



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                   |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | 8051                                                                       |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 48MHz                                                                      |
| Connectivity               | SmartCard, SPI, UART/USART, USB                                            |
| Peripherals                | LED, POR, WDT                                                              |
| Number of I/O              | 46                                                                         |
| Program Memory Size        | 32KB (32K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 768 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                  |
| Data Converters            | -                                                                          |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C                                                               |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 64-LQFP                                                                    |
| Supplier Device Package    | 64-VQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at89c5122d-altum |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Pinout**

# High Pin Count Package Description

AT8xC5122/AT83R5122 version

Figure 1. VQFP64 Package Pinout











### **Using CRAM Memory**

The CRAM is a read / write volatile memory that is mapped in the program memory space. Then when the power is switched off the code is lost and needs to be reload at each power up. In return, the CRAM enables a lot of flexibility in the code development as it can be programmed indefinitely. The user code running in the CRAM can perform read operations in CRAM itself by means of MOVC instructions like any C51 microcontroller does. Although the writing operations in CRAM are usually handled by the bootloader, it is possible for the user code to handle its own writing operations in CRAM as well. The user code must call API functions provided by the bootloader in the ROM memory. Refer to bootloader datasheet for further details about the use of these API functions. These API functions use a mechanism provided by the AT8xC5122 microcontroller. When the bit RPS is set in RCON register (Table 8 on page 24), the MOVX intructions are configured to write in CRAM instead of XRAM memory. However, due to C51 architecture, it is not possible for the user code to write directly in CRAM when it is itself running in CRAM. This is why the API functions must be called in order to have the code executing in ROM while the CRAM is written.







# <sup>32</sup> AT83R5122, AT8xC5122/23

2. Grey areas : do not write in.

|                     | 0/8                                                                                                            | 1/9                                                                     | 2/A                 | 3/B                 | 4/C                                | 5/D                                | 6/E                               | 7/F                  |
|---------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|---------------------|------------------------------------|------------------------------------|-----------------------------------|----------------------|
| F8h                 | UEPINT<br>0000 0000                                                                                            |                                                                         |                     |                     |                                    |                                    |                                   |                      |
| F0h                 | B<br>0000 0000                                                                                                 | LEDCON0<br>0000 0000                                                    |                     |                     |                                    |                                    |                                   |                      |
| E8h                 | P5<br>1111 1111                                                                                                |                                                                         |                     |                     |                                    |                                    |                                   |                      |
| E0h                 | ACC<br>0000 0000                                                                                               | LEDCON1<br>XX00 0000                                                    | UBYCTX<br>0000 0000 |                     |                                    |                                    |                                   |                      |
| D8h                 |                                                                                                                |                                                                         |                     |                     |                                    |                                    |                                   |                      |
| D0h                 | PSW<br>0000 0000                                                                                               | RCON<br>XXXX 0XXX                                                       |                     |                     | UEPCONX<br>1000 0000               | UEPRST<br>0000 0000                |                                   |                      |
| C8h                 |                                                                                                                |                                                                         |                     |                     |                                    |                                    | UEPSTAX<br>0000 0000              | UEPDATX<br>0000 0000 |
| S 1<br>C C0h<br>S 0 | P4<br>1111 1111                                                                                                | SCICLK <sup>(1)</sup><br>0X10 1111<br>SCWT3 <sup>(1)</sup><br>0000 0000 | UEPIEN<br>0000 0000 | SPCON<br>0001 0100  | SPSTA<br>0000 0000                 | SPDAT<br>1111 1111                 | USBADDR<br>1000 0000              | UEPNUM<br>0000 0000  |
| B8h                 | I         IPL0         SADEN         UFNUML           38h         X000 000         0000 0000         0000 0000 |                                                                         | UFNUML<br>0000 0000 | UFNUMH<br>0000 0000 | USBCON<br>0000 0000                | USBINT<br>0000 0000                | USBIEN<br>0000 0000               | DCCKPS<br>0000 0000  |
| S 1<br>C Date       | P3 IEN1<br>1111 1111 XXXX X000                                                                                 | IEN1                                                                    | IPL1                | IPH1                | SCGT0 <sup>(1)</sup><br>0000 1100  | SCGT1 <sup>(1)</sup><br>XXXX XXX0  | SCICR <sup>(1)</sup><br>0000 0000 | IPH0                 |
| R BUN<br>S 0        |                                                                                                                | XXXX X000                                                               | 00XX 00X0           | 00XX 00X0           | SCWT0 <sup>(1)</sup><br>1000 0000  | SCWT1 <sup>(1)</sup><br>0010 0101  | SCWT2 <sup>(1)</sup><br>0000 0000 | X000 0000            |
| S 1<br>C ABb        | IEN0                                                                                                           | SADDR                                                                   | SCIBUF              | SCSR                | SCETU0 <sup>(1)</sup><br>0111 0100 | SCETU1 <sup>(1)</sup><br>XXXX X001 | SCIER <sup>(1)</sup><br>0X00 0000 |                      |
| R A8n<br>S 0        | 0000 0000                                                                                                      | 0000 0000                                                               | XXXX XXXX           | X000 1000           | SCCON <sup>(1)</sup><br>0000 0000  | SCISR <sup>(1)</sup><br>10X0 0000  | SCIIR <sup>(1)</sup><br>0X00 0000 |                      |
| A0h                 | P2<br>1111 1111                                                                                                | ISEL<br>0000 0100                                                       | AUXR1<br>XX1X 0XX0  | PLLCON<br>XXXX X000 | PLLDIV<br>0000 0000                |                                    | WDTRST<br>XXXX XXXX               | WDTPRG<br>XXXX X000  |
| 98h                 | SCON<br>0000 0000                                                                                              | SBUF<br>XXXX XXXX                                                       | BRL<br>0000 0000    | BDRCON<br>XXX0 0000 | KBLS<br>0000 0000                  | KBE<br>0000 0000                   | KBF<br>0000 0000                  |                      |
| 90h                 | P1<br>1111 1111                                                                                                | PMOD0 <sup>(2)</sup><br>0000 0000                                       |                     |                     |                                    |                                    |                                   | CKRL<br>XXXX 1111    |
| 88h                 | TCON<br>0000 0000                                                                                              | TMOD<br>0000 0000                                                       | TL0<br>0000 0000    | TL1<br>0000 0000    | TH0<br>0000 0000                   | TH1<br>0000 0000                   | AUXR<br>0XXX X000                 | CKCON0<br>X0X0 X000  |
| 80h                 | P0<br>1111 1111                                                                                                | SP<br>0000 0111                                                         | DPL<br>0000 0000    | DPH<br>0000 0000    | PMOD1<br>0000 0000                 | CKSEL<br>XXXX XXX0                 |                                   | PCON<br>00X1 0000    |

