

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	48MHz
Connectivity	SmartCard, SPI, UART/USART, USB
Peripherals	LED, POR, WDT
Number of I/O	46
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c5122d-rdrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

USB Smart Card Reader Using the AT83C5123 Version

7	6	5	4	3	2	1	0			
-	-	-	-	RPS	-	-	-			
Bit Number	Bit Mnemo	nic Descr	Description							
7 - 4	-		Reserved The value read from this bit is indeterminate. Do not change these b							
3	RPS	Set to Clear	CRAM Memory Mapping Bit Set to map the CRAM memory during MOVX instructions Clear to map the XRAM memory during MOVX. This bit has priority over the EXTRAM bit.							
2-0	-			Reserved The value read from this bit is indeterminate. Do not change these b						

Table 8. CRAM Configuration Register - RCON (D1h)

Reset Value = XXXX 0XXXb

AT8xC5122's CRAM and E2PROM Versions

The AT8xC5122's CRAM and E2PROM versions implements :

- 32 KB of ROM mapped from 8000 to FFFF in which is embedded a bootloader for In-System Programming feature

- 32 KB of CRAM (Code RAM), a volatile program memory mapped from 0000 to 7FFF

In CRAM versions only :

- 512 bytes of E2PROM can be optionally implemented to store permanent data

In E2PROM version :

- 32KB of E2PROM are implemented to store permanent code

Warnings :

- some bytes of user program memory space are reserved for bootloader configuration. Depending on the configuration, up to 256 bytes of code may be not available for the user code from 7F00h location. Refer to bootloader datasheet for further details.
- Port P3.7 may be used by the bootloader as a hardware condition at reset to select the In-System Programming mode. Once the bootloader has started, the P3.7 Port is no more used.

Table 18. SCIB SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCICLK		Smart Card Frequency Prescaler Register	XTSCS ⁽¹⁾				SCIC	LK5-0		

Note: 1. Only for AT8xC5122

Table 19. DC/DC SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
DCCKPS	BFh	DC/DC Converter Reload Register	MODE	OVFADJ	BOOS	ST[1-0]		DCCk	(PS3-0	

Table 20. Keyboard SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBF ⁽¹⁾	9Eh	Keyboard Flag Register				KBE	E7 - 0			
KBE ⁽¹⁾	9Dh	Keyboard Input Enable Register	KBF7 - 0							
KBLS ⁽¹⁾	9Ch	Keyboard Level Selector Register	KBLS7 - 0							

Note: 1. Only for AT8xC5122

Table 21. SPI SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON ⁽¹⁾	C3h	Serial Peripheral Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSTA ⁽¹⁾	C4h	Serial Peripheral Status- Control	SPIF	WCOL		MODF				
SPDAT ⁽¹⁾	C5h	Serial Peripheral Data				R7	′ - 0			

Notes: 1. Only for AT8xC5122

Table 22. USB SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
USBCON	BCh	USB Global Control	USBE	SUSPCLK	SDRMWUP	DETACH	UPRSM	RMWUPE	CONFG	FADDEN
USBADDR	C6h	USB Address	FEN				UADD6-0			
USBINT	BDh	USB Global Interrupt			WUPCPU	EORINT	SOFINT			SPINT
USBIEN	BEh	USB Global Interrupt Enable			EWUPCPU	EEORINT	ESOFINT			ESPINT
UEPNUM	C7h	USB Endpoint Number						EPN	JM3-0	
UEPCONX	D4h	USB Endpoint X Control	EPEN	NAKIEN	NAKOUT	NAKIN	DTGL	EPDIR	EPTYPE1	EPTYPE0
UEPSTAX	CEh	USB Endpoint X Status	DIR	RXOUTB1	STALLRQ	TXRDY	STL/CRC	RXSETUP	RXOUTB0	TXCMP
UEPRST	D5h	USB Endpoint Reset		EP6RST	EP5RST	EP4RST	EP3RST	EP2RST	EP1RST	EP0RST
UEPINT	F8h	USB Endpoint Interrupt		EP6INT	EP5INT	EP4INT	EP3INT	EP2INT	EP1INT	EP0INT

