and other memory storage devices, and external devices.

7.1 Features

- 1. External address space
 - A maximum of 64 Mbytes for each of areas CS0 and CS3 to CS6.
 - Can specify the normal space interface, SRAM interface with byte selection, SDRAM, and PCMCIA interface for each address space.
 - Can select the data bus width (8, 16, or 32 bits) for each address space.
 - Controls insertion of wait cycles for each address space.
 - Controls insertion of wait cycles for each read access and write access.
 - Can set independent idle cycles during the continuous access for five cases: read-write (in same space/different spaces), read-read (in same space/different spaces), the first cycle is a write access.
 - For area 0, only big endian is supported.
- 2. Normal space interface
 - Supports the interface that can directly connect to the SRAM.
- 3. SDRAM interface
 - Multiplex output for row address/column address.
 - Efficient access by single read/single write.
 - High-speed access in bank-active mode.
 - Supports an auto-refresh and self-refresh.
 - Supports power-down modes.
 - Issues MRS and EMRS commands.
- 4. PCMCIA direct interface
 - Supports the IC memory card and I/O card interface defined in JEIDA specifications Ver. 4.2 (PCMCIA2.1 Rev. 2.1).
 - Wait-cycle insertion controllable by program.
- 5. SRAM interface with byte selection
 - Can connect directly to a SRAM with byte selection.

Table 7.11Relationship between BSZ[1:0], A3ROW[1:0], A3COL[1:0], and Address
Multiplex Output (1)-2

	Setting			
BSZ[1:0]	A3ROW[1:0]	A3COL[1:0]	_	
11 (32 bits)	01 (12 bits)	00 (8 bits)	_	
Output Pin of This LSI	Row Address Output	Column Address Output	- SDRAM Pin	Function
A17	A25	A17		Unused
A16	A24	A16	_	
A15	A23* ²	A23* ²	A13 (BA1)	Specifies bank
A14	A22* ²	A22* ²	A12 (BA0)	
A13	A21	A13	A11	Address
A12	A20	L/H* ¹	A10/AP	Specifies address/precharge
A11	A19	A11	A9	Address
A10	A18	A10	A8	
A9	A17	A9	A7	
A8	A16	A8	A6	
A7	A15	A7	A5	
A6	A14	A6	A4	
A5	A13	A5	A3	
A4	A12	A4	A2	
A3	A11	A3	A1	
A2	A10	A2	A0	
A1	A9	A1		Unused
A0	A8	A0	_	
Example of con	nected memory			

128-Mbit product (1 Mword × 32 bits × 4 banks, column 8 bits product): 1

64-Mbit product (1 Mword \times 16 bits \times 4 banks, column 8 bits product): 2

Notes: 1. L/H is a bit used in the command specification; it is fixed at L or H according to the access mode.

- 2. Bank address specification
- 3. Applicable only to 64-bit products.

	Setting			
BSZ[1:0]	A3ROW[1:0]	A3COL[1:0]	—	
10 (16 bits) 10 (13 bits) 10 (10 bits)		—		
Output Pin of This LSI	Row Address Output	Column Address Output	SDRAM Pin	Function
A17	A27	A17		Unused
A16	A26	A16	—	
A15	A25* ²	A25* ²	A14 (BA1)	Specifies bank
A14	A24* ²	A24* ²	A13 (BA0)	
A13	A23	A13	A12	Address
A12	A22	A12	A11	
A11	A21	L/H* ¹	A10/AP	Specifies address/precharge
A10	A20	A10	A9	Address
A9	A19	A9	A8	
A8	A18	A8	A7	
A7	A17	A7	A6	
A6	A16	A6	A5	
A5	A15	A5	A4	
A4	A14	A4	A3	
A3	A13	A3	A2	
A2	A12	A2	A1	
A1	A11	A1	A0	
A0	A10	A0		Unused
Example of con	nected memory			

Table 7.16Relationship between BSZ[1:0], A3ROW[1:0], A3COL[1:0], and Address
Multiplex Output (6)-2

512-Mbit product (8 Mwords \times 16 bits \times 4 banks, column 10 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

- 5. The counter stops at the value of H'00.
- 6. Before changing WTCNT after execution of the frequency change instruction, always confirm that the value of WTCNT is H'00 by reading from WTCNT.