# AT8xC5122 Version

Bit addressable



Not bit addressable



## Table 22. USB SFRs

| Mnemonic | Add | Name                             | 7 | 6                     | 5       | 4       | 3       | 2       | 1       | 0       |
|----------|-----|----------------------------------|---|-----------------------|---------|---------|---------|---------|---------|---------|
| UEPIEN   | C2h | USB Endpoint Interrupt<br>Enable |   | EP6INTE               | EP5INTE | EP4INTE | EP3INTE | EP2INTE | EP1INTE | EP0INTE |
| UEPDATX  | CFh | USB Endpoint X Fifo Data         |   | FDAT7 - 0             |         |         |         |         |         |         |
| UBYCTX   | E2h | USB Byte Counter Low<br>(EPX)    |   | BYCT6-0               |         |         |         |         |         |         |
| UFNUML   | BAh | USB Frame Number Low             |   | <br>FNUM7 - 0         |         |         |         |         |         |         |
| UFNUMH   | BBh | USB Frame Number High            |   | CRCOK CRCERR FNUM10-8 |         |         |         |         |         |         |

## Table 23. LED SFRs

| Mnemonic               | Add | Name          | 7         | 6 | 5  | 4  | 3  | 2   | 1  | 0  |
|------------------------|-----|---------------|-----------|---|----|----|----|-----|----|----|
| LEDCON0                | F1h | LED Control 0 | LED3 LED2 |   | LE | D1 | LE | ED0 |    |    |
| LEDCON1 <sup>(1)</sup> | E1h | LED Control 1 |           |   | LE | D6 | LE | D5  | LE | D4 |

Note: 1. Only for AT8xC5122

| 7          | 6          | 5                                                          | 4                                                                                                                                                                                                                                        | 3                                                   | 2                                                                                                                                                                                                                                             | 1                | 0          |  |  |  |  |
|------------|------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|--|--|--|--|
| -          | WDX2       | -                                                          | SIX2                                                                                                                                                                                                                                     | -                                                   | T1X2                                                                                                                                                                                                                                          | T0X2             | X2         |  |  |  |  |
| Bit Number | Bit Mnemor | nic Descript                                               | Description                                                                                                                                                                                                                              |                                                     |                                                                                                                                                                                                                                               |                  |            |  |  |  |  |
| 7          | -          | <b>Reserve</b><br>The valu                                 | <b>d</b><br>e read from th                                                                                                                                                                                                               | is bit is indete                                    | rminate. Do n                                                                                                                                                                                                                                 | ot set this bit. |            |  |  |  |  |
| 6          | WDX2       | Watchdo<br>This con<br>this bit ha<br>Cleared<br>Set to se | Vatchdog clock<br>his control bit is validated when the CPU clock X2 is set; when X2 is low,<br>his bit has no effect.<br>Cleared to bypass the 1/2 prescaler.<br>Set to select the 1/2 output for this peripheral.                      |                                                     |                                                                                                                                                                                                                                               |                  |            |  |  |  |  |
| 5          | -          | <b>Reserve</b><br>The valu                                 | e value read from this bit is indeterminate. Do not set this bit.                                                                                                                                                                        |                                                     |                                                                                                                                                                                                                                               |                  |            |  |  |  |  |
| 4          | SIX2       | Enhance<br>This con<br>this bit ha<br>Cleared<br>Set to se | inhanced UART clock (Mode 0 and 2)<br>This control bit is validated when the CPU clock X2 is set; when X2 is low,<br>his bit has no effect.<br>Cleared to bypass the 1/2 prescaler.<br>Set to select the 1/2 output for this peripheral. |                                                     |                                                                                                                                                                                                                                               |                  |            |  |  |  |  |
| 3          | -          | Reserve<br>The valu                                        | <b>d</b><br>e read from th                                                                                                                                                                                                               | is bit is indete                                    | rminate. Do n                                                                                                                                                                                                                                 | ot set this bit. |            |  |  |  |  |
| 2          | T1X2       | Timer 1<br>This con<br>this bit ha<br>Cleared<br>Set to se | <b>clock</b><br>trol bit is valida<br>as no effect.<br>to bypass the<br>elect the 1/2 ou                                                                                                                                                 | ated when the<br>1/2 prescaler.<br>utput for this p | CPU clock X                                                                                                                                                                                                                                   | 2 is set; when   | X2 is low, |  |  |  |  |
| 1          | T0X2       | Timer 0<br>This con<br>this bit ha<br>Cleared<br>Set to se | Timer 0 clock<br>This control bit is validated when the CPU clock X2 is set; when X2 is low,<br>this bit has no effect.<br>Cleared to bypass the 1/2 prescaler.<br>Set to select the 1/2 output for this peripheral.                     |                                                     |                                                                                                                                                                                                                                               |                  |            |  |  |  |  |
| 0          | X2         | System<br>Cleared<br>Set to by<br>bits.                    | clock Contro<br>to select the F<br>pass the PRT                                                                                                                                                                                          | I bit<br>PRT output for<br>prescaler and            | Set to select the 1/2 output for this peripheral.<br>System clock Control bit<br>Cleared to select the PRT output for CPU and all the peripherals .<br>Set to bypass the PRT prescaler and to enable the individual peripherals 'X2'<br>bits. |                  |            |  |  |  |  |