Registers

Table 36. Port Mode Register 0 - PMOD0 (91h) for AT8xC5122

7	6	5	4	3	2	1	0			
P3C1	P3C0	P2C1	P2C0	CPRESRES	-	P0C1	P0C0			
Bit Number	Bit Mnemo	onic Descr	iption							
7 - 6	P3C1-P3	00 Qu C0 01 Pus 10 Ou	asi bi-direction	d	ole to P3.0, F	v3.1, P3.3, P3.	.4 only)			
5-4	P2C1-P2	00 Qu C0 01 Pus 10 Ou	Port 2 Configuration bits 0 Quasi bi-directional 1 Push-pull 0 Output Low Speed 1 Input with weak pull-down							
3	CPRESR	ES Cleare		-up resistor ne internal 100K e internal pull-up	• •					
2	-	Reser The va		this bit is indete	rminate. Do r	ot set this bit.				
1-0	P0C1-P0	00 C5 C0 01 Re 10 Ou	The value read from this bit is indeterminate. Do not set this bit. Port 0 Configuration bits 00 C51 Standard P0 01 Reserved 10 Output Low Speed 11 Push-pull							

Reset Value = 0000 0x00b

Table 37. Port Mode Register 0 - PMOD0 (91h) for AT83C5123

7	6	5	4	3	2	1	0		
P3C1	P3C0	-	-	CPRESRES	-	-	-		
Bit Number	Bit Mnemo	onic Descri	Description						
7 - 6	P3C1-P3	00 Qua C0 01 Pus 10 Out	Port 3 Configuration bits (Applicable to P3.0, P3.1, P3.3, P3.4 only) 00 Quasi bi-directional 01 Push-pull 10 Output Low Speed 11 Input with weak pull-up						
5-4			Reserved The value read from these bits are indeterminate. Do not set these bit.						
3	CPRESR	ES Cleare	Card Presence Pull-up resistor Cleared to connect the internal 100K pull-up Set to disconnect the internal pull-up						
2-0	-	Reserv The va		these bits are in	determinate.	Do not set the	ese bit.		

Reset Value = 00xx 0xxxb

AMEL

Smart Card Interface Block (SCIB)

The SCIB provides all signals to interface directly with a smart card. The compliance with the ISO7816, EMV'2000, GSM and WHQL standards has been certified.

Both synchronous (e.g. memory card) and asynchronous smart cards (e.g. microprocessor card) are supported. The component supplies the different voltages requested by the smart card. The power off sequence is directly managed by the SCIB.

The card presence switch of the smart card connector is used to detect card insertion or card removal. In case of card removal, the SCIB de-activates the smart card using the de-activation sequence. An interrupt can be generated when a card is inserted or removed.

Any malfunction is reported to the microcontroller (interrupt + control register).

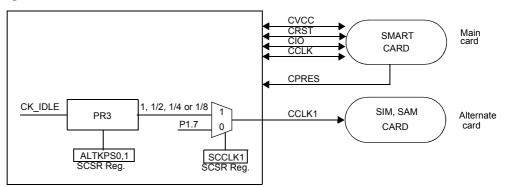
The different operating modes are configured by internal registers.

- Support of ISO/IEC 7816
- character mode
- one transmit/receive buffer
- 11 bits ETU counter
- 9 bits guard time counter
- 32 bits waiting time counter
- Auto character repetition on error signal detection in transmit mode
- Auto error signal generation on parity error detection in receive mode
- Power on and power off sequence generation
- Manual mode to drive directly the card I/O