10.4.3 Using Watchdog Timer Mode

- 1. Set the WT/IT bit in WTCSR to 1 to set the type of count clock in the CKS2 to CKS0 bits, whether this LSI is to be reset internally or not in the RSTE bit in WRCSR, and the initial value of the counter in WTCNT.
- 2. Set the TME bit in WTCSR to 1 to start the count in watchdog timer mode.
- 3. While operating in watchdog timer mode, rewrite the counter periodically to H'00 to prevent the counter from overflowing.
- When the counter overflows, the WDT sets the WOVF flag in WRCSR to 1, and the WDTOVF signal is output externally (figure 10.4). The WDTOVF signal can be used to reset the system. The WDTOVF signal is output for 64 × Pφ clock cycles.
- 5. If the RSTE bit in WRCSR is set to 1, a signal to reset the inside of this LSI can be generated simultaneously with the \overline{WDTOVF} signal. The internal reset signal is output for $128 \times P\phi$ clock cycles.
- 6. When a WDT overflow reset is generated simultaneously with a reset input on the $\overline{\text{RES}}$ pin, the $\overline{\text{RES}}$ pin reset takes priority, and the WOVF bit in WRCSR is cleared to 0.

12.3.14 Frame Receive Error Counter Register (FRECR)

FRECR is a 32-bit counter that indicates the number of frames input from the PHY for which a receive error was indicated by the RX-ER pin. FRECR is incremented each time the RX-ER pin becomes active. When the value in this register reaches H'FFFFFFFF, the count is halted. The counter value is cleared to 0 by a write to this register with any value.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[FREC	[31:16]							
Initial value: R/W:	0 R/W															
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ								FREC	[15:0]							
Initial value: R/W:	0 B/W															

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	FREC[31:0]	All 0	R/W	Frame Receive Error Count
				These bits indicate the count of errors during frame reception.

The following shows the areas as the target of calculation of an IPv4 packet. The shaded portions are the target of calculation.

Note: * This is changed to the octet basis and undergoes a subtraction during checksum calculation. During calculation, {8'h00, protocol No.[7:0]} is used.

14.3 Functions

Table 14.2 lists A-DMAC security/network functions.

Table 14.2 A-DMAC Security/Network Functions

Classification	Item	Description	Conforming/ Supported Standard
Error detection	Checksum	1's complement sum operation	RFC1071 support
Error correction	FEC	FEC XOR operation	RFC2733
		 Support of any number of FEC matrixes 	Pro-MPEG support

(6) Multi-channel Formats

Some devices extend the definition of the specification by Philips and allow more than 2 channels to be transferred within two system words.

The SSI module supports the transfer of 4, 6 and 8 channels by using the CHNL, SWL and DWL bits only when the system word length (SWL) is greater than or equal to the data word length (DWL) multiplied by channels (CHNL).

Table 16.5 shows the number of padding bits for each of the valid setting. If setting is not valid, "—" is indicated instead of a number.

Padding Per Sys	j Bits tem Word		DWL[2:0]	000	001	010	011	100	101	110
CHNL [1:0]	Decoded Channels per System Word	SWL [2:0]	Decoded Word Length	8	16	18	20	22	24	32
00	1	000	8	0		_	_	_		_
		001	16	8	0	_	_	_	_	_
		010	24	16	8	6	4	2	0	_
		011	32	24	16	14	12	10	8	0
		100	48	40	32	30	28	26	24	16
		101	64	56	48	46	44	42	40	32
		110	128	120	112	110	108	106	104	96
		111	256	248	240	238	236	234	232	224
01	2	000	8							
		001	16	0						—
		010	24	8						
		011	32	16	0					—
		100	48	32	16	12	8	4	0	_
		101	64	48	32	28	24	20	16	0
		110	128	112	96	92	88	84	80	64
		111	256	240	224	220	216	212	208	192

Table 16.5	The Number of Padding Bits for Each	Valid Setting
-------------------	-------------------------------------	---------------