Table 26. Clock Configuration Register 0 - CKCON0 (S:8Fh)

Reset Value = X0X0 X000b





| 7          | 6         | 5                                                           | 4                                                                                                                                                                                                               | 3 | 2 | 1 | 0     |  |  |
|------------|-----------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|-------|--|--|
| -          | -         | -                                                           | -                                                                                                                                                                                                               | - | - | - | SPIX2 |  |  |
| Bit Number | Bit Mnemo | nic Descrip                                                 | scription                                                                                                                                                                                                       |   |   |   |       |  |  |
| 7 - 4      | -         | Reserve<br>The valu                                         | eserved<br>ne value read from this bit is indeterminate. Do not set this bit.                                                                                                                                   |   |   |   |       |  |  |
| 3          | -         | Reserve<br>The valu                                         | Reserved<br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                                 |   |   |   |       |  |  |
| 0          | SPIX2     | SPI close<br>This cor<br>this bit h<br>Cleared<br>Set to se | SPI clock<br>Fhis control bit is validated when the CPU clock X2 is set. When X2 is low,<br>his bit has no effect.<br>Cleared to bypass the 1/2 prescaler.<br>Set to select the 1/2 output for this peripheral. |   |   |   |       |  |  |

### Table 27. Clock Configuration Register 1 - CKCON1 (S:AFh) only for AT8xC5122

Reset Value = XXXX XXX0b

#### Table 28. PLL Control Register - PLLCON (S:A3h)

| 7 | 6 | 5 | 4 | 3 | 2     | 1     | 0     |
|---|---|---|---|---|-------|-------|-------|
| - | - | - | - | - | EXT48 | PLLEN | PLOCK |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                    |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 - 3      | -            | <b>Reserved</b><br>The value read from these bits is always 0. Do not set this bits.                                                                                           |
| 2          | EXT48        | External 48 MHz Enable Bit<br>Set this bit to select XTAL1 as USB clock.<br>Clear this bit to select PLL as USB clock.<br>SCIB clock is controlled by EXT48 bit and XTSCS bit. |
| 1          | PLLEN        | PLL Enable bit<br>Set to enable the PLL.<br>Clear to disable the PLL.                                                                                                          |
| 0          | PLOCK        | PLL Lock Indicator<br>Set by hardware when PLL is locked<br>Clear by hardware when PLL is unlocked                                                                             |

Reset Value = 0000 0000b

### Table 29. PLL Divider Register - PLLDIV (S:A4h)

| 7          | 6          | 5            | 4           | 3  | 2  | 1  | 0  |  |
|------------|------------|--------------|-------------|----|----|----|----|--|
| R3         | R2         | R1           | R0          | N3 | N2 | N1 | NO |  |
| Bit Number | Bit Mnemor | nic Descript | Description |    |    |    |    |  |
| 7 - 4      | R3:0       | PLL R D      | ivider Bits |    |    |    |    |  |
| 3 - 0      | N3:0       | PLL N D      | ivider Bits |    |    |    |    |  |

Reset Value = 0000 0000b



#### Port 4

Port 4 has the following functions:

- Default function: Port 4 is an 6-bit I/O port.
- Alternate functions: see table below

Port 4 has the following configurations:

- Default configuration: Pseudo bi-directional "Port51" digital input/output with internal pull-ups.
- Alternate configurations: See Table 33.