R
· · ·

ATR	Answer To Reset. Response from the ICC to a Reset initiated by the Terminal
F and D	F = Clock Rate Conversion Factor, D = Bit rate adjustment factor. ETU is defined as : ETU = $F/(D^*f)$ with f = Card Clock frequency. If f is in Hertz, ETU is in second. F and D are available in the ATR (byte TA1). The default values are F=372, D=1.
Guard Time	The time between 2 leading edges of the start bit of 2 consecutive characters is com- prised of the character duration (10) plus the guard time. Be aware that the Guard Time counter and the Guard Time registers in the AT8xC5122/23 consider the time between 2 consecutive characters. So the equation is Guard Time Counter = Guard Time + 10. In other words, the Guard Time is the number of Stop Bits between 2 characters sent in the same direction.
Extra Guard Time	ISO IEC 7816-3 and EMV introduce the Extra Guard time to be added to the minimum Guard Time. Extra Guard Time only apply to consecutive characters sent by the terminal to the ICC. The TC1 byte in the ATR define the number N. For N=0 the character to character duration is 12 ETUs. For N=254 the character to character duration is 266. For N=255 (special case) The minimum character to character duration is to be used : 12 for T=0 protocol and 11 for T=1 protocol.
Block Guard Time	The time between the leading edges of 2 consecutive characters sent in opposit direc- tion. ISO IEC 7816-3 and EMV recommend a fixed Block Guard Time of 22 ETUs.
Work Waiting Time (WWT)	In T=0 protocol WWT is the interval between the leading edge of any character sent by the ICC, and the leading edge of the previous character sent either by the ICC or the Terminal. If no character is received by the terminal after WWTmax time, the Terminal initiates a De-Activation Sequence.
Character Waiting Time (CWT)	In T=1 protocol CWT is the interval between the leading edge of 2 consecutive charac- ters sent by the ICC. If the next character is not received by the Terminal after CWTmax time, the Terminal initiates a De-Activation Sequence.
Block Waiting Time (BWT)	In T=1 protocol BWT is the interval between the leading edge of the start bit of the last character sent by the Terminal that gives the right to sent to the ICC, and the leading edge of the start bit of the first character sent by the ICC. If the first character from the ICC is not received by the Terminal after BWTmax time, the Terminal initiates a De-Activation Sequence.
Waiting Time Extention (WTX)	In T=1 protocol the ICC can request a Waiting Time Extension with a S(WTX request) request. The Terminal should acknowlege it. The Waiting time between the leading edge of the start bit of the last character sent by the Terminal that gives the right to sent to the ICC, and the leading edge of the start bit of the start bit of the ICC will be BWT*WTX ETUS.
Parity error in T=0 protocol	In T=0 protocol, a Terminal (respectively an ICC) detecting a parity error while receiving a character shall force the Card IO line at 0 starting at 10.5 ETUs, thus reducing the first Guard bit by half the time. The Terminal (respectively an ICC) shall maintain a 0 for 1 ETU min and 2 ETUs max (according to ISO IEC) or to 2 ETUs (according to EMV). The ICC (respectively a Terminal) shall monitor the Card IO to detect this error signal then attempt to repeat the character. According to EMV, following a parity error the character can be repeated one time, if parity error is detected again this procedure can be repeated 3 more times. The same character can be transmitted 5 times in total. ISO

64 AT83R5122, AT8xC5122/23



Alternate Card

A second card named 'Alternate Card' can be controlled.

The Clock signal CCLK1 can be adapted to the XTAL frequency. Thanks to the clock prescaler which can divide the frequency by 1, 2, 4 or 8. The bits ALTKPS0 and ALTKPS1 in SCSR Register are used to set this factor.

Figure 44. Alternate Card

Registers

There are fifteen registers to control the SCIB macro-cell. They are described from Table 58 to Table 45.

Some of the register widths are greater than a byte. Despite the 8 bits access provided by the BIU, the address mapping of this kind of register respects the following rule :

The Low significant byte register is implemented at the higher address.

This implementation makes access to these registers easier when using high level programming languages (C,C++).