Bit	Bit Name	Initial Value	R/W	Description
6	BRDYM	0	R/W	BRDY Interrupt Status Clear Timing for each Pipe
				Specifies the timing for clearing the BRDY interrupt status for each pipe.
				0: Software clears the status.
				1: This module clears the status when data has been read from the FIFO buffer or data has been written to the FIFO buffer.
5		0*	R	Reserved
				This bit is reserved. The previously read value should be written to this bit.
				Note: Although this bit is initialized to 0 by a power- on reset, be sure to set this bit to 1 using the initialization routine of this module.
4 to 0		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
Note:	* Although th	is bit is initi	alized to	0 by a power-on reset, be sure to set this bit to 1 using

the initialization routine of this module.

Bit	Bit Name	Initial Value	R/W	Description						
5	TME	0	R/W	Timer Enable)					
				Starts and stops timer operation. Clear this bit to 0 when using the WDT in software standby mode or when changing the clock frequency.						
				0: Timer disa	bled					
				Count-up s	stops and WTCNT va	lue is retained				
				1: Timer enal	bled					
4, 3		All 1	R	Reserved						
				These bits ar should alway	e always read as 1. T s be 1.	he write value				
2 to 0	CKS[2:0]	000	R/W	Clock Select						
				I hese bits se count from th peripheral clo shown inside when the per	elect the clock to be u e eight types obtaina ock (P \Box). The overflov the parenthesis in th ipheral clock (P \Box) is 2	sed for the WTCNT ble by dividing the v period that is e table is the value 25 MHz.				
				Bits 2 to 0	Clock Ratio	Overflow Cycle				
				000:	1 🗆 P 🗆	10.2 □ s				
				001:	1/64 □P□	655.4 □ s				
				010:	1/128 🗆 P 🗆	1.3 ms				
				011:	1/256 □ P □	2.6 ms				
				100:	1/512 🗆 P 🗆	5.2 ms				
				101:	1/1024 🗆 P 🗆	10.5 ms				
				110:	1/4096 🗆 P 🗆	41.9 ms				
				111:	1/16384 □P□	167.8 ms				
				Note: If the W the W be pe are m runnir	CKS2 to CKS0 bits a DT is running, the co rformed correctly. En odified only when the ng.	re modified when unting-up may not sure that these bits WDT is not				

		Initial		
Bit	Bit Name	Value	R/W	Description
14	BCLR	0	R/W* ¹	CPU Buffer Clear
				This bit should be set to 1 to clear the FIFO buffer on the CPU side for the selected pipe.
				0: Invalid
				1: Clears the buffer memory on the CPU side.
				When double buffer mode is set for the FIFO buffer assigned to the selected pipe, this module clears only one plane of the FIFO buffer even when both planes are read-enabled.
				When the selected pipe is the DCP, setting BCLR to 1 allows this module to clear the FIFO buffer regardless of whether the FIFO buffer is on the CPU side or SIE side. To clear the buffer on the SIE side, set the PID bits for the DCP to NAK before setting BCLR to 1.
				When the selected pipe is in the transmitting direction, if 1 is written to BVAL and BCLR bits simultaneously, this module clears the data that has been written before it, enabling transmission of a zero-length packet.
				When the selected pipe is not the DCP, writing 1 to this bit should be done while FRDY indicates 1 (set by this module).
13	FRDY	0	R	FIFO Port Ready
				Indicates whether the FIFO port can be accessed by the CPU (DMAC).
				0: FIFO port access is disabled.
				1: FIFO port access is enabled.
				In the following cases, this module sets FRDY to 1 but data cannot be read via the FIFO port because there is no data to be read. In these cases, set BCLR to 1 to clear the FIFO buffer, and enable transmission and reception of the next data.
				 A zero-length packet is received when the FIFO buffer assigned to the selected pipe is empty.
				A short packet is received and the data is completely read while BFRE is 1.

Pin No.	Non-HIF Boot Mode		HIF Boot Mode	
	Initial Function	Settable Function	Initial Function	Settable Function
C11	D04		D04	
A10	D05		D05	
B10	D06		D06	
C10	D07		D07	
B7	D08		D08	