### Table 33. Port 4 Description

|      | Alternate F | unctions                    | Configurations |        |           |  |  |
|------|-------------|-----------------------------|----------------|--------|-----------|--|--|
| Port | Signal      | Description                 | Mode 1         | Mode 2 | Mode 3    |  |  |
| P4.0 | MISO        | SPI Master In Slave Out I/O |                |        |           |  |  |
| P4.1 | MOSI        | SPI Master Out Slave In I/O |                |        |           |  |  |
| P4.2 | SCK         | SPI clock                   |                |        |           |  |  |
| P4.3 |             |                             | Push-pull      | KB_OUT | Input MPU |  |  |
| P4.4 |             |                             | Push-pull      | KB_OUT | Input MPU |  |  |
| P4.5 |             |                             | Push-pull      | KB_OUT | Input MPU |  |  |

Port 5

Port 5 has the following functions:

- Default function: Port 5 is an 8-bit I/O port.
- Alternate function 1: Port 5 is an 8-bit keyboard port KB0 to KB7.

Port 5 has the following configurations:

- Default configuration: Pseudo bi-directional "Port51" digital input/output with internal pull-ups.
- Alternate configuration: see Table 34.

#### Table 34. Port 5 Description

|      | Configurations                | onfigurations                 |           |                |  |  |  |  |  |  |  |
|------|-------------------------------|-------------------------------|-----------|----------------|--|--|--|--|--|--|--|
| Port | Mode 1                        | Mode 2                        | Mode 3    | Comments       |  |  |  |  |  |  |  |
| P5.0 | Push-pull                     | Input MPU                     | Input WPU |                |  |  |  |  |  |  |  |
| P5.1 | Push-pull                     | Input MPU                     | Input WPU | First cluster  |  |  |  |  |  |  |  |
| P5.2 | Push-pull Input MPU Input WPU |                               | Input WPU |                |  |  |  |  |  |  |  |
| P5.3 | Push-pull                     | Push-pull Input WPD Input WPU |           |                |  |  |  |  |  |  |  |
| P5.4 | Push-pull                     | Input WPD                     | Input WPU | Second cluster |  |  |  |  |  |  |  |
| P5.5 | Push-pull                     | Input WPD                     | Input WPU |                |  |  |  |  |  |  |  |
| P5.6 | Push-pull                     | Input WPD                     | Input WPU | Third cluster  |  |  |  |  |  |  |  |
| P5.7 | Push-pull                     | Input WPD                     | Input WPU |                |  |  |  |  |  |  |  |

# **Port Configuration**

Standard I/O P0

The P0 port is described in Figure 22.

Figure 22. Standard Input/Output Port



Quasi Bi-directional Port The default port output configuration for standard I/O ports is the quasi-bi-directional output that is common on the 80C51 and most of its derivatives. The "Port51" output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low.

When the port outputs a logic low state, it is driven strongly and is able to sink a fairly large current.

These features are somewhat similar to an open-drain output except that there are three pull-up transistors in the quasi-bi-directional output that serve different purposes.

One of these pull-ups, called the weak pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. The weak pull-up can be turned off by the DPU bit in AUXR register.

A second pull-up, called the medium pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bi-directional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

Note: for CIO, CC4, CC8 ports of SCIB interface , in input mode when the ICC (smart card) is driving the port pin :

- if 0 < Vin < CVCC/2 : weak pull-up is active (~100KOhm)</li>
- if CVCC/2 < Vin < CVCC : weak (~100KOhm) and medium (~12KOhm) pullup's are active



# Registers

#### Table 36. Port Mode Register 0 - PMOD0 (91h) for AT8xC5122

| 7          | 6         |      | 5                                                     | 4                                                                                                                                                                     | 3                                                    | 2             | 1                | 0    |  |  |
|------------|-----------|------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|------------------|------|--|--|
| P3C1       | P3C0      | I    | P2C1                                                  | P2C0                                                                                                                                                                  | CPRESRES                                             | -             | P0C1             | P0C0 |  |  |
| Bit Number | Bit Mnemo | onic | Descrip                                               | tion                                                                                                                                                                  |                                                      |               |                  |      |  |  |
| 7 - 6      | P3C1-P3   | C0   | Port 3 (<br>00 Quas<br>01 Push<br>10 Outp<br>11 Input | Port 3 Configuration bits (Applicable to P3.0, P3.1, P3.3, P3.4 only)<br>00 Quasi bi-directional<br>01 Push-pull<br>10 Output Low Speed<br>11 Input with weak pull-up |                                                      |               |                  |      |  |  |
| 5-4        | P2C1-P2   | C0   | Port 2 (<br>00 Quas<br>01 Push<br>10 Outp<br>11 Input | Yort 2 Configuration bits<br>10 Quasi bi-directional<br>11 Push-pull<br>10 Output Low Speed<br>11 Input with weak pull-down                                           |                                                      |               |                  |      |  |  |
| 3          | CPRESR    | ES   | Card Pr<br>Cleared<br>Set to d                        | to connect the                                                                                                                                                        | -up resistor<br>ne internal 100K<br>internal pull-up | pull-up       |                  |      |  |  |
| 2          | -         |      | Reserve<br>The valu                                   | ed<br>ue read from <sup>·</sup>                                                                                                                                       | this bit is indete                                   | rminate. Do n | ot set this bit. |      |  |  |
| 1-0        | P0C1-P0   | C0   | Port 0 0<br>00 C51<br>01 Rese<br>10 Outp<br>11 Push   | Port 0 Configuration bits<br>00 C51 Standard P0<br>01 Reserved<br>10 Output Low Speed<br>11 Push-pull                                                                 |                                                      |               |                  |      |  |  |