Table 45. Smart Card Contacts Register - SCCON (S:ACh, SCRS=0)

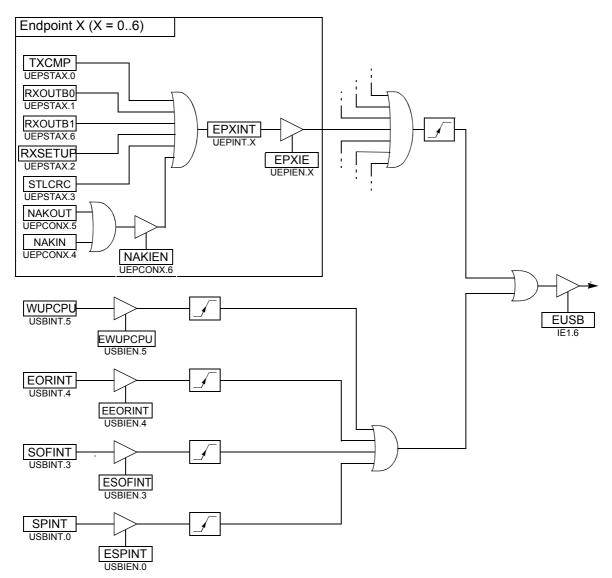
7	6	5	4	3	2	1	0
CLK	-	CARDC8	CARDC4	CARDIO	CARDCLK	CARDRST	CARDVCC
Bit Number	Bit Mnemonic	Description					
7	CLK	Set this bit to us	use the Card CLK se CK_XTAL1 or Cl	K_PLL signals for (below) to drive Card CK_ISO to drive the CLK pin when switc	Card CLK pin (CC	EK = P1.4 pin)
6	-	Reserved This bit can be	changed by softwa	re but the read valu	ue is indeterminate.		
5	CARDC8	Set this bit to se The CC8 pin ca	•	e Card C8 pin (CC eudo bi-directional I	• •		in
4	CARDC4	Set this bit to se The CC4 pin ca	•	e Card C4 pin (CC eudo bi-directional l			'n
3	CARDIO	pseudo bi-direc To read from Cl value To write in ClO bit to write a 0 i	tional port : O (P1.0) port pin : (P1.0) port pin : set n CIO (P1.0) port p	set CARDIO (P1.0) CARDIO (P1.0) bi in.	les the use of the C) bit then read CARI t to write a 1 in CIO t be true to change	DIO (P1.0) bit to ha (P1.0) port pin , cle	ave the CIO port
2	CARDCLK			•	value of this bit is d t be true to change		
1	CARDRST	Set this bit to se	drive a low level or et a high level on th RDOK=1 (SCISR.4	e Card RST pin.	t be true to change	the state of Card R	ST pin
0	CARDVCC	effect while this	desactivate the Ca bit is cleared.		t its power-off. The		-

Reset Value = 0X00 0000b

Table 49. Smart Card Selection Register - SCSR (S:ABh)

7	6	5	4	3	2	1	0
-	BGTEN	-	CREPSEL	ALTKPS1	ALTKPS0	SCCLK1	SCRS
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read	from this bit is inde	terminate. Do not ch	nange this bit.		
6	BGTEN	received from th counter is done	elect the minimum in the ICC and the first on the rising edge	nterval between the character sent by th of the BGTEN. num time between re	ne Terminal. The tra	nsfer of GT[8-0] va	
5	-	Reserved The value read	from this bit is inde	terminate. Do not ch	nange this bit.		
4	CREPSEL	Clear this bit to EMV)		smission (1 original - nission (1 original + :	. ,		
3-2	ALTKPS1:0	00 ALTKPS = 0 01 ALTKPS = 1 10 ALTKPS = 2	Clock prescaler factor prescaler factor prescaler factor prescaler factor prescaler factor prescaler factor	equals 1 equals 2 equals 4 (reset valu	e)		
1	SCCLK1		•	ock for CCLK1 (P1.7	') pin		
0	SCRS		gister Selection elects which set of	the SCIB registers is	s accessed.		