Reset Value = 0000 0x00b

# Table 37. Port Mode Register 0 - PMOD0 (91h) for AT83C5123

| 7          | 6         |      | 5                                                                                                                                                                                                           | 4                    | 3                 | 2            | 1              | 0        |  |  |  |
|------------|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------|----------------|----------|--|--|--|
| P3C1       | P3C0      |      | -                                                                                                                                                                                                           | -                    | CPRESRES          | -            | -              | -        |  |  |  |
| Bit Number | Bit Mnemo | onic | Descrip                                                                                                                                                                                                     | Description          |                   |              |                |          |  |  |  |
| 7 - 6      | P3C1-P3   | C0   | <ul> <li>Port 3 Configuration bits (Applicable to P3.0, P3.1, P3.3, P3.4</li> <li>00 Quasi bi-directional</li> <li>01 Push-pull</li> <li>10 Output Low Speed</li> <li>11 Input with weak pull-up</li> </ul> |                      |                   |              |                |          |  |  |  |
| 5-4        |           |      | Reserve<br>The valu                                                                                                                                                                                         | ed<br>ue read from t | these bits are in | determinate. | Do not set the | ese bit. |  |  |  |
| 3          | CPRESR    | ES   | Card Presence Pull-up resistor<br>Cleared to connect the internal 100K pull-up<br>Set to disconnect the internal pull-up                                                                                    |                      |                   |              |                |          |  |  |  |
| 2-0        | -         |      | <b>Reserved</b><br>The value read from these bits are indeterminate. Do not set these b                                                                                                                     |                      |                   |              |                | ese bit. |  |  |  |

Reset Value = 00xx 0xxxb



| 7          | 6            | 5                                                                                                                       | 4                                                                                     | 3                                                                | 2                                               | 1                                                    | 0                                            |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| LED3.1     | LED3.0       | LED2.1                                                                                                                  | LED2.0                                                                                | LED1.1                                                           | LED1.0                                          | LED0.1                                               | LED0.0                                       |
| Bit Number | Bit Mnemonic | Descripti                                                                                                               | on                                                                                    |                                                                  |                                                 |                                                      |                                              |
| 7 - 6      | LED3         | Port LED:           00         LED c           01         2 mA c           10         4 mA c           11         10 mA | 3 Configurati<br>ontrol disable<br>current source<br>current source<br>current source | on bits<br>d<br>when P3.7 is<br>when P3.7 is<br>ce when P3.7     | configured as<br>configured as<br>is configured | s Quasi-bi-dire<br>s Quasi-bi-dire<br>as Quasi-bidi  | ectional mode<br>ectional mode<br>rect. mode |
| 5 - 4      | LED2         | Port LED:<br>00 LED c<br>01 2 mA c<br>10 4 mA c<br>11 10 mA                                                             | 2 Configurati<br>ontrol disable<br>current source<br>current source<br>current source | on bits<br>d<br>when P3.6 is<br>when P3.6 is<br>ce when P3.6     | configured as<br>configured as<br>is configured | s Quasi-bi-dire<br>s Quasi-bi-dire<br>as Quasi-bidii | ectional mode<br>ectional mode<br>rect. mode |
| 3 - 2      | LED1         | Port LED<br>00 LED c<br>01 2 mA c<br>10 4 mA c<br>11 10 mA                                                              | 1 Configurati<br>ontrol disable<br>current source<br>current source<br>current source | on bits<br>d<br>e when P3.4 is<br>e when P3.4 is<br>ce when P3.4 | configured as<br>configured as<br>is configured | s Quasi-bi-dire<br>s Quasi-bi-dire<br>as Quasi-bidi  | ectional mode<br>ectional mode<br>rect. mode |
| 1 - 0      | LED0         | Port LED<br>00 LED c<br>01 2 mA c<br>10 4 mA c<br>11 10 mA                                                              | 0 Configurati<br>ontrol disable<br>current source<br>current source<br>current source | on bits<br>d<br>e when P3.2 is<br>e when P3.2 is<br>ce when P3.2 | configured as<br>configured as<br>is configured | s Quasi-bi-dire<br>s Quasi-bi-dire<br>as Quasi-bidi  | ctional mode<br>ctional mode<br>rect. mode   |

## Table 40. LED Port Control Register 0 - LEDCON0 (F1h)

Reset Value = 0000 0000b

| Table 41.  | Table 41.         LED Port Control Register 1- LEDCON1 (F1h) only for AT8xC5122 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                 |                 |               |   |   |  |  |  |
|------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---|---|--|--|--|
| 7          | 6                                                                               | 5                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                               | 3               | 2             | 1 | 0 |  |  |  |
| -          | -                                                                               | LED6.1                                                                                                                 | ED6.1 LED6.0 LED5.1 LED5.0 LED4.1 LE                                                                                                                                                                                                                                                                                                            |                 |               |   |   |  |  |  |
| Bit Number | Bit Mnemon                                                                      | ic Descripti                                                                                                           | on                                                                                                                                                                                                                                                                                                                                              |                 |               |   |   |  |  |  |
| 7 - 6      |                                                                                 | Reserved<br>The value                                                                                                  | l<br>read from thi                                                                                                                                                                                                                                                                                                                              | t set this bit. | set this bit. |   |   |  |  |  |
| 5 - 4      | LED6                                                                            | Port LED<br>00 LED c<br>01 2 mA<br>10 4 mA<br>11 10 mA                                                                 | <ul> <li>Port LED6 Configuration bits</li> <li>00 LED control disabled</li> <li>01 2 mA current source when P4.5 is configured as Quasi-bi-directional mod</li> <li>10 4 mA current source when P4.5 is configured as Quasi-bi-directional mod</li> <li>11 10 mA current source when P4.5 is configured as Quasi-bi-direct. mode</li> </ul>     |                 |               |   |   |  |  |  |
| 3 - 2      | LED5                                                                            | Port LED           00         LED c           01         2 mA c           10         4 mA c           11         10 mA | <ul> <li>Port LED5 Configuration bits</li> <li>00 LED control disabled</li> <li>01 2 mA current source when P4.4 is configured as Quasi-bi-directional model</li> <li>10 4 mA current source when P4.4 is configured as Quasi-bi-directional model</li> <li>11 10 mA current source when P4.4 is configured as Quasi-bidirect. model</li> </ul> |                 |               |   |   |  |  |  |
| 1 - 0      | LED4                                                                            | Port LED<br>00 LED c<br>01 2 mA<br>10 4 mA<br>11 10 mA                                                                 | <ul> <li>Port LED0 Configuration bits</li> <li>00 LED control disabled</li> <li>01 2 mA current source when P4.3 is configured as Quasi-bi-directiona</li> <li>10 4 mA current source when P4.3 is configured as Quasi-bi-directiona</li> <li>11 10 mA current source when P4.3 is configured as Quasi-bidirect. m</li> </ul>                   |                 |               |   |   |  |  |  |

Reset Value = 0000 0000b



# **Table 56.** Smart Card Character/Block Waiting Time Register 2 SCWT2 (S:B6h, SCRS=0)

|            | .,           |                                                                                                                 |      |      |      |      |      |  |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------|------|------|------|------|------|--|
| 7          | 6            | 5                                                                                                               | 4    | 3    | 2    | 1    | 0    |  |
| WT23       | WT22         | WT21                                                                                                            | WT20 | WT19 | WT18 | WT17 | WT16 |  |
| Bit Number | Bit Mnemonic | Description                                                                                                     |      |      |      |      |      |  |
|            |              |                                                                                                                 |      |      |      |      |      |  |
| 7 - 0      | WT[23:16]    | Waiting Time Byte2<br>Used together with WT[31:24] and WT[15:0] in registers SCWT3,SCWT1, SCWT0 (see Table 58). |      |      |      |      |      |  |

Reset Value = 0000 0000b

# **Table 57.** Smart Card Character/Block Waiting Time Register 1 SCWT1 (S:B5h, SCRS=0)

| 7          | 6            | 5                                                                                                               | 4           | 3    | 2    | 1   | 0   |  |  |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------|------|------|-----|-----|--|--|
| WT15       | WT14         | WT13                                                                                                            | WT12        | WT11 | WT10 | WT9 | WT8 |  |  |
| Bit Number | Bit Mnemonic | Description                                                                                                     | Description |      |      |     |     |  |  |
| 7 - 0      | WT[15:8]     | Waiting Time Byte 1<br>Used together with WT[31:16] and WT[7:0] in registers SCWT3,SCWT2, SCWT0 (see Table 55). |             |      |      |     |     |  |  |

Reset Value = 0010 0101b

## Table 58. Smart Card Character/Block Waiting Time Register 0

SCWT0 (S:B4h, SCRS=0)

| 7          | 6            | 5                                                                                                                        | 4                                                                                                                    | 3                                                                                                              | 2                                                                           | 1                                          | 0                                        |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| WT7        | WT6          | WT5                                                                                                                      | WT4                                                                                                                  | WT3                                                                                                            | WT2                                                                         | WT1                                        | WT0                                      |
| Bit Number | Bit Mnemonic | Description                                                                                                              |                                                                                                                      |                                                                                                                |                                                                             |                                            |                                          |
| 7 - 0      | WT[7:0]      | Waiting Time Byt<br>WT[31:0] is the rel<br>The WTC is a gen<br>page 77 and Secti<br>When UART bit of<br>check the maximu | e 0<br>oad value of the W<br>eral-purpose timer.<br>on "Waiting Time (\<br>Registers is set, th<br>m time between to | aiting Time Counter<br>It is using the ETU<br>NT) Counter", page<br>he WTC is automatic<br>consecutive start b | r (WTC).<br>clock and is controll<br>e 67).<br>cally reloaded at ea<br>its. | ed by the WTEN bi<br>ch start bit of the U | t (see Table 44 on<br>ART. It is used to |

Reset Value = 1000 0000b



# Bulk / Interrupt Transactions

Bulk/Interrupt OUT Transactions in Standard Mode Bulk and Interrupt transactions are managed in the same way.