Reset Value = X000 1000b


Table 50. Smart Card Transmit / Receive Buffer - SCIBUF (S:AA)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
-	-	The bits are sorted	e written in the buf and copied on the ved from I/O pin is	fer to be transmitted I/O pin versus the ready to be read wh	active convention.		

Reset Value = 0000 0000b

Figure 63. USB Interrupt Control Block Diagram

	Figure 66. UART Timings in Mode		
	^I Start ^I bit	Data byte	Ninth ^I Stop ^I bit bit
	RI SMOD0=0		
	RI SMOD0=1		
	FE SMOD0=1		
Automatic Address Recognition	The automatic address recognition nication feature is enabled (SM2 bi		e multiprocessor commu-
	Implemented in hardware, automatic communication feature by allowin incoming command frame. Only w receiver sets RI bit in SCON register is not interrupted by command fram	ng the serial port to exami when the serial port recognizer to generate an interrupt. T	ne the address of each zes its own address, the his ensures that the CPU
	If desired, you may enable the auto configuration, the stop bit takes the received command frame address valid stop bit. To support automatic address reco a broadcast address.	place of the ninth data bit. E matches the device's addres	Bit RI is set only when the ss and is terminated by a
		cation and automatic address ting SM2 bit in SCON register i	
Given Address	Each device has an individual addured register is a mask byte that conta device's given address. The don't conta slaves at a time. The following examples	ains don't care bits (define are bits provide the flexibilit	ed by zeros) to form the y to address one or more
	To address a device by its individ 1111b.	ual address, the SADEN m	nask byte must be 1111
	For example: SADDR0101 0110b <u>SADEN1111 1100b</u> Given0101 01XXb		
	The following is an example of how Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Given1111 0X0Xb	v to use given addresses to a	address different slaves:
	Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Given1111 0XX1b		
	Slave C:SADDR1111 0011b <u>SADEN1111 1101b</u> Given1111 00X1b		

7	6	5	4	3	2	1	0
Reset Va	lue = 0000	0000b					
Table 79	. Slave Add	Iress Regist	er for UAR	T - SADDR	(A9h)		
7	6	5	4	3	2	1	0
Reset Va	lue = 0000	0000b					
Table 80	. Serial Buf	fer Register	for UART -	- SBUF (991	า)		
7	6	5	4	3	2	1	0
	lue = XXXX						1
		e Reload Re	gister for th	ne internal t	baud rate ge	enerator,	
	. Baud Rate		gister for th	ne internal b 3	oaud rate ge 2	enerator, 1	0
UART - E	. Baud Rate BRL (9Ah)	e Reload Re	-		-		0
UART - E 7 Reset Va	Baud Rate BRL (9Ah) 6 Iue = 0000	e Reload Re 5 0000b	4	3	2		0
UART - E 7 Reset Va Table 82	Baud Rate BRL (9Ah) 6 Ilue = 0000	e Reload Re 5 0000b e Control Re	4 egister - BD	3 RCON - (91	2 	1	
UART - E 7 Reset Va	Baud Rate BRL (9Ah) 6 Iue = 0000	e Reload Re 5 0000b	4 egister - BD 4	3 	2 3h) 2	1	0
UART - E 7 Reset Va Table 82	Baud Rate BRL (9Ah) 6 Ilue = 0000	e Reload Re 5 0000b e Control Re	4 egister - BD	3 RCON - (91	2 	1	
UART - E 7 Reset Va Table 82	Baud Rate BRL (9Ah) 6 Ilue = 0000	e Reload Re 5 0000b e Control Re	4 egister - BD 4	3 	2 3h) 2	1	0
UART - E 7 Reset Va Table 82 7 - Bit	Baud Rate BRL (9Ah) 6 Ilue = 0000 Baud Rate 6 - Bit	e Reload Re 5 0000b e Control Re 5 -	4 egister - BD 4 BRR	3 RCON - (91 <u>3</u> TBCK	2 Bh) 2 RBCK	1 1 SPD	0 MOSRC

4	BRR	Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator.
3	TBCK	Transmission Baud rate Generator Selection bit for UART Cleared to select Timer 1 for the Baud Rate Generator. Set to select internal Baud Rate Generator.
2	RBCK	Reception Baud Rate Generator Selection bit for UART Cleared to select Timer 1 for the Baud Rate Generator. Set to select internal Baud Rate Generator.
1	SPD	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.
0	M0SRC	Baud Rate Source select bit in Mode 0 for UART Cleared to select F _{CK_SI} /6 as the Baud Rate Generator. Set to select the internal Baud Rate Generator for UART in mode 0.

Reset Value = XXX0 0000b (Not bit addressable)

134 AT83R5122, AT8xC5122/23

7	6	5	4	3	2	1	0
-	EUSB	-	-	ESCI	ESPI	-	EKB
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not c	hange this bit	
6	EUSB	Cleared to d	pt Enable bit isable USB in e USB interru	terrupt.			
5 - 4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not c	hange these I	oits.
3	ESCI	Cleared to d	ot Enable bit isable SClinte e SCI interrup	•			
2	ESPI	Cleared to d	t Enable bit isable SPI inte e SPI interrup	•			
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not c	hange this bit	
0	EKB	Cleared to d	iterrupt Enat isable keyboa e keyboard int	rd interrupt .			

Table 99. Interrupt Enable Register 1 - IEN1 (B1h) for AT8xC5122

Reset Value = X0XX 00X0b (Bit addressable)

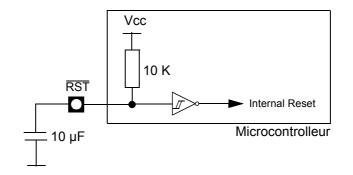
7	6	5	4	3	2	1	0
-	-	-	PSH	PT1H	PX1H	PT0H	PX0H
Bit Number	Bit Mnemonic	Descriptio	on				
7 - 5	-	Reserved The value		s bit is indeterm	inate. Do not	change these	bits.
4	PSH	Serial por <u>PSH</u> 0 1 1		h bit <u>Priority Level</u> Lowest Highest			
3	PT1H	Timer 1 o v <u>PT1H</u> 0 0 1 1	<u>PT1L</u> 0 1 0	r upt Priority H i <u>Priority Level</u> Lowest Highest	igh bit		
2	PX1H	External in <u>PX1H</u> 0 0 1 1	<u>PX1L</u> 0 1 0	iority High bit <u>Priority Level</u> Lowest Highest			
1	РТОН	Timer 0 ov <u>PT0H</u> 0 1 1	<u>PT0L</u> 0 1 0	r upt Priority H i <u>Priority Level</u> Lowest Highest	igh bit		
0	РХОН	External in <u>PX0H</u> 0 1 1	0 1 0	rity High bit <u>Priority Level</u> Lowest Highest			

Table 102. Interrupt Priority High Register 0 - IPH0 (B7h)

Reset Value = X000 0000b (Not bit addressable)

7	6	5	4	3	2	1	0
-	PUSBL	-	-	PSCIL	PSPIL	-	PKBDL
Bit Number	Bit Mnemonic	Description					
7	_	Reserved The value rea	ad from this b	it is indetermir	nate. Do not cl	nange this bit	
6	PUSBL		pt Priority bit BH for priority				
5 - 4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not cl	nange these t	oits.
3	PSCIL	SCI Interrup Refer to PSP	t Priority bit PIH for priority	level.			
2	PSPIL	SPI Interrup Refer to PSP	t Priority bit PIH for priority	level.			
1	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not cl	nange this bit	
0	PKBL		terrupt Prior				

Table 103. Interrupt Priority Low Register 1 - IPL1 (B2h) for AT8xC5122


Reset Value = X00X 00X0b (Bit addressable)

Reset pin

As explained in the POR section there is no need to use the reset pin as the internal reset function at power up is ensured by the POR. Anyway, if some applications requires a long reset, a reset controlled by the user or a reset controlled by external superviser device, the use of the reset pin is necessary.