Figure 54. Bulk/Interrupt OUT transactions in Standard Mode



An endpoint should be first enabled and configured before being able to receive Bulk or Interrupt packets.

When a valid OUT packet is received on an endpoint, the RXOUTB0 bit is set by the USB controller. This triggers an interrupt if enabled. The firmware has to select the corresponding endpoint, store the number of data bytes by reading the UBYCTX register. If the received packet is a ZLP (Zero Length Packet), the UBYCTX register value is equal to 0 and no data has to be read.

When all the endpoint FIFO bytes have been read, the firmware should clear the RXOUTB0 bit to allow the USB controller to accept the next OUT packet on this endpoint. Until the RXOUTB0 bit has been cleared by the firmware, the USB controller will answer a NAK handshake for each OUT requests.

If the Host sends more bytes than supported by the endpoint FIFO, the overflow data won't be stored, but the USB controller will consider that the packet is valid if the CRC is correct and the endpoint byte counter contains the number of bytes sent by the Host.





Figure 58. Example of a Suspend/Resume Management



Warning: The core must be switched in external clock mode before disabling the PLL.

Upstream Resume A USB device can be allowed by the Host to send an upstream resume for Remote Wake-up purpose.

When the USB controller receives the SET\_FEATURE request: DEVICE\_REMOTE\_WAKEUP, the firmware should set to 1 the RMWUPE bit in the USBCON register to enable this function. RMWUPE value should be 0 in the other cases.

If the device is in SUSPEND mode, the USB controller can send an upstream resume by clearing first the SPINT bit in the USBINT register and by setting then to 1 the SDRM-WUP bit in the USBCON register. The USB controller sets to 1 the UPRSM bit in the USBCON register. All clocks must be enabled first. The Remote Wake is sent only if the USB bus was in Suspend state for at least 5 ms. When the upstream resume is completed, the UPRSM bit is reset to 0 by hardware. The firmware should then clear the SDRMWUP bit.





### Internal Baud Rate Generator When using the Internal Baud Rate Generator, the Baud Rate is derived from the overflow of the timer. As shown in Figure 68 the Internal Baud Rate Generator is an 8-bit auto-reload timer feed by the peripheral clock or by the peripheral clock divided by 6 depending on the SPD bit in BDRCON register (see Table 82 on page 134). The Internal Baud Rate Generator is enabled by setting BRR bit in BDRCON register. SMOD1 bit in PCON register allows doubling of the generated baud rate.

Figure 68. Internal Baud Rate Generator Block Diagram



**Synchronous Mode (Mode 0)** Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/0 capabilities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock pulses while the receive data (RXD) pin transmits or receives a byte of data. The 8-bit data are transmitted and received least-significant bit (LSB) first. Shifts occur at a fixed Baud Rate (see Section "Baud Rate Selection (Mode 0)"). Figure 69 shows the serial port block diagram in Mode 0.





**Figure 75.** Data Frame Format (Mode 1)



Modes 2 and 3 Modes 2 and 3 are full-duplex, asynchronous modes. The data frame (see Figure 76) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB first), one programmable ninth data bit and one stop bit. Serial data is transmitted on the TXD pin and received on the RXD pin. On receive, the ninth bit is read from RB8 bit in SCON register. On transmit, the ninth data bit is written to TB8 bit in SCON register. Alternatively, you can use the ninth bit as a command/data flag.

Figure 76. Data Frame Format (Modes 2 and 3)