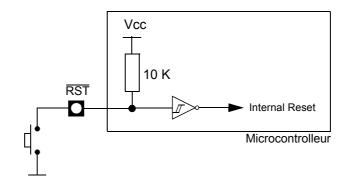

Long Reset As the pad integrates an internal pull-up of 10K, only an external capacitor of at least 10 μ F is required to have an impact on the reset duration.

Figure 103. Long Reset

Reset Controlled by the User The external capacitor is not needed if no long reset is required.

Figure 104. Reset Controlled by the User

S2	S1	S0	Timeout for F_{CK_WD} = 24 MHz / X2
0	0	0	4.10 ms
0	0	1	8.19 ms
0	1	0	16.38 ms
0	1	1	32.77 ms
1	0	0	65.54 ms
1	0	1	131.07 ms
1	1	0	262.14 ms
1	1	1	524.29 ms

Table 111. Timeout value for $F_{CK_{WD}}$ = 24 MHz / X2

Table 112	Watchdog	Timer Enable	register (W	/rite Only)	- WDTRST	(A6h)
-----------	----------	--------------	-------------	-------------	----------	-------

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

The WDTRST register is used to reset / enable the WDT by writing 1EH then E1H in sequence.

Power Management	
	Before activating the Idle Mode or Power Down Mode, the CPU clock must be switched to on-chip oscillator source if the PLL is used to fed the CPU clock.
Idle Mode	An instruction that sets PCON.0 indicates that it is the last instruction to be executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high level.
	There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured dur- ing normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power Down Mode	To save maximum power, a power-down mode can be invoked by software (see Table 13, PCON register).
	WARNING: To minimize power consumption, all peripherals and I/Os with static current consumption must be set in the proper state. I/Os programmed with low speed output configuration (KB_OUT) must be switch to push-pull or Standard C51 configuration before entering power-down. The CVCC generator must also be switch off.
	In power-down mode, the oscillator is stopped and the instruction that invoked power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V _{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power- down. To properly terminate power-down, the reset or external interrupt should not be executed before V _{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INT0, INT1, Keyboard, Card insertion/removal and USB Inter- rupts are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. When Keyboard Interrupt occurs after a power-down mode, 1024 clocks are necessary to exit to power-down mode and enter in operating mode.
	Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 108. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power-down exit will be completed when the first input is released. In this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put AT83R5122, AT8xC5122/23 into power-down mode.

Amer

178 AT83R5122, AT8xC5122/23

USB Interface

Figure 112. USB Interface

Symbol	Parameter	Min	Тур ⁽⁵⁾	Max	Unit
V _{REF}	USB Reference Voltage	3.0		3.6	V
V _{IH}	Input High Voltage for D+ and D- (driven)	2.0		4.0	V
V _{IHZ}	Input High Voltage for D+ and D- (floating)	2.7		3.6	V
V _{IL}	Input Low Voltage for D+ and D-			0.8	V
V _{OH}	Output High Voltage for D+ and D-	2.8		3.6	V
V _{OL}	Output Low Voltage for D+ and D-	0.0		0.3	V