# 130 AT83R5122, AT8xC5122/23







# <sup>138</sup> AT83R5122, AT8xC5122/23

**0** M00

| 7          | 6            | 5                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                         | 3                                                                                                   | 2                                                    | 1                            |        |  |  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|--------|--|--|
| GATE1      | C/T1#        | M11                                                                                                                                                                                                                                                                                                                                                              | M01                                                                                                                                                                                                       | GATE0                                                                                               | C/T0#                                                | M10                          |        |  |  |
| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                     |                                                      |                              |        |  |  |
| 7          | GATE1        | Timer 1 Gating Cont<br>Clear to enable Timer<br>Set to enable Timer 1                                                                                                                                                                                                                                                                                            | Timer 1 Gating Control bit<br>Clear to enable Timer 1 whenever TR1 bit is set.<br>Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set.                                                  |                                                                                                     |                                                      |                              |        |  |  |
| 6          | C/T1#        | Timer 1 Counter/Tim<br>Clear for Timer opera<br>Set for Counter opera                                                                                                                                                                                                                                                                                            | <b>Timer 1 Counter/Timer Select bit</b><br>Clear for Timer operation: Timer 1 counts the divided-down system clock.<br>Set for Counter operation: Timer 1 counts negative transitions on external pin T1. |                                                                                                     |                                                      |                              |        |  |  |
| 5          | M11          | Timer 1 Mode Select                                                                                                                                                                                                                                                                                                                                              | bits                                                                                                                                                                                                      |                                                                                                     |                                                      |                              |        |  |  |
| 4          | M01          | M11         M01         Operating mode           0         0         Mode 0:8-bit Timer/Counter (TH1) with 5-bit prescaler (TL1).           0         1         Mode 1:16-bit Timer/Counter.           1         0         Mode 2:8-bit auto-reload Timer/Counter (TL1) reloaded from TH1 at           1         1         Mode 3:Timer 1 halted. Retains count. |                                                                                                                                                                                                           |                                                                                                     |                                                      |                              |        |  |  |
| 3          | GATE0        | Timer 0 Gating Cont<br>Clear to enable Timer<br>Set to enable Timer/C                                                                                                                                                                                                                                                                                            | rol bit<br>0 whenever TR0 b<br>Counter 0 only while                                                                                                                                                       | it is set.<br>INT0# pin is high a                                                                   | and TR0 bit is set.                                  |                              |        |  |  |
| 2          | C/T0#        | Timer 0 Counter/Tim<br>Clear for Timer opera<br>Set for Counter opera                                                                                                                                                                                                                                                                                            | <b>Timer 0 Counter/Timer Select bit</b><br>Clear for Timer operation: Timer 0 counts the divided-down system clock.<br>Set for Counter operation: Timer 0 counts negative transitions on external pin T0. |                                                                                                     |                                                      |                              |        |  |  |
| 1          | M10          | Timer 0 Mode Select                                                                                                                                                                                                                                                                                                                                              | bit                                                                                                                                                                                                       |                                                                                                     |                                                      |                              |        |  |  |
| 0          | M00          | MOU         MOU           0         0           1         0           1         1           TH0 is an 8-bit Timer                                                                                                                                                                                                                                                | Mode 0:8-bit Tim<br>Mode 1:16-bit Tin<br>Mode 1:16-bit Tin<br>Mode 2:8-bit aut<br>Mode 3:TL0 is an<br>using Timer 1's TR                                                                                  | er/Counter (TH0) w<br>mer/Counter.<br>o-reload Timer/Cou<br>n 8-bit Timer/Counte<br>0 and TF0 bits. | vith 5-bit prescaler (<br>nter (TL0). Reloado<br>er. | (TL0).<br>ed from TH0 at ove | rflow. |  |  |

Table 89. Timer/Counter Mode Control Register - TMOD (S:89h)

Reset Value = 0000 0000b





Figure 108. Power-down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table shows the state of ports during idle and power-down modes.

#### Table State of Ports

| Mode       | Program Memory | ALE | PSEN | P0                       | P1        | P2        | P3        | P4        | P5        |
|------------|----------------|-----|------|--------------------------|-----------|-----------|-----------|-----------|-----------|
| ldle       | Internal       | 1   | 1    | Port Data <sup>(1)</sup> | Port Data |
| Idle       | External       | 1   | 1    | Floating                 | Port Data | Address   | Port Data | Port Data | Port Data |
| Power-down | Internal       | 0   | 0    | Port Dat*                | Port Data |
| Power-down | External       | 0   | 0    | Floating                 | Port Data |

Note: 1. Port 0 can force a 0 level. A "one" will leave port floating.

## **Reduced EMI Mode**

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.





# **USB** Interface

| Suspend | The Suspend state can be detected by the USB controller if all the clocks are enabled<br>and if the USB controller is enabled. The bit SPINT is set by hardware when an idle<br>state is detected for more than 3 ms. This triggers a USB interrupt if enabled.                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | In order to reduce current consumption, the firmware can put the USB PAD in idle mode,<br>stop the clocks and put the C51 in Idle or Power-down mode. The Resume detection is<br>still active.<br>The USB PAD is put in idle mode when the firmware clear the SPINT bit. In order to<br>avoid a new suspend detection 3ms later, the firmware has to disable the USB clock<br>input using the SUSPCLK bit in the USBCON Register. The USB PAD automatically<br>exits of idle mode when a wake-up event is detected.                              |  |  |  |  |  |
|         | <ol> <li>The stop of the 48 MHz clock from the PLL should be done in the following order:</li> <li>Disable of the 48 MHz clock input of the USB controller by setting to 1 the SUS-PCLK bit in the USBCON register.</li> <li>If CPU clock is fed from PLL, the on-chip oscillator must be selected to fed the CPU clock.</li> <li>Disable the PLL by clearing the PLLEN bit in the PLLCON register.</li> </ol>                                                                                                                                   |  |  |  |  |  |
| Resume  | When the USB controller is in Suspend state, the Resume detection is active even if all<br>the clocks are disabled and if the C51 is in Idle or Power-down mode. The WUPCPU bit<br>is set by hardware when a non-idle state occurs on the USB bus. This triggers an inter-<br>rupt if enabled. This interrupt wakes up the CPU from its Idle or Power-down state and<br>the interrupt function is then executed. The firmware will first enable the 48 MHz gener-<br>ation and then reset to 0 the SUSPCLK bit in the USBCON register if needed. |  |  |  |  |  |
|         | The firmware has to clear the SPINT bit in the USBINT register before any other USB operation in order to wake up the USB controller from its Suspend mode.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

The USB controller is then re-activated.