Table of Contents

Reference Documents 2 Product Description 3 AT8xC5122/AT83R5122 Block Diagram 4 AT83C5123 Block Diagram 4 Pinout 5 High Pin Count Package Description 5 Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 22 AT8xC5122's CRAM and E2PROM Version 30 Special Function Registers (SFR's) 31 Introduction 33 SFR's Description 34 AT83C5123 Version 35 Special Function Registers (SFR's) 34 AT83C5123 Version 35 SFR's Description 34 Clock Controller 39	Features	1	
AT8xC5122/AT83R5122 Block Diagram 4 AT83C5123 Block Diagram 4 Pinout 5 High Pin Count Package Description 5 Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DPTR) 20 Registers 21 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 41 Registers 42 AT83C5123 Version 39 On-Chip Oscillator	Reference Documents	2	
AT83C5123 Block Diagram 4 Pinout 5 High Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 30 Special Function Registers (SFR's) 31 AT83C5122 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 VO Port Definition 51 Pot Configuration 52 Smart Card Interface Block (SCIB)	Product Description	3	
Pinout 5 High Pin Count Package Description 5 Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 22 AT8xC5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 48 VO Port Definition 48 VO Port Definition 57 Registers 58 Special Interface Block (SCIB)	AT8xC5122/AT83R5122 Block Diagram	4	
High Pin Count Package Description 5 Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 25 AT83C5123 Version 31 Introduction 31 AT83C5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 99 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 VO Port Definition 51 Port Configuration 55 Registers 59 Smart Card In	AT83C5123 Block Diagram	4	
High Pin Count Package Description 5 Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 25 AT83C5123 Version 31 Introduction 31 AT83C5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 99 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 VO Port Definition 51 Port Configuration 55 Registers 59 Smart Card In	Pinout	5	
Low Pin Count Package Description 10 Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 99 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 VO Port Definition 48 VO Port Definition 51 Port Configuration			
Pin Description 11 Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 22 AT8xC5122's CRAM and E2PROM Version 23 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT83C5122 Version 32 AT83C5122 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 48 VO Port Definition 17 Start Card Interface Block (SCIB) 30 Smart Card Interface Block (SCIB)			
Typical Applications 15 Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 21 AT8xC5122's CRAM and E2PROM Versions 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 48 VO Port Definition 48 VO Port Definition 55 Registers 59 Smart Card Interface Block (SCIB)	- .		
Recommended External components 15 USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 25 Registers 22 AT8xC5122 Version 30 Special Function Registers (SFR's) 11 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 91 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 90 Smart Card Interface Block (SCIB) 62			
USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version. 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 11 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 9 Phase Lock Loop (PLL) 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) <th>Typical Applications</th> <th> 15</th>	Typical Applications	15	
USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS 16 USB Smart Card Reader Using the AT83C5123 Version. 17 Memory Organization 18 Program Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 11 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 9 Phase Lock Loop (PLL) 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) <td></td> <td></td>			
USB Smart Card Reader Using the AT83C5123 Version 17 Memory Organization 18 Program Memory Managament 18 Data Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	· ·		
Memory Organization 18 Program Memory Managament 18 Data Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Program Memory Managament 18 Data Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	USB Smart Card Reader Using the AT83C5123 Version	17	
Program Memory Managament 18 Data Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	Memory Organization		
Data Memory Managament 19 Dual Data Pointer Register (DDPTR) 20 Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Dual Data Pointer Register (DDPTR) 20 Registers. 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT8xC5122 Version 32 AT8xC5122 Version 32 AT8xC5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Registers 22 AT8xC5122's CRAM and E2PROM Versions 24 AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT8xC5122 Version 32 AT8xC5122 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
AT83R5122, AT8xC5122's ROM Version 28 AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
AT83C5123 Version 30 Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	AT8xC5122's CRAM and E2PROM Versions	24	
Special Function Registers (SFR's) 31 Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	AT83R5122, AT8xC5122's ROM Version		
Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	AT83C5123 Version	30	
Introduction 31 AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	Special Function Registers (SFR's)		
AT8xC5122 Version 32 AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
AT83C5123 Version 33 SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
SFR's Description 34 Clock Controller 39 On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62		-	
On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
On-Chip Oscillator 39 Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	Clock Controller	20	
Phase Lock Loop (PLL) 40 Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Clock Tree Architecture 41 Registers 48 I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Registers			
I/O Port Definition 51 Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62			
Port Configuration 55 Registers 59 Smart Card Interface Block (SCIB) 62	, togictol c.		
Registers	I/O Port Definition		
Smart Card Interface Block (SCIB) 62	.		
	Registers	59	
	Smart Card Interface Block (SCIB)		
	Block Diagram	63	

